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a b s t r a c t 

Graph signal processing (GSP) is a key tool for satisfying the growing demand for information processing 

over networks. However, the success of GSP in downstream learning and inference tasks such as super- 

vised classification is heavily dependent on the prior identification of the relational structures. Graphs are 

natural descriptors of the relationships between entities of complex environments. The underlying graph 

is not readily detectable in many cases and one has to infer the topology from the observed signals which 

admit certain regularity over the sought representation. Assuming that signals are smooth over the latent 

class-specific graph is the notion we build upon. Firstly, we address the problem of graph signal classifica- 

tion by proposing a novel framework for discriminative graph learning. To learn discriminative graphs, we 

invoke the assumption that signals belonging to each class are smooth with respect to the corresponding 

graph while maintaining non-smoothness with respect to the graphs corresponding to other classes. Dis- 

criminative features are extracted via graph Fourier transform (GFT) of the learned representations and 

used in downstream learning tasks. Secondly, we extend our work to tackle increasingly dynamic environ- 

ments and real-time topology inference. To this end, we adopt recent advances of GSP and time-varying 

convex optimization. We develop a proximal gradient (PG) method which can be adapted to situations 

where the data are acquired on-the-fly. Beyond discrimination, this is the first work that addresses the 

problem of dynamic graph learning from smooth signals where the sought network alters slowly. The 

introduced online framework is guaranteed to track the optimal time-varying batch solution under mild 

technical conditions. The validation of the proposed frameworks is comprehensively investigated using 

both synthetic and real data. The proposed classification pipeline outperforms the-state-of-the-art meth- 

ods when applied to the problem of emotion classification based on electroencephalogram (EEG) data. 

We also perform network-based analysis of epileptic seizures using electrocorticography (ECoG) records. 

Moreover, by applying our method to financial data, our approach infers the relationships between the 

stock-price behavior of leading US companies and the recent events including the COVID-19 pandemic. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

We are witnessing an uptick of recent interest in signal and 

nformation processing tasks involving network data, which go 

ll the way from clustering similar actors in a social network 

o classifying brain connectomes in computational neuroscience 

tudies [3] . Complex relational structures arising with network 
� This work was supported in part by the National Science Foundation under 

wards CCF-1750428 , CCF-1934962 and ECCS-1809356 . 
� Part of the results in this paper were submitted to the 2021 ICASSP and EUSIPCO 

onferences [1,2] . 
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atasets are naturally mapped out using graph representations. 

hese graphs are essential for understanding how different sys- 

em elements interact with each other, especially in dynamic en- 

ironments. Moreover, they often provide useful context (e.g., in 

he form of a prior or regularizer) to effectively extract actionable 

nformation from graph signals, i.e., nodal attributes such as sen- 

or measurements, infected case counts across different localities, 

r discipline-related labels assigned to scientific papers [4] . Some 

raphs may be readily obtained based on prior surveys and experi- 

ents (e.g., road networks and molecule structures), or they could 

e (at least partially) directly observable as with social and citation 

etworks. In other cases, however, there is a need to utilize net- 

ork topology inference algorithms to estimate the graph structure 

rom graph signal observations; see e.g., [ 3,5,6 ] . This paper tack- 

es a classification problem involving network data, where class- 

https://doi.org/10.1016/j.sigpro.2021.108101
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pecific graphs are learned from labeled signals to obtain discrim- 

native representations. 

.1. Related work 

Popular graph construction schemes rely on ad hoc threshold- 

ng of user-defined edgewise similarity measures or kernels. Albeit 

ntuitive, these informal approaches may fail to capture the actual 

ntrinsic relationships between entities and do not enjoy any sense 

f optimality. Recognizing this shortcoming, a different paradigm 

s to cast the graph-learning problem as one of selecting the best 

epresentative from a family of candidate graphs by bringing to 

ear elements of statistical modeling and inference [ 3 ]. This path 

sually leads to inverse problems that minimize criteria stemming 

rom different models binding the (statistical) signal properties to 

he graph topology. Noteworthy approaches from the Graph Signal 

rocessing (GSP) literature usually assume the signals are station- 

ry with respect to the sought sparse network [7,8] , or that they 

re smooth in the sense that a desirable graph is one over which 

he nodal attributes exhibit limited variations; see e.g., [9,10] and 

ection 2.3 . Graph learning via signal smoothness maximization 

s closely related to Gaussian graphical model selection when the 

recision matrix is constrained to have a combinatorial Laplacian 

tructure; see also the recent review papers [5,11] . 

The graph Fourier transform (GFT) is defined in terms of the 

etwork’s eigenvectors [4] , so through this lens, topology inference 

s tightly related to the problem of learning efficient graph sig- 

al representations for denoising and compression, just to name 

everal relevant downstream tasks. Acknowledging this perspec- 

ive, [12] puts forth a graph learning approach facilitating accurate 

econstruction of sampled bandlimited (i.e., smooth) graph signals. 

aplacian-regularized dictionary learning was considered in [13] , 

here the graph can be learned to effect sparse signal represen- 

ations by better capturing the irregular data geometry. Naturally, 

ome works have dealt with supervised classification of network 

ata. Given a known graph over which the signals in all classes 

eside, the approach of [14] is to learn class-specific paramet- 

ic graph sub-dictionaries. The discriminative graphical lasso algo- 

ithm in [15] constructs class-specific graphs from labeled signals, 

y minimizing the conventional Gaussian maximum likelihood ob- 

ective augmented with a term that boosts the discrimination abil- 

ty of the learnt representations. Related work in [16] advocates 

 graph Laplacian mixture model for data that reside on multi- 

le networks, and tackles the problem of jointly clustering a set 

f signals while learning a graph for each of the clusters. Here 

e advance this line of work in several directions as discussed in 

ection 1.2 . 

.2. Proposed approach and contributions 

We tackle a multi-class network topology inference problem for 

raph signal classification; see Section 3.1 for a formal statement of 

he problem. The signals in each class are assumed to be smooth 

or bandlimited) with respect to unknown class-specific graphs. 

iven training signals the goal is to recover the class-specific 

raphs subject to signal smoothness constraints ( Section 3.2 ), so 

hat the obtained GFT bases can be subsequently used to clas- 

ify unseen (and unlabeled) graph signals effectively as discussed 

n Section 3.3 . This problem bears some similarities with sub- 

pace clustering [17] . Indeed, smoothness with respect to class- 

pecific graphs can be interpreted as data living in multiple low- 

imensional subspaces spanned by the respective low-frequency 

FT components. However, here the problem is supervised and we 

ontend there is value in learning the graph topologies beyond the 

nduced discriminative transforms (i.e., subspaces) to reveal impor- 

ant structure in the data for each class. To this end, we develop a 
2 
ew framework for discriminative graph learning in which we en- 

ourage smoothness of each class signals on their corresponding 

nferred network representation as well as non-smoothness over 

ll other classes’ topologies. Our convex criterion for graph learn- 

ng builds on [10] , which we augment with a judicious penalty 

erm to effect class discriminability [15] . Remark 1 summarizes the 

istinctive features of our approach relative to [10,15] . From an al- 

orithmic standpoint, we develop lightweight proximal gradient it- 

rations ( Section 3.2 ) with well documented rates of convergence, 

cceleration potential, and that can be readily adapted to process 

treaming signals in an online fashion – our second main contribu- 

ion. 

As network data sources are increasingly generating real-time 

treams, training of models (here discriminative graph learning) 

ust often be performed online, typically with limited mem- 

ry footprint and without waiting for a batch of signals to 

ecome available. To accommodate this pragmatic scenario, in 

ection 4.1 we develop online proximal gradient iterations to track 

he (possibly time-varying) network structure per class. Since the 

ynamic topology inference cost is strongly convex, we establish 

hat the online graph estimates closely hover within a ball cen- 

ered at the optimal time-varying batch solution ( Section 4.2 ), and 

haracterize the convergence radius even in a dynamic setting [18–

0] . This algorithmic contribution is of independent interest be- 

ond the classification theme of this paper. Dropping from the 

bjective the regularization term that encourages discriminability, 

ields for the very first time an online graph learning algorithm 

nder smoothness priors. Existing algorithms to identify dynamic 

etwork topologies from smooth signals operate in a batch fashion, 

nd so their computational cost and memory requirements grow 

ith time (i.e., the dataset size) [21–23] . 

The effectiveness and convergence of the proposed algorithms 

s corroborated through a comprehensive performance evaluation 

arried out in Section 5 . We include numerical test cases with syn- 

hetic and real data in both batch and online settings, spanning 

everal tasks across timely application domains such as a emotion 

lassification from electroencephalogram (EEG) data, online graph 

earning from financial time-series, and network-based analysis of 

pileptic seizures from electrocorticography (ECoG) records. Con- 

luding remarks are given in Section 6 , while some technical de- 

ails are deferred to the appendices. This journal paper offers a 

ore thorough treatment of online discriminative graph learning 

elative to its short conference precursors [1,2] . This is achieved by 

eans of expanded technical details, discussions and insights, as 

ell as through more comprehensive performance evaluation stud- 

es with synthetic and real data experiments. In particular, focus 

n [1] is on emotion classification from EEG signals (the subject 

f Section 5.3 ), while [2] deals with online topology identification 

ithout a classification task in mind; see also Remark 2 . 

