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ABSTRACT

Extracting latent low-dimensional structure from high-dimensional
data is of paramount importance in timely inference tasks encoun-
tered with ‘Big Data’ analytics. However, increasingly noisy, het-
erogeneous, and incomplete datasets as well as the need for real-time
processing pose major challenges towards achieving this goal. In this
context, the fresh look advocated here permeates benefits from rank
minimization to track low-dimensional subspaces from incomplete
data. Leveraging the low-dimensionality of the subspace sought,
a novel estimator is proposed based on an exponentially-weighted
least-squares criterion regularized with the nuclear norm. After re-
casting the non-separable nuclear norm into a form amenable to on-
line optimization, a real-time algorithm is developed and its con-
vergence established under simplifying technical assumptions. The
novel subspace tracker can asymptotically offer the well-documented
performance guarantees of the batch nuclear-norm regularized esti-
mator. Simulated tests with real Internet data confirm the efficacy
of the proposed algorithm in tracking the traffic subspace, and its
superior performance relative to state-of-the-art alternatives.

Index Terms— Low rank, online algorithm, matrix completion.

1. INTRODUCTION

Nowadays ubiquitous e-commerce sites, the Web, and Internet-friendly
portable devices generate massive volumes of data. The undeniable
consensus is that tremendous economic growth and improvement in
quality of life can be effected by harnessing the potential benefits
of analyzing this large volume of data. As a result, the problem
of extracting the most informative, yet low-dimensional structure
from high-dimensional datasets is of paramount importance [6]. The
sheer volume of data and the fact that observations are acquired se-
quentially in time, motivate updating previously obtained ‘analytics’
rather than re-computing new ones from scratch each time a new
datum becomes available. In addition, large-scale datasets are often
incomplete, and prone to corrupt measurements as well as communi-
cation errors. In this context, consider the following streaming data
model with incomplete observations at time t

Pωt
(yt) = Pωt

(xt + vt), t = 1, 2, . . . (1)

where xt ∈ RP is the signal of interest, and vt accounts for the
noise. The set ωt ⊂ [1, 2, . . . , P ] contains the indices of available
observations, and the corresponding sampling operator Pωt

(·) sets
the entries of its vector argument not in ωt to zero, and keeps the
rest unchanged. Suppose that the signal sequence {xt}∞t=1 lives in
a low-dimensional (≪ P ) linear subspace Lt. Given the incom-
plete observations {Pωτ

(yτ ), ωτ}tτ=1, this paper deals with online
(adaptive) estimation of Lt, and reconstruction of the signal xt as a
byproduct.
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Relation to prior work. Subspace tracking has a long history in
signal processing. An early noteworthy representative is the projec-
tion approximation subspace tracking (PAST) algorithm [14]. Re-
cently, an algorithm (termed GROUSE) for tracking subspaces from
incomplete observations was put forth in [1], based on incremental
gradient descent iterations on the Grassmannian manifold of sub-
spaces. PETRELS is a second-order recursive least-squares (RLS)-
type algorithm, that extends the seminal PAST iterations to handle
missing data [4]. As noted in [5], the performance of GROUSE is
limited by the existence of barriers in the search path on the Grass-
manian, which may lead to GROUSE iterations being trapped at lo-
cal minima; see also [5]. Lack of regularization in PETRELS can
lead to unstable behaviors, especially when the amount of missing
data is large. Relative to all aforementioned works, the algorithmic
framework of this paper permeates benefits from rank minimization
to low-dimensional subspace tracking (Section 3), and offers theo-
retical performance guarantees (Section 4).
Contributions. Leveraging the low dimensionality of the underly-
ing subspace, a novel estimator is proposed based on an exponentially-
weighted least-squares (LS) criterion regularized with the nuclear
norm of the unknown signal of interest. Upon recasting the non-
separable nuclear norm into a form amenable to online optimization,
a real-time algorithm for susbspace tracking is developed and its con-
vergence is established under simplifying technical assumptions. In-
terestingly, under mild assumptions the proposed online algorithm
attains the global optimum of the batch nuclear-norm regularized
problem, whose quantifiable performance has well-appreciated mer-
its [2, 3]. As a byproduct, the proposed online algorithm offers a
viable approach to solving large-scale matrix completion problems.
Simulated tests with Internet traffic data corroborate the effective-
ness of the proposed algorithm for traffic estimation, and its superior
performance relative to state-of-the-art alternatives [1, 4].
Notation: Operators (·)′, ⊗, λmin(·), and σmax(·) will denote trans-
position, Kronecker product, minimum eigenvalue, and maximum
singular value, respectively; | · | is the magnitude of a scalar and
‖ · ‖2 the ℓ2-norm of a vector. For matrix X, ‖X‖F denotes the
Frobenius norm, and X � 0 means that X is positive semidefinite.
The n × n identity matrix will be represented by In, while 0n will
stand for the n× 1 vector of all zeros, and 0n×p := 0n0