N otational conventions. The entries of a matrix X and a (col- 

mn) vector x are denoted by X i j and x i , respectively. Sets are 

epresented by calligraphic capital letters. The notation 

� and 

† 

tand for transpose and pseudo-inverse, respectively; 0 and 1 re- 

er to the all-zero and all-one vectors; while I N denotes the N × N

dentity matrix. For a vector x , diag(x ) is a diagonal matrix whose 

 th diagonal entry is x i . The operators ◦, tr (·) , and vec (·) stand for

adamard (element-wise) product, matrix trace, and vectorization, 

espectively. Lastly, ‖ X ‖ p denotes the � p norm of vec (X ) and ‖ X ‖ F 
efers to the Frobenius norm. To avoid overloading the notation, on 

ccasion ‖ x ‖ is used to denote the � 2 norm of vector x . 

. Graph signal processing background 

We start by briefly reviewing the necessary GSP concepts and 

ools that be will used recurrently in the ensuing sections. 
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.1. Graphs, signals and shift operators 

We define the graph signal x = [ x 1 , . . . , x N ] 
� ∈ R 

N over a 

eighted, undirected graph G ( V, E, W ) , where V = { 1 , . . . , N } 
epresents the node set of cardinality N and E ⊆ V × V the set 

f edges. Following this notation, x i ∈ R and W ∈ R 

N×N 
+ denote 

he signal value at node i ∈ V and the adjacency matrix of edge 

eights, respectively. The symmetric and non-negative coefficients 

 i j = W ji ∈ R + indicate the strength of the connection (or sim- 

larity) between node i and node j. In the absence of connec- 

ion [i.e., ( i, j ) � E] one has W i j = 0 . Moreover, we assume that

does not include any self-loops which implies W ii = 0 , ∀ i ∈ V .

e will henceforth assume nodal degrees d := W1 are uniformly 

ower bounded away from zero, i.e., d 	 d min 1 (entry-wise inequal- 

ty) for some prescribed d min > 0 . Else if degrees become arbitrar- 

ly small, it is prudent to apply a threshold and remove the loosely 

onnected nodes from G. Extensions to directed graphs could be 

mportant [24] , but are beyond the scope of this paper. Complex- 

alued signals can be accommodated as well [4] . 

The adjacency matrix W encodes the topology of G. More gen- 

rally it is possible to define the so-called graph-shift operator S , 

hich captures the sparsity pattern of G without any specific as- 

umption on the value of its non-zero entries. The shift S ∈ R 

N×N 
+ 

s a symmetric matrix whose entry S i j can be non-zero only if 

 = j or if (i, j) ∈ E . Beyond the adjacency matrix W , results in

pectral graph theory often motivate choosing the combinatorial 

raph Laplacian L := diag ( d ) − W as well as their various degree- 

ormalized counterparts. Other application-dependent alternatives 

ave been proposed as well; see [4] and the references therein. In 

articular, L plays a central role in defining a useful and intuitive 

raph Fourier transform (GFT) as described next. 

.2. Graph Fourier transform and signal smoothness 

In order to introduce the network’s spectral basis and de- 

ne the GFT, we decompose the (symmetric and positive semi- 

efinite) combinatorial graph Laplacian as L = V �V 

� , where � := 

iag ( λ1 , . . . , λN ) denotes the diagonal matrix of non-negative 

igenvalues and V := [ v 1 , . . . , v N ] the orthonormal matrix of eigen- 

ectors. The GFT of x with respect to L is the signal 

˜ 
 := V 

� x . (1) 

he inverse (i)GFT of ˜ x := [ ̃ x 1 , . . . , ̃  x N ] 
� i s given by x = V ̃

 x = 

 N 
k =1 ̃  x k v k , which is a proper inverse due to the orthonormality of 

 . The GFT encodes a notion of signal variability over G (akin to 

requency in Fourier analysis of temporal signals) by synthesizing 

 as a sum of orthogonal frequency components v k (see the iGFT 

efinition above). The GFT coefficient ˜ x k is the contribution of v k 
o the graph signal x . 

To elaborate on the notion of frequency for graph signals, con- 

ider the total variation (or Dirichlet energy ) of x with respect to 

he combinatorial graph Laplacian L defined as 

V ( x ) := x 

� Lx = 

1 

2 

∑ 

i 
 = j 
W i j 

(
x i − x j 

)
2 = 

N ∑ 

k =1 

λk ̃  x 2 k . (2) 

he quadratic form (2) acts as a smoothness measure, because it 

ffectively quantifies how much the graph signal x changes with 

espect to G’s topology. If we evaluate the total variation of eigen- 

ector v k (itself a graph signal), one immediately obtains TV ( v k ) = 

k . Accordingly, the Laplacian eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λN 

an be viewed as graph frequencies indicating how the eigenvec- 

ors (i.e., frequency components) vary with respect to G [4] . 

Smoothness is a cardinal property of many real-world network 

rocesses; see e.g. [3] . The last equality in (2) suggests that smooth 

or bandlimited) signals admit a sparse representation in the graph 
3 
pectral domain. Intuitively, they tend to be spanned by few Lapla- 

ian eiegenvectors associated with small eigenvalues. Exploiting 

his structure by means of priors or TV-based regularizers is at 

he heart of several graph-based statistical learning tasks includ- 

ng nearest-neighbor prediction (also known as graph smoothing), 

enoising, semi-supervised learning, and spectral clustering [3,4] . 

ore germane to our graph-learning problem is to use smoothness 

s the criterion to construct graphs on which network data admit 

ertain regularity. 

.3. Learning graphs from observations of smooth signals 

Consider the following network topology identification problem. 

iven a set X := { x p } P p=1 of possibly noisy graph signal observa-

ions, the goal is to learn an undirected graph G(V, E, W ) with 

V| = N nodes such that the observations in X are smooth on G. 

n this section we review the solution proposed in [10] , that we 

uild on in the rest of the paper. 

Given X one can form the data matrix X = [ x 1 , . . . , x P ] ∈ R 

N×P ,

nd let x̄ � 
i 

∈ R 

1 ×P denote its i th row collecting those P measure- 

ents at vertex i . The key idea in [10] is to establish a link be-

ween smoothness and sparsity, namely 

P 
 

p=1 

TV (x p ) = tr (X 

� LX ) = 

1 

2 

‖ W ◦ Z ‖ 1 , (3) 

here the Euclidean-distance matrix Z ∈ R 

N×N 
+ has entries Z i j := 

 ̄x i − x̄ j ‖ 2 , i, j ∈ V . The intuition is that when the given distances

n Z come from a smooth manifold, the corresponding graph has 

 sparse edge set, with preference given to edges (i, j) associated 

ith smaller distances Z i j . 

Given these considerations, a general purpose framework for 

earning graphs under a smoothness prior is advocated in [10] , 

hich entails solving 

min 

W 

‖ W ◦ Z ‖ 1 + f (W ) (4) 

s. t. diag (W ) = 0 , W i j = W ji ≥ 0 , i 
 = j. 

he convex objective function f (W ) augments the smoothness cri- 

erion ‖ W ◦ Z ‖ 1 , and several choices have been proposed to e.g., 

ecover common graph constructions based on the Gaussian ker- 

el [25] , accommodate time-varying graphs [22] , or to scale other 

elated graph learning algorithms [9] . Identity (3) offers a favor- 

ble way of formulating the inverse problem (4) , because the 

pace of adjacency matrices can be described via simpler (meaning 

ntry-wise decoupled) constraints relative to its Laplacian coun- 

erpart. As a result, the convex optimization problem (4) can be 

olved efficiently with complexity O(N 

2 ) per iteration, by lever- 

ging provably-convergent primal-dual solvers amenable to paral- 

elization [26] ; see also Section 3.2 for a different optimization ap- 

roach based on proximal gradient algorithms. 

The framework in [10] has been shown to attain state-of-the- 

rt performance and is not only attractive due to is computational 

fficiency but also due to its generality. Henceforth, we leverage 

nd expand these ideas to tackle two important graph signal and 

nformation processing problems. 

. Discriminative graph learning 

In an effort to address classification problems involving network 

ata ( Section 3.1 ), we bring to bear GSP insights to propose a new

ramework for learning discriminative graph-based representation 

f the signals. To this end, a proximal gradient (PG) algorithm is 

eveloped to solve the separable graph-learning problems per class 

 Section 3.2 ). After this training phase, the GFTs of the optimum 

raphs can be used to extract discriminative features of the test 
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ignals. In the test phase, we exploit the extracted GFT-based fea- 

ures in order to classify the test signals ( Section 3.3 ). 

.1. Optimization problem formulation 

Consider a dataset X = 

⋃ C 
c=1 X c comprising labeled graph sig- 

als X c := { x (c) 
p } P c 

p=1 
from C different classes. The signals in each 

lass possess a very distinctive structure, namely they are assumed 

o be smooth (or bandlimited) with respect to unknown class- 

pecific graphs G c = ( V, E c , W c ) , c = 1 , . . . , C. This notion is analo-

ous to a multiple linear sub-space model in which graph signals 

f each class are assumed to be spanned by a few vectors (namely, 

he basis of the corresponding low-dimensional subspace) [17] . In 

act, the closing discussion in Section 2.2 implies one can equiv- 

lently restate the class-conditional signal model assumptions as 

ollows: there is a network G c such that graph signals in X c are 

panned by a few Laplacian eigenvectors (associated with small 

igenvalues), for c = 1 , . . . , C. Similar to [15] , given X the goal

s to learn the class-specific adjacency matrices W c under signal 

moothness priors, so that the obtained GFT bases can be subse- 

uently used to classify unseen (and unlabeled) graph signals ef- 

ectively; see Section 3.3 . 