′
p.

2. NUCLEAR-NORM REGULARIZATION

Collect the indices of available observations up to time t in the set
Ωt := ∪t

τ=1ωt, and the actual observations in the matrixPΩt
(Yt) :=

[Pω1
(y1), . . . ,Pωt

(yt)] ∈ RP×t. Likewise, introduce matrix Xt

containing the signal of interest. Since xt lies in a low-dimensional
subspace, Xt is a low-rank matrix. A natural estimator leverag-
ing the low rank property of Xt attempts to fit the incomplete data
PΩt

(Yt) to Xt in the LS sense, as well as minimize the rank of
Xt. Unfortunately, albeit natural the rank criterion is in general
NP-hard to optimize [12]. Typically, the nuclear norm ‖Xt‖∗ :=
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k
σk(Xt) (σk is the k-th singular value) is adopted as a surrogate

to rank(Xt). Accordingly, one solves [3]

(P1) X̂t := argmin
X

{

1

2
‖PΩt

(Yt −X)‖2F + λt‖X‖∗
}

where λt is a (possibly time-varying) rank-controlling parameter.
Albeit convex, (P1) is a non-smooth optimization problem (the nu-
clear norm is not differentiable at the origin). In addition, scal-
able algorithms to impute missing entries for streaming observations
should effectively overcome the following challenges: (c1) the prob-
lem size can easily become quite large, since the number of opti-
mization variables is Pt; (c2) existing iterative solvers for (P1) typ-
ically rely on costly SVD computations per iteration; see e.g., [2];
and (c3) different from the Frobenius-norm, (columnwise) nonsepa-
rability of the nuclear-norm challenges online processing when new
columns {Pωt

(yt)} arrive sequentially in time. In the following
subsection, the ‘Big Data’ challenges (c1) and (c2) are dealt with to
arrive at an efficient online algorithm in Section 3.

2.1. A separable low-rank regularization

To address (c1) and reduce the computational complexity and mem-
ory storage requirements of the algorithm sought, it is henceforth
assumed that the dimensionality of the underlying subspace Lt is
bounded by a known quantity ρ. Accordingly, it is natural to require
ρ ≥ rank(X̂t). As argued in Remark 1, the smaller the value of ρ,
the more efficient the algorithm becomes. Because rank(X̂t) ≤ ρ,
(P1)’s search space is effectively reduced and one can factorize the
decision variable as X = LQ′, where L and Q are P × ρ and
t× ρ matrices, respectively. It is possible to interpret the columns of
X (viewed as points in R

P ) as belonging to the low-rank subspace,
spanned by the columns of L. The rows of Q are thus the projections
of the columns of X onto the subspace. Adopting this reparametriza-
tion of X in (P1) one arrives at a nonconvex problem where the num-
ber of variables is reduced from Pt in (P1), to ρ(P +t). The savings
can be significant when ρ is small, and both P and t are large.

To address (c2) [along with (c3) as it will become clear in Sec-
tion 3], consider the following alternative characterization of the nu-
clear norm [12]

‖X‖∗ := min
{L,Q}

1

2

{

‖L‖2F + ‖Q‖2F
}

, s. t. X = LQ
′. (2)

The optimization (2) is over all possible bilinear factorizations of X,
so that the number of columns ρ of L and Q is also a variable. Lever-
aging (2), the following reformulation of (P1) provides an important
first step towards obtaining an online algorithm:

(P2) min
{L,Q}

1

2
‖PΩt

(Yt − LQ
′)‖2F +

λt

2

{

‖L‖2F + ‖Q‖2F
}

.

As asserted in [8, Lemma 1], adopting the separable Frobenius-norm
regularization in (P2) comes with no loss of optimality relative to
(P1), provided ρ ≥ rank(X̂t). By finding the global minimum of
(P2) [which could have considerably less variables than (P1)], one
can recover the optimal solution of (P1). However, since (P2) is
nonconvex, it may have stationary points which need not be glob-
ally optimum. Interestingly, the next proposition shows that under
relatively mild assumptions on rank(X̂t) and the noise variance, sta-
tionary points of (P2) qualify as global optimum solutions of (P1).

Proposition 1. [8] Let {L̄t, Q̄t} be a stationary point of (P2). If
σmax[PΩt

(Yt − L̄tQ̄
′
t)] ≤ λt, then X̂t := L̄tQ̄

′
t is the globally

optimal solution of (P1).

3. ONLINE MATRIX IMPUTATION

As stated in Section 1, the goal is to recursively estimate x̂t at time
t from historical observations {Pωτ

(yτ ), ωτ}tτ=1, naturally placing
more importance on recent measurements. To this end, one possible
adaptive counterpart to (P2) is the exponentially-weighted LS esti-
mator found by minimizing the empirical cost (Q := [q1, . . . ,qt])

min
{L,Q}

t
∑

τ=1

βt−τ

[

1

2
‖Pωτ

(yτ − Lqτ )‖22 +
λ̄t

2
‖L‖2F +

λt

2
‖qτ‖22

]

(3)

where λ̄t := λt/
∑t

τ=1
βt−τ , and 0 < β ≤ 1 is the so-termed for-

getting factor. When β < 1, data in the distant past are exponentially
downweighted, which facilitates tracking in nonstationary environ-
ments. In the case of infinite memory (β = 1), the formulation (3)
coincides with the batch estimator (P2). This is the reason for the
time-varying factor λ̄t weighting ‖L‖2F .

3.1. Subspace tracking from incomplete data

Towards deriving a real-time, computationally efficient, and recur-
sive solver of (3), an alternating-minimization (AM) method is adopted
in which iterations coincide with the time-scale t of data acquisition.
A justification in terms of minimizing a suitable approximate cost
function is discussed in detail in Section 4.1. Per time instant t, a
new datum {Pωt

(yt), ωt} is drawn and qt is estimated via

q[t] = argmin
q

[

1

2
‖Pωt

(yt − L[t− 1]q)‖22 +
λt

2
‖q‖22

]

. (4)

Updating (4) entails an ℓ2-norm regularized LS (ridge-regression)
problem, that admits closed-form solution

q[t] =
(

λtIρ + L
′[t− 1]ΩtL[t− 1]

)−1
L

′[t− 1]Pωt
(yt) (5)

where diagonal Ωt ∈ RP×P is such that [Ωt]p,p = 1 if p ∈ ωt, and
is zero elsewhere. In the second step of the AM scheme, the updated
subspace matrix L[t] is obtained by minimizing (3) with respect to
L, while the optimization variables {qτ}tτ=1 are fixed and take the
values {q[τ ]}tτ=1, namely

L[t]=argmin
L

[

λt

2
‖L‖2F+

t
∑

τ=1

βt−τ 1

2
‖Pωτ

(yτ−Lq[τ ])‖22
]

. (6)

Notice that (6) decouples over the rows of L which are obtained in
parallel via

lp[t] = argmin
l

[

λt

2
‖l‖22 +

t
∑

τ=1

βt−τωp,τ (yp,τ − l
′
q[τ ])2

]

, (7)

for p = 1, . . . , P , where ωp,τ denotes the p-th diagonal entry of
Ωτ . For β = 1 and fixed λt = λ, ∀t, subproblems (7) can be effi-
ciently solved using the RLS algorithm [13]. Upon defining sp[t] :=
∑t

τ=1
βt−τωp,τ (yp,τ )q[τ ], Hp[t] :=

∑t

τ=1
βt−τωp,τq[τ ]q

′[τ ] +
λtIρ, and Mp[t] := H−1

p [t], one simply updates

sp[t] = sp[t− 1] + ωp,typ,tq[t]

Mp[t] = Mp[t − 1]− ωp,t
Mp[t− 1]q[t]q′[t]Mp[t− 1]