Our approach blends elements and ideas from the graph learn- 

ng framework in [10] [cf. (4) ] along with the discriminative graph- 

cal lasso estimator [15] . Indeed, the algorithm in [10] optimizes 

etwork topology recovery under smoothness assumptions, but is 

therwise agnostic to the performance of a potential downstream 

say, classification) task the learnt graph may be integral to. In- 

pired by [15] , we seek graph representations that capture the 

nderlying network topology (i.e., the class structure), but at the 

ame time are discriminative to boost classification performance. 

o this end, we propose to learn a graph representation G c per 

lass by solving the following convex optimization problems [cf. 

4) ] 

min 

 c ∈W m 

‖ W c ◦ Z c ‖ 1 − α1 

� log ( W c 1 ) + β‖ W c ‖ 

2 
F − γ

C ∑ 

k 
 = c 
‖ W c ◦ Z k ‖ 1

(5) 

here W c is the adjacency matrix of G c , constrained to the set 

 m 

= { W ∈ R 

N×N 
+ : W = W 

� , diag(W ) = 0 } . Moreover, Z c is the dis-

ance matrix constructed from class c signals X c := [ x (c) 
1 

, . . . , x (c) 
P c 

] ∈
 

N×P c , while α, β, and γ are positive regularization parameters. 

Taking a closer look at the objective function, minimizing ‖ W c ◦
 c ‖ 1 encourages a graph W c over which the signals in X c are 

mooth. At the same time, the last term enforces non-smoothness 

f the signals in the other C − 1 classes. This composite criterion 

ill thus induce a GFT with better discrimination ability than the 

aseline γ = 0 case. In fact, the energy of class c signals will be 

redominantly concentrated in lower frequencies, while the spec- 

ral content of the other classes is pushed towards high-pass re- 

ions of the spectrum; see Section 5.1 for corroborating simula- 

ions. Under Gaussian assumptions this can be interpreted as a 

isher discrimination criterion used in Linear Discriminant Analysis 

LDA) [ 25 ], which entails the other way around; see [15] . 

The logarithmic barrier on the nodal degree sequence W c 1 pre- 

ludes the trivial all-zero solution. Moreover, it ensures the esti- 

ated graph is devoid of isolated vertices. The Frobenius-norm 

egularization on the adjacency matrix W c controls the graphs’ 

dge sparsity pattern by penalizing larger edge weights (the spars- 

st graph is obtained for β = 0 ). Overall, this combination forces 

egrees to be positive but does not prevent most individual edge 

eights from becoming zero [10] . 

emark 1 (Comparison with [10,15] ) . The topology inference prob- 

em (5) is subsumed by the general framework in [10] , for a par-
4 
icular choice of the regularization function f (W i ) in (4) . The dis- 

inctive goal here is that of discriminative transform learning, to 

ffectively tackle a classification problem involving network data. 

ifferent from [10] , in the next section we solve (5) using ef- 

cient PG iterations that can afford Nesterov-type acceleration 

nd are readily adapted to process streaming data in an online 

ashion during training ( Section 4 ). A discriminative graph learn- 

ng approach, sharing similar objectives to ours was formulated 

n [15] , but under the lens of probabilistic graphical model selec- 

ion. Therein, graph signals are viewed as random vectors adher- 

ng to a Gaussian Markov random field distribution, where the un- 

nown class-specific precision matrices typically play the role of 

raph Laplacians. However, the discriminative graphical lasso esti- 

ator in [15] is not guaranteed to return a valid graph Laplacian 

or each class, since the search is performed over the whole pos- 

tive semi-definite cone. Incorporating Laplacian constraints may 

hallenge the block coordinate-descent algorithm in [15] . Accord- 

ngly, one misses on the GSP insights offered here in terms of sig- 

al smoothness and bandlimitedness in the graph spectral domain. 

umerical tests in Section 5 show that the proposed approach out- 

erforms the algorithms in [10] and [15] when it comes to classifi- 

ation, while it recovers interpretable graphs offering insights into 

he structure of the data classes. 

.2. Proximal-gradient algorithm 

Given the optimization problem formulation in (5) , in this sec- 

ion we develop a PG algorithm to recover the network topology of 

he graphs G c per class c = 1 , . . . , C; see [27] for a tutorial on prox-

mal methods and their applications. PG methods have been pop- 

larized for � 1 -norm regularized linear regression problems, and 

heir desirable features of computational simplicity as well as suit- 

bility for online operation are starting to permeate naturally to 

he topology identification context of this paper [28] . 

To make (5) amenable to this optimization method, recall first 

hat the adjacency matrix W c ∈ W is symmetric with diagonal el- 

ments equal to zero. Therefore, the independent decision vari- 

bles are effectively the upper-triangular elements [ W c ] i j , j > i, 

hich we collect in the vector w c ∈ R 

N (N −1) / 2 
+ . Second, it will 

rove convenient to enforce the non-negativity constraints by 

eans of a penalty function augmenting the original objective. Just 

ike [10] , we add an indicator function I { w c 	 0 } = 0 if w c 	 0 , and

 { w c 	 0 } = ∞ otherwise. Given all these considerations we refor- 

ulate the objective in (5) as the function F (w c ) of a vector vari-

ble, and write the equivalent composite, non-smooth optimization 

roblem: 

in 

 c 

F ( w c ) := 

g(w c ) ︷ ︸︸ ︷ 
−α1 

� log ( Sw c ) + β2 ‖ w c ‖ 

2 

+ I { w c 	 0 } + 2 w 

� 
c z c − γ

C ∑ 

k 
 = c 
2 w 

� 
c z k ︸ ︷︷ ︸ 

h (w c ) 

, (6) 

here z c is a vector containing the upper-triangular entries of Z c , 

nd S ∈ { 0 , 1 } N ×N (N −1) / 2 is such that d c = W c 1 = Sw c . 

To arrive at the PG iterations, first note that the gradient of g in 

6) has the simple form 

g(w c ) = 4 βw c − αS � 
(

1 

Sw c 

)
, (7) 

here 1 / (Sw c ) stands for element-wise division. Moreover, the 

radient ∇g is a Lipschitz-continuous function with constant η = 

4 β + 

2 α(N−1) 

d 2 
min 

)
; see Appendix A for a proof. With λ > 0 a fixed 

ositive scalar, introduce the proximal operator of a closed proper 
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Algorithm 1: PG for graph learning, class c. 

Input parameters α, β, γ , η, data { z c } C c=1 
, initial w c, 0 . 

Set k = 0 , μ ≤ 2 /η and μ̄ = 2 μ
(
z c − γ

∑ C 
k 
 = c z k 

)
. 

while not converged do 

Compute ∇g(w c,k ) = 4 βw c,k − αS � 
(

1 
Sw c,k 

)
. 

Update w c,k +1 = 

[
w c,k − μ∇g(w c,k ) − μ̄

]
+ . 

Increment k ← k + 1 . 
end 
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onvex function f : R 

N → R ∪ { + ∞} evaluated at point υ ∈ R 

N as 

rox λ f ( υ) := argmin 

x 

{ 

f (x ) + 

1 

2 λ
‖ x − υ‖ 

2 
} 

. (8) 

ith this definition, the PG updates with fixed step size μ < 

2 
η

o solve each of the class-specific graph learning problems (6) are 

iven by (henceforth k = 0 , 1 , 2 , . . . denote iterations) 

 c,k +1 := prox μh 

(
w c,k − μ∇g(w c,k ) 

)
. (9) 

t follows that graph estimate refinements are generated via the 

omposition of a gradient-descent step and a proximal operator. 

fficient evaluating of the latter is key to the success of PG meth- 

ds. The proximal operator of h in (6) is given by 

rox μh (w c ) = 

[ 

w c − 2 μ

( 

z c − γ
C ∑ 

k 
 = c 
z k 

) ] 

+ 

, (10) 

here [ υ] + := max (0 , υ) denotes the projection operator onto the 

on-negative orthant (the max operator is applied entry-wise). The 

on-negative soft-thresholding operator in (10) sets to zero all 

dge weights in w c that fall below the data-dependent thresholds 

n vector μ̄ := 2 μ
(
z c − γ

∑ C 
k 
 = c z k 

)
. The resulting iterations are tab- 

lated under Algorithm 1 , which will also serve as the basis for the

nline algorithm in Section 4 . 