1 + q′[t]Mp[t − 1]q[t]

and forms lp[t] = Mp[t]sp[t], for p = 1, . . . , P .
However, for 0 < β < 1 the regularization term (λt/2)‖l‖22 in

(7) makes it impossible to express Hp[t] in terms of Hp[t−1] plus a
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Algorithm 1 : Subspace tracking from incomplete observations

input {Pωτ
(yτ ), ωτ}∞τ=1, {λτ}∞τ=1, and β.

initialize Gp[0] = 0ρ×ρ, sp[0] = 0ρ, p = 1, ..., P , and L[0] at
random.
for t = 1, 2,. . . do

D[t] = (λtIρ + L′[t− 1]ΩtL[t − 1])
−1

L′[t− 1].
q[t] = D[t]Pωt

(yt).
Gp[t] = βGp[t− 1] + ωp,tq[t]q[t]

′, p = 1, . . . , P .
sp[t] = βsp[t− 1] + ωp,typ,tq[t], p = 1, . . . , P .
lp[t] = (Gp[t] + λtIρ)

−1
sp[t], p = 1, ..., P .

return x̂t := L[t]q[t].
end for

rank-one correction. Hence, one cannot resort to the matrix inversion
lemma and update Mp[t] with quadratic complexity only. Based
on direct inversion of Hp[t], p = 1, . . . , P , the overall recursive
algorithm for subspace tracking from incomplete data is tabulated
under Algorithm 1.

Remark 1. [Computational cost] Careful inspection of Algorithm 1
reveals that the main computational burden stems from ρ× ρ inver-
sions to update the subspace matrix L[t]. The per iteration complex-
ity for performing the inversions is O(Pρ3) (which could be further
reduced if one leverages also the symmetry of Gp[t]), while the cost
of multiplication as well as additions is O(Pρ2). The overall cost of
the algorithm per iteration can be safely estimated as O(Pρ3), which
is affordable since ρ is typically small (cf. the low rank assumption).

Remark 2. [Tuning λt] In practice, to tune λt one can resort to
the heuristic rules proposed in [3], which build upon the following
reasonable assumptions: i) vp,t ∼ N (0, σ2), ii) elements of Ωt are
independently sampled with probability π, and iii) P and t are large
enough. Accordingly, one can pick λt =

(√
P +

√
te
)√

πσ which
naturally increases as time evolves, and where te :=

∑t

τ=1
βt−τ is

the effective time window.

4. PERFORMANCE GUARANTEES

This section studies the performance of Algorithm 1 for the infinite
memory special case i.e., when β = 1. In the sequel, to make the
analysis tractable the following assumptions are made:

A1) {ωt}∞t=1 and {Pωt
(yt)}∞t=1 are independent and identically

distributed (i.i.d.) random processes;

A2) {Pωt
(yt)}∞t=1 is uniformly bounded; and

A3) Iterates {L[t]}∞t=1 are in a compact set.

To clearly delineate the scope of the analysis, it is worth com-
menting on the assumptions A1)-A3) and the factors that influence
their satisfaction. Regarding A1), the acquired data is assumed sta-
tistically independent across time as it is customary when studying
the stability and performance of online (adaptive) algorithms [13].
While independence is required for tractability, A1) may be grossly
violated because the observations {Pωt

(yt)} are correlated across
time (cf. the fact that {xt} lies in a low-dimensional subspace).
Still, in accordance with the adaptive filtering folklore e.g., [13], as
β → 1 the upshot of the analysis based on i.i.d. data extends ac-
curately to the pragmatic setting whereby the observations are cor-
related. Uniform boundedness of Pωt

(yt) [cf. A2)] is natural in
practice as it imposed by the data acquisition process. The bounded

subspace requirement in A3) is a technical assumption that simpli-
fies the analysis, and has been corroborated via extensive computer
simulations [9].

4.1. Convergence

The convergence of the iterates generated by Algorithm 1 is estab-
lished first. Upon defining the function

gt(L,q) :=
1

2
‖Pωt

(yt − Lq)‖22 +
λt

2
‖q‖22

in addition to ℓt(L) := minq gt(L,q), Algorithm 1 aims at mini-
mizing the following average cost function at time t

Ct(L) :=
1

t

t
∑

τ=1

ℓτ (L) +
λt

2t
‖L‖2F . (8)

Normalization (by t) ensures that the cost function does not grow un-
bounded as time evolves. For any finite t, (8) is essentially identical
to the batch estimator in (P2) up to a scaling, which does not affect
the value of the minimizer. Note that as time evolves, minimiza-
tion of Ct becomes increasingly complex computationally. Hence,
at time t the subspace estimate L[t] is obtained by minimizing the
approximate cost function

Ĉt(L) =
1

t

t
∑

τ=1

gτ (L,q[τ ]) +
λt

2t
‖L‖2F (9)

in which q[t] is obtained based on the prior subspace estimate L[t−
1] after solving [cf. (4)] q[t] = argminq gt(L[t − 1],q). Obtain-
ing q[t] this way resembles the projection approximation adopted
in [14]. Since Ĉt(L) is a smooth convex function, the minimizer
L[t] = argminL Ĉt(L) is the solution of the quadratic equation
∇Ĉt(L[t]) = 0P×ρ.

So far, it is apparent that the approximate cost function Ĉt(L[t])
overestimates the target cost Ct(L[t]), for t = 1, 2, . . .. However,
it is not clear whether the subspace iterates {L[t]}∞t=1 converge, and
most importantly, how well can they optimize the target cost func-
tion Ct. The good news is that Ĉt(L[t]) asymptotically approaches
Ct(L[t]), and the subspace iterates null ∇Ct(L[t]) as well, both as
t → ∞. The latter result is summarized in the next proposition,
whose proof is inspired by [11] and can be found in [9].

Proposition 2. Suppose λt = λ ∀t, and λmin[∇2Ĉt(L)] ≥ c for
some c > 0. Then limt→∞ ∇Ct(L[t]) = 0P×ρ almost surely (a.s.),
i.e., the subspace iterates {L[t]}∞t=1 asymptotically coincide with the
stationary points of the batch problem (P2).

The sampling set Ωt plays a key role towards satisfying the Hes-
sian’s positive semi-definiteness condition in Proposition 2. Intu-
itively, if the missing entries are somehow uniformly spread across
time, the likelihood that ∇2Ĉt(L) =

λ
t
IPρ+

1

t

∑t

τ=1
(q[τ ]q′[τ ])⊗

Ωτ � cIPρ holds is higher.

4.2. Optimality

In line with Proposition 1, one may be prompted to ponder whether
the online estimator offers the performance guarantees of the nuclear-
norm regularized estimator (P1), for which stable/exact recovery
results are well documented e.g., in [2, 3]. Specifically, given the
learned subspace L̄[t] and the corresponding Q̄[t] [obtained via (4)]
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over a time window of size t, is {X̂[t] := L̄[t]Q̄′[t]} an optimal
solution of (P1) when t → ∞? This in turn requires asymptotic
analysis of the optimality conditions for (P1), and is established in
the next proposition. Additionally, numerical tests in Section 5 cor-
roborate that the online estimator attains the performance of (P1)
after reasonable number of iterations.

Proposition 3. For the iterates generated by Algorithm 1, if there ex-
ists a subsequence {L[tk],Q[tk]} for which c1) limk→∞ ∇Ctk(L[tk])

= 0P×ρ a.s., and c2) 1√
tk
σmax[PΩt

k
(Ytk − L[tk]Q

′[tk])] ≤ λt
k√
tk

hold, then the sequence {X[k] = L[tk]Q
′[tk]} satisfies the optimal-

ity conditions for (P1) [normalized by tk] as k → ∞ a.s.

Regarding the convergence condition c1), even though it holds
for a time invariant rank-controlling parameter λ as per Proposi-
tion 2, numerical tests indicate that it also holds for the time-varying
case (e.g., when λt is chosen as suggested in Remark 2). Accord-
ing to A2) and A3), σmax[PΩt

(Yt − L[t]Q′[t])] ≈ O(
√
t), which

implies that the quantity on the left-hand side of c2) cannot grow un-
bounded. Moreover, upon choosing λt ≈ O(

√
t) as per Remark 2

the term in the right-hand side of c2) will not vanish, which suggests
that the qualification condition can indeed be satisfied.

5. NUMERICAL TESTS

The convergence and effectiveness of Algorithm 1 is assessed in this
section via computer simulations.