The computational complexity is dominated by the gradient 

valuation in (7) , incurring a cost of O(N 

2 ) per iteration k due to

caling and additions of vectors of length N(N − 1) / 2 . For sparse

raphs G c the iterates w c,k tend to become (and remain) quite 

parse at early stages of the algorithm by virtue of the soft- 

hresholding operations (a sparse initialization w c, 0 is useful to 

his end). Hence, it is possible to reduce the complexity further 

f Algorithm 1 is implemented carefully using sparse vector op- 

rations. All in all, Algorithm 1 scales well to large graphs with 

housands of nodes and it is competitive with the state of the 

rt primal-dual solver in [10] . In terms of convergence, as k → ∞
he sequence of iterates (9) provably approaches a minimizer of 

he composite cost F in (6) ; see e.g., [27] for the technical de-

ails. Moreover, the worst-case convergence rate of PG algorithms 

s well documented (namely O(1 /ε) iteration complexity to return 

 ε-optimal solution measured in terms of F values), and can be 

oosted to O(1 / 
√ 

ε ) via Nesterov-type acceleration techniques that 

re readily applicable to Algorithm 1 . 

.3. Classification via low-pass graph filtering 

During the training phase of the classification task, the goal is 

o learn C class-specific graphs G c from labeled graph signals X c := 

 x (c) 
p } P c 

p=1 
. This can be accomplished by running C parallel instances 

f Algorithm 1 . Let ˆ W c denote the estimated adjacency matrix of 

he graph representing class C, and likewise let ˆ L c = diag ( ̂  W c 1 ) −
ˆ 
 c be the combinatorial graph Laplacian. Finally, let ˆ V c denote the 

rthonormal GFT basis of Laplacian eigenvectors for class C; see 

ection 2.2 . 
5 
In the operational or test phase, we are presented with an un- 

een and unlabeled graph signal x which we wish to classify into 

ne of the C classes. To that end, we will process x with a filter- 

ank comprising C graph filters. The cth branch yields the graph- 

requency domain output 

˜ 
 F,c = 

˜ H V 

� 
c x = diag ( ̃  h ) ̃ x c = 

˜ h ◦ ˜ x c , (11) 

here ˜ x c are the GFT coefficients of x with respect to graph G c , 
nd 

˜ h = [ ̃ h 1 , . . . , ̃  h N ] 
� is the frequency response of an ideal low- 

ass filter with bandwidth w ∈ { 1 , 2 , . . . , N} , i.e., ˜ h i := � { i ≤ w } .
he indicator function � { i ≤ w } = 1 if i ≤ w, and � { i ≤ w } = 0 oth-

rwise. Typically, one chooses the tunable parameter w to be N/ 2 

r smaller in order to implement a low-pass filter. Notice that 

hile the frequency response ˜ h is the same for all C branches, 

he graph filters H c = V c diag ( ̃  h ) V 

� 
c differ because the learnt graphs

hence the GFT transforms) vary across classes. From the definition 

f ˜ h , it immediately follows that ˜ x F,c is nothing else than the pro- 

ection of x onto the eigenvectors of ˆ L c corresponding to the small- 

st w eigenvalues. 

If x belongs to class c 	 , say, then this graph signal should be 

moothest with respect to G c 	 . Equivalently, for fixed (appropriately 

ow) bandwidth w we expect the signal power to be largest when 

rojected onto the GFT basis constructed from 

ˆ L c . Accordingly, the 

dopted classification rule is simply 

ˆ 
 = argmax 

c 

{‖ ̃

 x F,c ‖ 

2 
}
. (12) 

 classification error occurs whenever ˆ c 
 = c 	 . 

. Online discriminative graph learning 

As network data sources are increasingly generating real-time 

treams, training of models (here discriminative graph learning) 

ust often be performed on-the-fly, typicall y (i) not affording to 

tore or revisit past measurements; and (ii) without waiting for a 

hole batch of signals to become available. To accommodate this 

nvisioned scenario, we switch gears to online estimation of W c 

or even tracking W c,t in a non-stationary setting when the class- 

onditional distributions exhibit variations) from streaming data 

 x (c) 
1 

, . . . , x (c) 
t , x (c) 

t+1 
, . . . } . 

A viable approach is to solve at each time instant t = 1 , 2 , . . . ,

he composite, time-varying optimization problem [cf. (6) ] 

 

	 
c,t := argmin 

w c 

F c,t ( w c ) := 

g(w c ) ︷ ︸︸ ︷ 
−α1 

� log ( Sw c ) + 2 β‖ w c ‖ 

2 

+ I { w c 	 0 } + 2 w 

� 
c z c, 1: t − γ

C ∑ 

k 
 = c 
2 w 

� 
c z k, 1: t ︸ ︷︷ ︸ 

h c,t (w c ) 

. (13) 

n writing z c, 1: t ∈ R 

N (N −1) / 2 
+ we make explicit that the Euclidean- 

istance matrix is computed using all class- c signals acquired up 

o time t . In this infinite-memory case there is a need for nor- 

alization, for instance by using instead the time average z̄ c,t := 

z c, 1: t 
t . Otherwise the signal-dependent terms in (13) would explode 

ue to data accumulation in z c, 1: t = z c, 1: t−1 + z c,t as t → ∞ . This

nd other limited-memory averaging alternatives that are better 

uited for tracking variations in the graphs will be discussed in 

ection 4.1 . Either way, as data come in, the edge-wise � 1 -norm 

eights in ‖ W c,t ◦ Z c, 1: t ‖ 1 = 2 w 

� 
c z c, 1: t will fluctuate explaining the 

ime dependence of F c,t (w c ) through its non-differentiable compo- 

ent h c,t (w c ) . Notice that g(w c ) is time-invariant for this particu- 

ar instance of the topology inference problem, but this need not 

e the case in general [28] . 
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Algorithm 2: Online discriminative graph learning, class c. 

Input parameters α, β, γ , θ, stream z c, 1 , z c, 2 , . . . , initial 

w c, 1 , ̄z c, 0 . 

for t = 1 , 2 , . . . , do 

Update z̄ c,t = (1 − θ ) ̄z c,t−1 + θz c,t . 

Update μt = 

(
4 β + 

2 α(N−1) 

min (Sw c,t ) 2 

)
−1 . 

Update μ̄t = 2 μt 

(
z̄ c,t − γ

∑ C 
k 
 = c ̄z k,t 

)
. 

Compute ∇g(w c,t ) = 4 βw c,t − αS � 
(

1 
Sw c,t 

)
. 

Update w c,t+1 = [ w c,t − μt ∇g(w c,t ) − μ̄t ] + . 
end 

∑
t

s

T

l

s

i  

a

n

w

N

i
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q

s

r

o

h

.1. Online algorithm construction 

A naive sequential estimation approach consists of solving 

13) repeatedly using the batch PG algorithm in Section 3.2 . How- 

ver (pseudo) real-time operation in delay-sensitive applications 

ay not tolerate running multiple inner PG iterations per time in- 

erval, so that convergence to w 

	 
c,t is attained for each t . For time- 

arying graphs it may not be even prudent to obtain w 

	 
c,t with high 

recision (hence incurring high delay and unnecessary computa- 

ional cost), since at time t + 1 a new datum arrives and the solu-

ion w 

	 
c,t+1 may be well off the prior estimate. These reasons mo- 

ivate devising an efficient online and recursive algorithm to solve 

he time-varying optimization problem (13) . 

To this end, we build on recent advances in time-varying con- 

ex optimization, in particular the online PG methods in [18] , [20] . 

ur algorithm construction approach entails two steps per time in- 

tant t = 1 , 2 , . . . . First, we recursively update the upper-triangular

ntries z c, 1: t = z c, 1: t−1 + z c,t of the Euclidean-distance matrix via an 

xponential moving average (EMA), namely 

¯
 c,t = (1 − θ ) ̄z c,t−1 + θz c,t . (14) 

he constant θ ∈ (0 , 1) is a discount factor, which downweighs 

ast data to facilitate tracking dynamic graphs in non-stationary 

nvironments. The closer θ becomes to 1, the faster EMA dis- 

ounts past observations. Another viable alternative is to use a fix- 

ength sliding window [20] , whereby the Euclidean distance ma- 

rix z c,t−L +1: t is computed using the most recent L ≥ 1 graph sig- 

als from class c. For the infinite-memory case (suitable for time- 

nvariant class-specific data distributions), one can rely on recur- 

ive updates of the sample mean z̄ c,t = 

z c, 1: t 
t = 

t−1 
t z̄ c,t−1 + 

z c,t 
t . In 

ny case, recursive updates of the vectorized Euclidean-distance 

atrix can be carried out in O(N 

2 ) complexity (and memory) per 

nstant t . We initialize z̄ c, 0 from a few graph signals acquired be- 

ore the online algorithm starts. 

In the second step, we run a single iteration 

 c,t+1 = prox μt h c,t ( w c,t − μt ∇g(w c,t ) ) , (15) 

f the batch graph learning algorithm developed in Section 3 to 

pdate w t+1 , with μt < 

2 
η = 

(
2 β + 

α(N−1) 

d 2 
min 

)
−1 . An adaptive step- 

ize rule μt whereby d min is replaced with min (Sw c,t−1 ) is an al- 

ernative that works well in practice. In a nutshell, (15) amounts 

o letting iterations k = 1 , 2 , . . . in Algorithm 1 match the time in-

tants t of signal acquisition. Especially when dealing with slowly- 

arying graphs or in delay-tolerant applications, running a few PG 

terations during (t − 1 , t] would likely improve recovery perfor- 

ance; see also the discussion following Theorem 1 . The gradi- 

nt calculation is unchanged from the batch case [see (7) ], and the 

on-negative soft-thresholding operator is now defined in terms 

f a time-varying threshold μ̄t := 2 μt 

(
z̄ c,t − γ

∑ C 
k 
 = c ̄z k,t 

)
. This is 

 direct manifestation of the fact that data enters the cost in 

13) as time-varying � 1 −norm weights. Accordingly, the compu- 

ational complexity remains O(N 

2 ) per instant t – just as in the 

atch setting of Section 3 . The resulting online iterations are tabu- 

ated under Algorithm 2 . 