5.1. Synthetic data tests

The signal xt = Uwt is generated from the low-dimensional sub-
space U ∈ RP×r , with i.i.d. entries up,i ∼ N (0, 1/P ), and pro-
jection coefficients wi,t ∼ N (0, 1). The noise vi,t ∼ N (0, σ2) is
i.i.d., and the entries of yt are sampled uniformly at random with
probability π to form the diagonal sampling matrix Ωt. The obser-
vations at time t are then generated as Pωt

(yt) = Ωt(xt +vt). Fix
r = 5 and ρ = 10, while different values of π and σ are examined.
The evolution of the average cost Ct(L[t]) in (8) for different per-
centages of missing data and noise variances is depicted in Fig. 1(a).
For validation purposes, the optimal cost [normalized by the window
size t] of the batch estimator (P1) is also shown. It is apparent that
Ct(L[t]) converges to its batch counterpart (P1), which corroborates
that Algorithm 1 can attain the performance of (P1). This obser-
vation together with the low-complexity of Algorithm 1’s iterations
[cf. Remark 1], make it a viable alternative for solving large-scale
matrix completion problems.

Next, Algorithm 1 is compared with two state-of-the-arte sub-
space trackers, namely PETRELS [4] and GROUSE [1]. These two
algorithms require and estimate of the dimensionality of the under-
lying subspace, which is denoted by κ. Set λ = 0.1, β = 0.99,
and consider an abrupt change in the subspace at t = 104 to evalu-
ate the tracking performance of the algorithms. The figure of merit
is the average estimation error et := 1

t

∑t

i=1
‖x̂i − xi‖2/‖xi‖2,

which is depicted in Fig. 1(b). It is observed that if the subspace
dimensionality is chosen as κ = ρ, Algorithm 1 attains a better esti-
mation accuracy than PETRLES and GROUSE (a constant step size
0.1 was adopted for the latter). Even though PETRELS works well
for κ = r, if one overestimates the rank PETRELS exhibiting erratic
behaviors for 25% available observations. As expected, for the ideal
choice of κ = r all three schemes achieve similar estimation accu-
racy. The smaller error exhibited by PETRELS (relative Algorithm
1) might be due to a suboptimum choice of λ. Still, Algorithm 1 is
more stable numerically when the amount of missing observations
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Fig. 1. Performance of Algorithm 1. (a) Evolution of the average
cost Ct(L[t]) versus the batch counterpart. (a) Relative estimation
error for different schemes when π = 0.25 and σ2 = 10−3.
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Fig. 2. Performance for Internet-2 data if κ = ρ = 10 and β = 0.95.
(a) Average estimation error for various amounts of missing data. (b)
Estimated (red) versus true (blue) OD flow traffic for π = 0.25.

is large, thanks to the regularization terms in (3). The price paid by
Algorithm 1 is in terms of higher complexity per iteration. Note that
the complexity for PETRELS is O(Pκ2), and only O(Pκ(1+πκ))
for the first-order algorithm GROUSE.

5.2. Tracking Internet-2 network traffic

In IP networks accurate estimation of the origin-to-destination (OD)
flow traffic is a task of paramount interest. Typically, the data avail-
able is a measured traffic via NetFlow [7], for a small subset of
OD flows. Several studies have demonstrated that OD flow traf-
fic exhibits a low-intrinsic dimensionality, which is mainly due to
common temporal patterns across OD flows and periodic behaviors
across time [7]. In this example, OD-flow traffic-levels are col-
lected from operation of the Internet-2 network (Internet backbone
across USA) [7]. The measured OD flows contain spikes (anoma-
lies), which are removed as detailed in [9] to end up with an anomaly-
free data stream {yt}. A subset of entries of yt are then selected
independently with probability π, to yield the input of Algorithm 1.
The evolution of the average traffic estimation error (et) is depicted
in Fig. 2(a), for different schemes and various amounts of miss-
ing data. It is observed that the estimation accuracy and subspace
learning speed degrades gracefully as the NetFlow sampling rate de-
creases. Algorithm 1 outperforms competing alternatives when λt is
tuned adaptively as per Remark 2, for σ2 = 0.1. When only 25% of
the total OD flows are sampled by Netflow, Fig. 2(b) depicts how the
representative OD flows are accurately tracked using Algorithm 1.
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