Unlike recent approaches that estimate dynamic graph topolo- 

ies from the observation of smooth signals [21–23] , Algorithm 2 ’s 

emory footprint and computational cost per data sample x (c) 
t do 

ot grow with t . Specifically, the algorithms in [21] , [22] , [23] op-

rate in batch fashion and the number of optimization variables 

 W 1 , . . . , W T or their Laplacian counterparts) increase by a fac- 

or of T when time-varying graphs are learnt over a horizon t = 

 , . . . , T . Moreover, these algorithms can only start once all data

ave been acquired and stored, rendering them unsuitable for on- 

ine operation using streaming signals. Finally, the formulations 

n [21] , [22] , [23] rely on explicit regularization terms such as 
6 
 T 
t=2 ‖ W t − W t−1 ‖ 2 F in order to constrain the temporal variation of 

he estimated graphs; see also [29] for a recent approach whereby 

ignals are assumed to be stationary over the dynamic networks. 

he proposed online PG iterations offer an implicit proximal regu- 

arization, so there is no need to enforce similarity between con- 

ecutive graphs explicitly in the criterion. Details can be found 

n [ 30 ], but the argument is that the iteration (15) can be viewed

s a proximal regularization of the linearized function g at w c,t , 

amely 

 c,t+1 = argmin 

w 

{
g(w ) + (w − w c,t ) 

� ∇g(w c,t ) 

+ 

1 

2 μt 
‖ w − w c,t ‖ 

2 + h c,t (w ) 
} 

. 

otice how the third term in the objective function imposes said 

mplicit temporal regularization between consecutive graphs. Be- 

ore moving on to issues of convergence, a remark is in order. 

emark 2 (Online graph learning from smooth signals) . By setting 

= 0 in (13) and Algorithm 2 , (to the best of our knowledge) we

btain the very first online algorithm to learn graphs from the ob- 

ervation of streaming smooth signals. This is a novel contribu- 

ion of independent interest beyond the (discriminative) classifi- 

ation task-oriented focus of this paper. As we were preparing the 

nal version of this manuscript, we became aware of recent re- 

ated work on online graph learning via prediction-correction al- 

orithms [31] . While the framework proposed therein is undoubt- 

dly general, concrete iterations are developed for the problem of 

ime-varying GMRF model selection. Similar to the discriminative 

raphical lasso algorithm in [15] , lacking Laplacian constraints on 

he sought precision matrices, the connections with smoothness 

riors are tenuous. Moreover, Algorithm 2 is a first-order method 

hile prediction-correction iterations also require (second-order) 

essian information. This is likely to result in increased compu- 

ational load. Finally, [31] does not offer convergence guarantees. A 

elated online topology inference framework was put forth in [28] , 

ut observations therein are modeled as stationary graph signals 

enerated by local diffusion dynamics on the sought network. Al- 

ogether, [28] , [31] along with the ideas presented here underscore 

he potential of recent advances in time-varying convex optimiza- 

ion towards tackling dynamic network topology inference prob- 

ems in various relevant settings. 

.2. Convergence analysis 

Here we establish that Algorithm 2 can closely track the se- 

uence of batch minimizers w 

	 
c,t [recall (13) ] for large enough t; 

ee also the corroborating simulations in Sections 5.2 and 5.5 . Our 

esults build on the performance guarantees derived in [20] for 

nline subspace clustering algorithms. To simplify notation, we 

enceforth drop the subindex c from all relevant quantities. The 
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esults hold as stated for the estimated graphs in all classes c = 

 , . . . , C. 

Instrumental to stating bounds for the tracking error ‖ w t − w 

	 
t ‖ 

s to note that g(w ) in (13) is 4 β-strongly convex (see Appendix B )

nd its gradient is η-Lipschitz continuous. It thus follows that w 

	 
t 

s the unique minimizer of (13) . Next, let us define v t := ‖ w 

	 
t+1 

−
 

	 
t ‖ to quantify the temporal variability of the optimal solution of 

13) . Since g(w ) is strongly convex, we have the following (non- 

symptotic) performance guarantee for Algorithm 2 . 

heorem 1. For all t ≥ 2 , the sequence of iterates w t generated by

lgorithm 2 satisfies: 

 w t − w 

	 
t ‖ ≤ ˜ L t−1 

( 

‖ w 1 − w 

	 
1 ‖ + 

t−1 ∑ 

τ=1 

v τ
˜ L τ

) 

, (16) 

where L t := max { | 1 − 4 μt β| , | 1 − μt ηt | } , ˜ L t := 

∏ t 
τ=1 L τ . Mor e- 

ver, for the sequence of objective values we can write F t (w t ) −
 t (w 

	 
t ) ≤ ηt 

2 ‖ w t − w 

	 
t ‖ ; see [ 32 ] . 

Theorem 1 is adapted from [ 20 ], and the proof can be obtained

ia straightforward modifications to the arguments therein. If one 

ould afford t aking i t PG iterations (instead of a single one as in

lgorithm 2 ) per time step t, the performance gains can be readily 

valuated by substituting ˜ L t = 

∏ t 
τ=1 L 

i τ
τ in Theorem 1 to use the 

ound (16) . 

To gain further insights on the tracking bound, let us define 
ˆ 
 t := max τ=1 , ... ,t L τ , ˆ v t := max τ=1 , ... ,t v τ . With the aid of these up- 

er bounds, the sum of the geometric series in the right-hand side 

f (16) can be simplified to 

 w t − w 

	 
t ‖ ≤

(
ˆ L t−1 

)
t ‖ w 1 − w 

	 
1 ‖ + 

ˆ v t 
1 − ˆ L t−1 

. (17) 

ccordingly, ˆ L t = (ηt − 4 β) /ηt < 1 since in Algorithm 2 we set 

t = η−1 
t . Therefore, ( ̂ L t−1 ) 

t → 0 and Algorithm 2 hovers on the 

icinity of the optimal solution with a misadjustment ˆ v t / (1 − ˆ L t−1 ) . 

t follows that the tracking error increases with 

ˆ v t (rapidly-varying 

lass-conditional graphs are more challenging to track) and also if 

he problem is badly conditioned (i.e., β → 0 or ηt → ∞ in which 

ase ˆ L t → 1 ). 

. Numerical experiments 

Here we test both the discriminative graph learning and the 

nline graph learning approaches on different synthetic and real- 

orld signals. A comprehensive performance evaluation is carried 

ut for the proposed frameworks. In the case of discriminative 

raph learning we: (i) assess the classification accuracy; (ii) evalu- 

te the similarity of the learned graph and the ground truth via the 

-measure of the detected edges (defined as the harmonic mean 

etween edge precision and recall) [33] ; (iii) illustrate the distri- 

ution of the resulting GFT coefficients; (iv) compare with state-of- 

he-art methods; and (v) check if our findings are aligned with the 

iterature. Also, we investigate the performance of the online dis- 

riminative graph learning approach by evaluating how it follows 

ts offline counterpart. For online graph learning we: (i) investigate 

ow the online algorithm tracks the optimum objective value; and 

ii) study the similarity of the learned graph and the ground truth, 

ven in dynamic environments. 

For the synthetic data experiments, we generate i.i.d. smooth 

ignals with respect to the underlying graphs we wish to recover. 

he signals are drawn from a Gaussian distribution 

 ∼ N 

(
0 , L † + σ 2 

e I N 
)
, (18) 

here σe represents the noise level; see e.g., [9] . Throughout, we 

erform a grid search to determine the best regularization pa- 

ameters α, β, γ and report the results. The optimality criterion 
7 
epends on the task at hand. Specifically, in classification tasks 

 Sections 5.1, 5.3 , and 5.4 ) we choose the parameters that lead to

he best classification accuracy. When the goal is to track a time- 

arying graph topology ( Section 5.2 ), we select the parameters that 

esult in the most accurate graph recovery in terms of F-measure. 

lso, after learning the graph, we remove the weak connections by 

hresholding edge weights below 10 −3 . 

.1. Learning discriminative graphs from synthetic data 

In this section, we illustrate the effectiveness of our graph 

earning framework in controlled synthetic settings. We carry out 

omparisons with other state-of-the-art methods such as the ap- 

roach developed in [10] (Kalofolias) and the method proposed 

n [15] (DISC). Moreover, to determine if the learned graphs 

nd the adopted smoothness assumption are beneficial in boost- 

ng classification accuracy, we also compared against a network- 

gnostic baseline whereby the raw signals are used as features in 

 Support Vector Machine (SVM) [34] classifier. The evaluation is 

onducted in two different scenarios as follows. 

.1.1. Scenario one 

Consider two families of random graphs: (i) Erd ̋os–Rényi 

ER) [35] , and (ii) Barabási–Albert (BA) [36] . In this experiment, for 

 = 60 we generate an ER graph with edge-formation probability 

p = 0 . 1 , and a BA graph by adding a new node to the graph each

ime, connecting to 3 existing nodes in the graph. This will re- 

ult in sparse graphs with edge density of approximately 0.1. Then, 

00 independent random signals are generated using (18) ; half of 

hich are smooth over the ER graph and the other half over the BA 

raph. The signals have different levels of noise σe ∈ [ 0 . 05 , 3 ] . We 

se 80% of the data for training and the remaining 20% is used for 

esting. This procedure is repeated over 50 trials, with 50 different 

R and BA graph realization. 

A summary of our results can be found in Fig. 1 . Fig. 1 (a–c)

epicts the classification accuracy and F-measure (for each graph 

amily) averaged over 50 trials. Mean values are accompanied by 

5% confidence intervals. It is apparent from Fig. 1 (a) that our dis- 

riminative graph learning approach outperforms state-of-the-art 

ethods in terms of classification accuracy. As expected, by in- 

reasing the noise level we can see the drop in the performance of 

ll methods (still, our algorithm uniformly outperforms the com- 

eting alternatives). The algorithm in [10] is designed to accurately 

ecover the class-conditional graphs, but it is not optimized for a 

ownstream classification task. Inspection of Fig. 1 (b,c) shows that 

he proposed method – despite introducing biases to effect dis- 

riminability – can still accurately recover the ground-truth graph 

or both model classes (the gap with [10] is indistinguishable). On 

he other hand, the DISC method [15] focuses more on discrimi- 

ation and its graph recovery performance markedly degrades (es- 

ecially for in the low-noise regime); see Fig. 1 (b,c). As expected, 

ISC is competitive in terms of classification accuracy. Overall, 

hese results suggest that our method is more robust in noisy sce- 

arios and it can accurately recover the class-conditional graphs 

hile maintaining high discriminative power. 

As mentioned in Section 3.3 , we use the cumulative relative 

nergy of the first one-third GFT coefficients in order to classify 

he test signals. To assess the discrimination ability of these spec- 

ral features, we compute the GFT of the test signals with re- 

pect to each of the learned graphs (ER and BA) and then evalu- 

te the respective energy distributions across GFT coefficients. For 

est signals in the ER class, Fig. 1 (d) shows the mean magnitude of 

he GFT coefficients obtained with respect to each of the learned 

raphs. The signals are noticeably smoother with respect to the 

earnt ER class graph; see the higher magnitude of the GFT coeffi- 

ients corresponding to the lower frequencies. On the other hand, 
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Fig. 1. The mean of (a) signal classification accuracy, (b) F-measure of detected edges for ER graph, and (c) F-measure of detected edges for BA graph as a function of the 

noise level. Our method outperforms other methods in both tasks. Magnitude of GFT coefficients averaged over all trials for (d) ER class, and (e) BA class. Apparently, the 

test signals of each class are smooth over the corresponding learned graph while they are non-smooth over the other class. (f) The cumulative relative energy of projected 

test signals on the ER graph. The cumulative relative energy is used for the classification and must be higher for the corresponding class in low frequencies (first couple of 

indices). 
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Fig. 2. The average signal classification accuracy as a function of the proportion 

of edge replacing. The proposed method outperforms competing alternatives in all 

cases. 
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or the learnt BA class graph we observe strong energy coefficients 

n the higher-end of the spectrum. To reinforce these observations, 

e plot the cumulative relative energy distributions in Fig. 1 (f). A 

imilar trend is observed for the test signals in the BA class; see 

ig. 1 (e) where now projections onto the first few eigenvectors of 

he BA class graph carry most of the signal energy. 

.1.2. Scenario two 

Different from the previous scenario, here we generate 100 ran- 

om graphs (50 from each class, all with N = 100 nodes) by re-

lacing a proportion of edges with new ones drawn from the same 

amily of random graphs. This way we try to replicate a more real- 

stic setting whereby graphs have some common patterns, but oth- 

rwise they can exhibit small fluctuation in their topology across 

amples. The 100 smooth signals over these graphs are syntheti- 

ally generated using (18) , where σe = 1 . The ER graphs have edge-

ormation probability p = 0 . 1 , and BA graphs are generated by 

dding a new node to the graph each time, connecting to 5 exist- 

ng nodes in the graph. We repeat this procedure 50 times while 

arying the proportions of edges replaced. 

Since we generate 100 different random graphs, the evaluation 

f the F-measure is not feasible or even meaningful here. There- 

ore, in Fig. 2 we depict the mean classification accuracy averaged 

ver 50 trials (along with the corresponding 95% confidence inter- 

als) as a function of the proportion of edges redrawn from sam- 

le to sample. Once more, our algorithm uniformly outperforms all 

he aforementioned state-of-the-art methods. For all graph-based 

pproaches, it is noticeable how the classification performance de- 

rades as the perturbations in the graph topology increase. 

Departing from batch solutions, next we analyze the online dis- 

riminative graph learning approach in a similar setting. To this 

nd, we create 100 random graphs (50 for each class, among which 

0 are used for training and 10 for testing) with N = 100 nodes by

etaining 25% of edges, and each time redrawing the others from 

he same family of random graphs. The ER and BA parameters are 

dentical to those used in the previous test case. We assume that 

he training signals are acquired in a streaming fashion (so the 

lass-conditional graphs are learnt on the fly), but we have access 
8 
o the whole test data to evaluate the classification performance at 

ach time slot. For each class we generate 50 training samples per 

raph, so the training horizon is 20 0 0 = 50 × 40 in Fig. 3 . We train

nline using Algorithm 2 , and the obtained time-varying classifica- 

ion accuracy over the test set (averaged over 50 independent tri- 

ls) is depicted in Fig. 3 . Notice how after an initial learning period

f around 1200 time slots, the online classification algorithm at- 

ains the performance of the optimal batch classifier (which learns 

he class-conditional graphs in one-shot using Algorithm 1 , jointly 

sing all the training signals acquired so far). 

.2. Online graph learning from synthetic data 

To assess the performance of the proposed online graph learn- 

ng algorithm (without discriminative term; γ = 0 see Remark 2 ), 

e test Algorithm 2 on simulated streaming data. There is no clas- 

ification problem we are solving here, the goal is to recover the 

opology of a time-varying network. To this end, we generate a 
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Fig. 3. The average signal classification accuracy as a function of iterations. After 

acquiring enough time samples the online algorithm converges to its offline coun- 

terpart. 
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Table 1 

The average of EEG emotion classification accu- 

racy over all subjects. 

Study Valence Arousal 

Proposed method 92.73 93.44 

Kalofolias [10] 86.56 88.91 

Chao and Liu [38] 77.02 76.13 

Koelstra et al. [37] 57.60 62.00 

Chung and Yoon [39] 66.60 66.40 

Rozgi ́c et al. [40] 76.90 69.10 

Chen et al. [41] 76.17 73.59 

Tripathi et al. [42] 81.40 73.36 
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iecewise-constant sequence of two random ER graphs (edge for- 

ation probability p = 0 . 1 ) with N = 30 nodes. The initial graph

witches in the middle of the experiment (specifically after t = 

0 , 0 0 0 time slots). The final graph is obtained from the initial one

y redrawing 40% of its edges. Then, we synthetically generate i.i.d. 

mooth signals with respect to the time-varying underlying graph. 

he signals are drawn according to (18) by setting σe = 0 . 05 . Re-

ults are averaged over 10 independent Monte Carlo trials. As a 

aseline we compute the optimal time-varying solution F t [cf. (13) ], 

y running the batch PG algorithm ( Algorithm 1 ) until convergence 

very 500 time samples. For this experiment we set θ = 0 . 003 in

lgorithm 2 . 

Fig. 4 (a) shows that after around 500 time samples (itera- 

ions) the objective value of the online Algorithm 2 comes close 

o the optimal value F t of its time-varying batch counterpart. The 

bserved oscillation depends on the step size μt in Algorithm 2 . 

s expected, increasing the step size leads to faster convergence 

ith larger oscillations. Conversely, reducing the step size leads to 

moother and slower convergence. The other noteworthy observa- 

ion is that the objective value markedly increases when the graph 

hanges (after 10 , 0 0 0 time samples), but the online algorithm can 

ffectively track the dynamic graph after a sufficient number of 

amples have been acquired. A similar trend can be observed for 

he F-measure of the detected edges; see Fig. 4 (b). For visual com- 

arison we illustrate the snapshots of the estimated adjacency ma- 

rices at time samples 10 , 0 0 0 and 20 , 0 0 0 , and compare them

ith the ground-truth topologies before and after the switch point; 

ee Fig. 4 (c). The similarities are noticeable. 

.3. EEG emotion recognition 

In this section, we apply the discriminative graph learning algo- 

ithm on a real-world problem, namely emotion recognition using 

EG signals. To this end, we resort to a widely used and publicly 

vailable EEG data-set called DEAP [37] . 

The DEAP data-set contains EEG and peripheral physiological 

ignals of 32 participants. The data were recorded while subjects 

ere watching one-minute long music videos. Each participant is 

ubjected to 40 trials (music videos) and rates each video in terms 

f the levels of valence, arousal, like/dislike, dominance, and famil- 

arity [37] . In this numerical test, we focus on valence and arousal 

lassification. Ratings are decimal numbers between 1 and 9 and 

n order to make this a classification task we divide the ratings 

nto two classes: low when the ratings are smaller than 5; and 

igh when ratings are larger than or equal to 5. We exploit the 
9 
re-processed version of the data set which contains N = 32 EEG 

hannels with 128 Hz sampling rate and the 3 s pre-trial baseline 

s discarded. 

We perform the classification task in leave-one-trial-out scheme 

here for each subject we use 39 trials as the training set and test 

n the one remaining trial. By cycling over the left-out trial, We 

epeat this 40 times for each subject and report the mean classi- 

cation accuracy. Consequently, this is a subject dependent proce- 

ure which means that we perform training and classification for 

ach subject separately. Classification follows the same procedure 

escribed in Section 3.3 and we project the test signals on the first 

 / 4 th of the GFT bases (i.e., the Laplacian eigenvectors associated 

o the smallest 8 eigenvalues). The discriminative graph is learned 

or the training set via Algorithm 1 and then normalized to have 

nit Frobenius norm. The average classification accuracy over all 

he trials and all the participants is reported in Table 1 . Results for

ther state-of-the-art methods are also reported for comparison. 

esults of the DISC algorithm in [15] are omitted since the pro- 

ided code did not converge for some of the DEAP dataset trials. 

As Table 1 shows, the proposed discriminative graph learning 

pproach outperforms state-of-the-art methods in the classifica- 

ion of emotions. Moreover, we can see 6% and 5% improvement 

elative to [10] in the classification of valence and arousal, respec- 

ively. The added discriminative term in the cost function is key 

owards enhancing classification performance. Additionally, there 

xist some other emotion classification studies using the DEAP 

ataset. However, their classification settings are different from 

hat we considered in our experimental analysis, e.g. [43,44] di- 

ide the valence-arousal space into four sub-spaces and perform a 

-class emotion recognition. 

Now that we established the superior performance of our 

raph-based classifier, it is of interest to investigate whether there 

s any useful information in the learned topologies. To this end, 

e first discard the trials that have ratings in the interval (4.5,5.5), 

here the participants themselves are not confident enough in rat- 

ng the trials. Secondly, we study the connections that are signif- 

cantly different between classes. Finally, we decompose the EEG 

ignals using low-, band-, and high-pass graph filters to visualize 

patial activations and investigate whether our findings are aligned 

ith the literature. 

Accordingly, we learn two graphs corresponding to low and 

igh emotions per person, using the parameters that led to the 

est classification performance. In Fig. 5 , we show the mean of 

he connections over all subjects and the significantly different 

onnections between low and high emotions. Interestingly, it ap- 

ears that the edge weights are related to the intensity of the 

motions, i.e., valence and arousal. As shown in Fig. 5 , the graphs 

orresponding to high valence/arousal ( Fig. 5 (b,e)) tend to ex- 

ibit stronger connections than the learned graphs for low va- 

ence/arousal ( Fig. 5 (a,d)). We also identify significantly different 

onnections across the class-conditional networks. To this end, we 

pply the non-parametric Wilcoxon rank-sum test [45] . Fig. 5 (c,f) 

how connections that are significantly different between low and 



S.S. Saboksayr, G. Mateos and M. Cetin Signal Processing 186 (2021) 108101 

Fig. 4. The mean of (a) optimization objective value, and (b) F-measure of detected edges as a function of acquired time samples (iteration). (c) A snapshot of the estimated 

graphs using the online algorithm and the ground truth underlying graph. These results indicate that the online graph learning algorithm can track its offline counterpart. 

Fig. 5. The average of learned graphs for (a) low, and (b) high valence over all subjects. (c) Significantly different connections between low and high valence with p ≤ 0 . 002 . 

The mean of learned graphs for (d) low, and (e) high arousal over all subjects. (f) Significantly different connections between low and high arousal with p ≤ 0 . 03 . These 

results suggest the learned graphs for low and high emotions show significant difference with each other. Color shades in (c) and (f) encode connections involving different 

brain regions. 

Fig. 6. The mean of the eigenvector magnitudes corresponding to (a) low, (b) mid, and (c) high frequency for valence. The mean of the eigenvector magnitudes corresponding 

to (d) low, (e) mid, and (f) high frequency for arousal. These results demonstrate the different patterns across low and high emotions, where most of these differences are 

aligned with the literature. 
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igh valence with p ≤ 0 . 002 and between low and high arousal 

ith p ≤ 0 . 03 , respectively. We find that the significantly differ- 

nt connections across different classes incorporate almost all the 

hannels that were originally mentioned in [ 37 ]. 

Frequency analysis is a common theme in the EEG signal pro- 

essing literature. Therefore, we conduct a similar analysis by 

ringing to bear the GFT induced by the learned graphs. Fig. 6 (a–c) 

epicts the average magnitudes of the eigenvector sets associated 

ith low (first 1 / 4 th components), mid, and high (last 1 / 4 th com-

onents) frequencies, respectively. The arousal counterparts are 

hown in Fig. 6 (d–f). The asymmetrical pattern of the frontal EEG 
10 
ctivity is apparent from Fig. 6 (a,b), which is consistent with the 

ndings in [46] about valence. Also, as it is noted in Fig. 5 (c) most

f the connections are related to the frontal lobe (red-shaded col- 

rs). Earlier findings suggest that for classifying positive from neg- 

tive emotions, the features are generally in the right occipital lobe 

nd parietal lobe for the alpha band, the central lobe for the beta 

and, and the left frontal and right temporal lobe for the gamma 

and [47] . Since we carry out the classification focusing on the low 

raph-frequency components, the relevant features can be visual- 

zed in Fig. 6 (a,d). Apparently, there are noticeably different pat- 
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Fig. 7. The average of the absolute value of decomposed signals with respect to (a) low, (b) mid, and (c) high frequency for valence. The average of the absolute value of 

decomposed signals with respect to (d) low, (e) mid, and (f) high frequency for arousal. Different patterns can be found in these results between low and high emotions. 

Fig. 8. Learned graph for (a) pre-ictal, and (b) ictal periods. One can see the drop in the number of connections when the seizure happens. This drop of connections is 

noticeable in the bottom corner of the grid and in the two strips. 

Fig. 9. (a) The S&P500 log-price per day. (b) The relative temporal variation over the days. The temporal variation indicates sudden changes which can be due to some 

market tensions. 
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erns in the left frontal, right temporal, central, and parietal lobe 

etween high and low valence/arousal; see Fig. 6 (a,d). 

Finally, we also we decompose the EEG signals using low-, 

and-, and high-pass graph filters to visualize spatial activations 

t different levels of variability with respect to the learned graphs. 

he mean absolute values of the decomposed signals are once 

ore superimposed to the human scalp in Fig. 7 . Different patterns 

f activation can be identified in low and high valence/arousal. 

ore specifically, different patterns in the frontal lobe are captured 
d  

11 
n low frequency for both valence and arousal. For mid-frequency, 

e detect a distinct pattern between high and low valence in the 

eft frontal and right temporal. 

.4. Seizure detection 

Next, we test our batch algorithm on electrocorticogram (ECoG) 

ata to detect epileptic seizures [ 3 ]. To this end, we use one of
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Fig. 10. (a) The relative daily temporal variation (RDTV) of S&P500 price per day. (b) The algebraic connectivity of the estimated graph over the days when the RDTV of 

stock prices is the graph signal. The algebraic connectivity trends suggest that at the time of crisis the network graph tends to get connected, while it disconnects when the 

market is more stable. 
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he publicly available data sets for epileptic seizure detection. 1 This 

ata set contains 8 instances of seizures that are acquired from a 

uman patient with epilepsy. The ECoG data are recorded via 76 

lectrodes at the sampling rate of 400 Hz. Sixty-four electrodes 

re in the shape of an 8 × 8 grid and implanted at the cortical 

evel. In order to record the voltage activity from mesial tempo- 

al structures, the other 12 electrodes (two strips of 6 electrodes) 

re located deeper in the brain [3,48] . Each seizure is annotated 

y an epileptologist to identify two key segments relating to the 

eizure i.e., pre-ictal (before the epileptic attack) and ictal (during 

he epileptic attack) periods. 

The task at hand is to classify pre-ictal and ictal periods. In this 

irection, we use Algorithm 1 to obtain discriminative graph rep- 

esentations of the ECoG signals for the pre-ictal and ictal periods. 

e perform the classification in a leave-one-trial-out scheme, just 

ike in Section 5.3 . Admittedly, this is a simple classification task 

nd we achieve 100% classification accuracy averaged over all tri- 

ls. Arguably the most valuable information can be gleaned from 

he learned graphs in Fig. 8 . Fig. 8 (a) shows the learned graph for

he pre-ictal period while Fig. 8 (b) depicts the representation for 

he ictal period. Our findings in Fig. 8 indicate a significant reduc- 

ion in the overall level of brain connectivity during the seizures. 

onsistent with the findings in Kramer et al. [48] , we observe the 

dge thinning is more prominent in the bottom corner of the grid 

nd along the two strips. According to [48] , localized network spar- 

ification patterns could help identify spatial regions from where 

he seizures emanate. 

.5. Stock price data analysis 

In this test case, we adopt Algorithm 2 to estimate a time- 

arying graph from real financial data. This is not a classification 

ask, rather the goal is to explore the dynamic structure of a net- 

ork capturing the relationships among some leading US compa- 

ies. To this end, we consider the daily stock prices for ten large 

S companies, namely: Microsoft (MSFT), Apple (AAPL), Amazon 

AMZN), Facebook (FB), Alphabet class A shares (GOOGL), Alphabet 
1 The data can be found at http://math.bu.edu/people/kolaczyk/datasets.html 

i

d

d

12 
lass C shares (GOOG), Johnson & Johnson (JNJ), Berkshire Hath- 

way (BRK-B), Visa (V), and Procter and Gamble (PG). We col- 

ect their daily stock prices p i (t) from Yahoo! Finance over the 

ime period from May 1st, 2019 to August 1st, 2020, which over- 

aps with the COVID-19 pandemic that led to significant market 

nstabilities. Under normal circumstances, we would expect lim- 

ted variations in the network describing the pairwise relation- 

hips between the chosen stock prices, since these large com- 

anies are well-established in the market [49] . However, events 

ike COVID-19 can cause abrupt changes in such a network. We 

un Algorithm 2 to estimate daily graphs in order to monitor the 

udden changes in the stock market. To this end, we consider 

oth (i) logarithmic daily stock prices log p i (t) and (ii) the relative 

aily temporal variation (RDTV) of the stock prices | p i (t) − p i (t −
) | / | p i (t − 1) | as the input signal. Following studies like [21,49] ,

e quantify the variation of the network via (i) relative tempo- 

al deviation ‖ W t − W t−1 ‖ F / ‖ W t−1 ‖ F , and (ii) algebraic connectiv-

ty, i.e. the second smallest eigenvalue of the combinatorial graph 

aplacian L t . Since we have limited amount of data, the discount 

actor θ and the employed step size in Algorithm 2 are 0.8 and 

= 2 /η, respectively. 

First, we use logarithmic stock prices as the input of our graph 

earning problem. In Fig. 9 (a) we plot the S&P500 log-price as an 

ndicator of the market’s condition. The relative temporal varia- 

ion of the learned graphs is illustrated in Fig. 9 (b). The graphs 

re obtained by setting the regularization parameters as α = 0 . 316 , 

= 0 . 05 , and γ = 0 . Since there is no ground-truth dynamic net-

ork, we endeavor to indirectly validate the proposed method by 

ommenting on the intuitive structure observed from the learned 

equence of graphs. Fig. 9 (a) appears to suggest that the COVID- 

9 impact on the markets started in late January 2020 and it 

ot to its worse situation during March 2020. The following sud- 

en changes are apparent by inspection of the sudden spikes in 

ig. 9 (b): (i) September 2019, (ii) November 2019, (iii) December 

019, (iv) January 2020, (v) March 2020, and (vi) April 2020. While 

e can only conjecture on the reason behind these spikes, some 

re consistent with major events occurring during these time pe- 

iods. For instance the major spike at the end of January 2020 

s probably the result of the World Health Organization (WHO) 

eclaring a global health emergency due to the COVID-19 pan- 
emic. 

http://math.bu.edu/people/kolaczyk/datasets.html
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Fig. 11. The estimated network of the market over 4 different days: September 20th, 2019, January 10th, 2020, March 9th, 2020, and July 30th, 2020. The sought graph gets 

connected at the time of crisis when all the stock prices usually drop. While in stable times, the graph tends to be disconnected. 
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Next we consider the RDTV of the stock prices as input graph 

ignals, and estimate a time-varying graph by setting the regular- 

zation parameters α = 3 . 162 , β = 0 . 177 , and γ = 0 . For reference,

he RDTV of the S&P500 index is shown in Fig. 10 (a). Moreover, 

he algebraic connectivity of the sequence of graphs is depicted in 

ig. 10 (b). The trend appears to suggest that graphs are usually dis- 

onnected, except during times of high market volatility (e.g., a fi- 

ancial crisis); see also the networks in Fig. 11 . A majority of stock

rices usually drop sharply during a crisis, making the RDTV (i.e., 

iscrete price gradients) signals negative. In pursuing graphs for 

hich these signals are smooth, it is thus expected one would find 

ighly connected topologies since most nodal signals exhibit simi- 

ar trends. On the other hand, during low-volatility times the RDTV 

radients are relatively uncorrelated across companies. Hence, the 

earned graph are expected to be sparser and even possibly discon- 

ected. To illustrate these network connectivity patterns, Fig. 11 il- 

ustrates representative graph estimates during stable times as well 

s during high-volatility periods. 

. Conclusion 

In this work, we proposed a novel framework for online task- 

riven graph learning by leveraging recent advances at the cross- 

oads of GSP and time-varying convex optimization. A particular 

ask at hand is supervised classification of signals assumed to be 

mooth over latent class-conditional graphs. To recover said graph 

epresentations of the data during the training phase, we develop 

roximal gradient algorithms for discriminative network topology 

nference given (possibly streaming) smooth signals per class. The 

ntuition behind the optimality criterion guiding the search of the 

lass-conditional graphs is simple: we look for a class c graph over 

hich (i) class c signals are smooth (to capture the data structure); 

nd (ii) all other signals are non-smooth (for discriminability). The 

FTs of the optimum graphs can then be used to extract discrim- 

native features of the test signals we wish to classify. We vali- 

ate the proposed classification pipeline on both synthetic and real 

ata, for instance in an emotion recognition task from EEG data 

here we outperform state-of-the-art methods developed for the 

EAP data-set. In this context, the recovered class-conditional net- 

orks can inform significant connections between brain regions to 

iscern among emotional states. 

Moreover, results in this paper contribute to the algorithmic 

oundations of online network topology inference from streaming 

ignals (in a classification setting and beyond). We develop for 

he first time an online algorithm to track the possibly slowly- 

arying topology of a dynamic graph, given streaming signals that 

re smooth over the sought network. The algorithmic framework 

omes with tracking performance guarantees, is computationally 

fficient and has a fixed memory storage requirement irrespective 

f the temporal horizon’s span. Numerical tests with synthetic data 

how the online topology estimates closely track the performance 

f the batch estimator benchmark, even when the network is sub- 

ect to abrupt changes in connectivity. We also applied our algo- 
13 
ithm to recent stock-prices from leading US companies, which re- 

ulted in time-varying graphs that reveal interesting relationships 

mong the firms as well as the financial market’s response to the 

OVID-19 pandemic. 
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ppendix A. Lipschitz constant of ∇g

Recall the expression for ∇g in (7) . For arbitrary points x , y ∈ 

 

N (N −1) / 2 
+ representing graph topologies we have 

 

∇g(x ) − ∇g(y ) ‖ 

= 

∥∥∥4 β(x − y ) − αS � 
(

1 

Sx 

− 1 

Sy 

)∥∥∥
≤ 4 β‖ x − y ‖ + α

∥∥S � 
∥∥∥∥∥ 1 

Sx 

− 1 

Sy 

∥∥∥
≤ 4 β‖ x − y ‖ + 

α‖ S ‖ 

min (Sx ) min (Sy ) 
‖ 

Sx − Sy ‖ 

≤ 4 β‖ x − y ‖ + 

α‖ S ‖ 

d 2 
min 

‖ 

Sx − Sy ‖ 

= 4 β‖ x − y ‖ + 

α‖ S ‖ 

2 

d 2 
min 

‖ 

x − y ‖ 

= 

(
4 β + 

2 α(N − 1) 

d 2 
min 

)
‖ x − y ‖ , 

stablishing the Lipschitz continuity of the gradient. Note that 

 / (Sx ) stands for element-wise division and nodal degrees are as- 

umed to be larger than some prescribed d min > 0 . In deriving the 

ast equality, we used that ‖ S ‖ = 

√ 

2(N − 1) – a simple result we 

tate next for completeness. 

emma 1. With reference to (6) , let S ∈ { 0 , 1 } N ×N (N −1) / 2 be such that

 c 1 = Sw c . Then the spectral norm of S is ‖ S ‖ = 

√ 

2(N − 1) , where

is the number of nodes in G c . 

roof. Since S maps w c to nodal degrees d c , then S has exactly 

 − 1 ones in each row. Hence the diagonal entries of SS � are all

 − 1 and the off-diagonal entries are equal to 1. Moreover, ‖ S ‖ is
qual to the square root of the spectral radius of SS � = (N − 2) I +
1 � . The eigenvalues are solutions to the characteristic equation 

et 
(
SS � − λI 

)
= det 

(
(N − 2) I + 11 

� − λI 
)
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[  
= det ( (N − 2 − λ) I ︸ ︷︷ ︸ 
:= R 

+ 11 

� ) 

= det (R ) + 1 

� adj (R ) 1 

= 

N ∏ 

i =1 

R ii + 

N ∑ 

j=1 

∏ 

i 
 = j 
R ii 

= (N − 2 − λ) N + N(N − 2 − λ) N−1 

= (2 N − 2 − λ)(N − 2 − λ) N−1 = 0 . 

n arriving at the third equality we used the Sherman-Morrison 

ormula, where adj (R ) denotes the adjugate matrix of R . All in all, 

he roots are λ1 = 2(N − 1) > λ2 = . . . = λN = N − 2 a nd the result

ollows. �

ppendix B. Strong convexity of g

To establish that g in (13) is strongly convex with constant m = 

 β > 0 , it suffices to note that 

(w ) − m 

2 

‖ w ‖ 

2 = −α1 

� log (Sw ) 

s a convex function. 
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