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NON-PARAMETRIC POWER SPECTRAL 
DENSITY (PSD) MAP CONSTRUCTION 

This application claims the benefit of U.S. Provisional 
Application No. 61/649,793, filed May 21, 2012, the entire 
contents of which are incorporated herein by reference. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention was made with govermnent support under 
ECCS-1002180 awarded by the National Science Founda­
tion. The govermnent has certain rights in the invention. 

TECHNICAL FIELD 

The invention relates to wireless communication and, more 
specifically, to spectrum cartography. 

BACKGROUND 

All wireless transmissions use a portion of the radio fre­
quency spectrum. Cellular phones, broadcast television, sat­
ellite, and short-distance wireless networks such as Bluetooth 
and wireless local area networks (WLAN) utilize different 
portions of the Wi-Fi, for example, typically use wireless 
frequency spectrum. Often it is important to coordinate the 
use of the various technologies and frequency ranges to 
ensure that the technologies do not interfere with each other 
or with planned future services. 

SUMMARY 

This disclosure describes techniques for constructing 
power spectral density (PSD) maps representative of the dis­
tribution of radio frequency (RF) power as a function of both 
frequency and space (geographic location). For example, the 
disclosure describes techniques for construction of PSD maps 
using non-parametric basis pursuit techniques for signal 
expansion to model the PSD across space and frequency. 

2 
In some examples, a spline-based approach to field estima­

tion is described as one example of a non-parametric basis 
expansion model of a field of interest. Other example kernel­
based interpolation functions include sine-based kernels. In 
some examples, the model entails known bases, weighted by 
generic functions estimated from the field's noisy samples. 

A novel field estimator is also described based on a regu­
larized variational least-squares (LS) criterion that yields 
finitely-parameterized (function) estimates spanned by thin-

10 plate splines. In this way, an over-complete set of (possibly 
overlapping) basis functions may be used, while a sparsifying 
regularizer augmenting the LS cost endows the estimator with 
the ability to select a few of these bases that "better" explain 
the data using a parsimonious field representation. The spar-

15 sity-aware spline-based examples ofthis disclosure induce a 
group-Lasso estimator for the coefficients of the thin-plate 
spline expansions per basis. A distributed algorithm is also 
developed to obtain the group-Lasso estimator using a net­
work of wireless sensors, or, using multiple processors to 

20 balance the load of a single computational unit. 
In this way, a basis expansion approach is described in this 

disclosure to estimate a multi-dimensional field, whose 
dependence on a subset of its variables is modeled through 
selected (and generally overlapping) basis functions 

25 weighted by unknown coefficient-functions of the remaining 
variables. The unknown coefficient functions, referred to 
herein as bases weighting functions and as kernel-based inter­
polating functions, operate to interpolate the PSD measure­
ments across space using kernel-based method. In one 

30 example, the bases weighting functions can be estimated 
from the field's noisy samples, e.g., by solving a variational 
thin-plate smoothing spline cost regularized by a term that 
performs basis selection. The result yields a parsimonious 
description of the field by retaining those few members of the 

35 basis set that "better" explain the data. This attribute is 
achieved because the added penalty induces a group-Lasso 
estimator on the parameters of the radial kernels and polyno­
mials. Notwithstanding, group-Lasso here is introduced to 
effect sparsity in the space of smooth functions. Moreover, in 

40 some example implementations, a plurality of different types 
ofkernel-based interpolation functions are used to interpolate 
the PSD measurements across space. In such cases, multiple 
kernel can be incorporated within the non-parametric basis 

For example, a most parsimonious sparse signal expansion 
using an overcomplete basis set may be used to constructing 
the PSD maps. Moreover, a non-parametric basis expansion 
model of the RF power over frequency and location may be 
computed, and sparse coefficients computed for the basis 45 

expansions functions of the model may entail bases weight­
ing functions instead of scalars. Utilizing this model for sig­
nal expansion, many of the weighting functions may be zero; 
however, a few bases can be identified and selected that more 
accurately represent the transmitted signals. 

expansion model. 
Another contribution is in the context of wireless cognitive 

radio (CR) network sensing (the overarching practical moti­
vation here), where the estimated field enables cartographing 
the space-frequency distribution of power generated by active 
RF sources. Using periodogram samples collected by spa-

50 tially distributed CRs, the sparsity-aware spline-based esti­
mator yields an atlas of PSD maps (one map per frequency). 
A provably convergent distributed algorithm is described 
using AD-MoM iterations, to obtain the required group­
Lasso estimator using the network of CRs. As corroborated 

In one example, a collaborative scheme is utilized in which 
cognitive radios cooperate to localize active primary trans­
mitters and reconstruct the power spectral density (PSD) 
maps (one per frequency band) portraying the power distri­
bution across space. The sensing scheme may utilize a parsi­
monious linear system model that accounts for the narrow­
band nature of transmit-PSDs compared to the large swath of 
sensed frequencies, and forthe group sparsity emerging when 
adopting a spatial grid of candidate primary user locations. 
Combining the merits of Lasso, group Lasso, and total least­
squares (TLS ), the proposed group sparse (GS) TLS approach 
yields hierarchically-sparse PSD estimates, and copes with 
model uncertainty induced by channel randonmess and grid 
mismatch effects. Taking advantage of a novel low-complex­
ity solver for the GS-Lasso, a block coordinate descent 
scheme is developed to solve the formulated GS-TLS prob­
lem. 

55 by simulations and tests on real data, the atlas enables local­
izing the sources and discerning their transmission param­
eters, even in the presence of frequency-selective Rayleigh 
fading and pronounced shadowing effects. Simulated tests 
also confirmed that the sparsity-promoting regularization is 

60 effective in selecting those basis functions that strongly influ­
ence the field, when the tuning parameters are cross-validated 
properly. 

The techniques may have many applications of the PSD 
maps, including the distribution of RF power in space and 

65 frequency. For example, PSD maps may be used to reveal 
spatial locations where idle frequency bands can be reused for 
transmission, even when fading and shadowing effects are 
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pronounced. This information may be useful to wireless ser­
vice providers in network planning and maintenance. As 
other example, the PSD maps may be used be devices, such as 
cellular phones, base stations or wireless-enabled tablet or 
computing devices, to sense and utilize opportunities within 
the spectrum for communication, such as dynamic re-use of 
otherwise pre-allocated frequency bands. 

4 
FIG. 10 includes three graphs: GLasso estimator on the 

dataset; (left) Original data with shaded pixels indicating the 
position of the radios; (center) estimated maps over the sur­
veyed area; (right) extrapolated maps. The Nb=14 rows cor­
respond to the frequency bands spanned by each of the bases. 

The model and the resultant (parsimonious) estimates of 
the PSD maps can be used in more general statistical infer­
ence and localization problems, whenever the data admit a 10 

basis expansion over a proper subset of its dimensions. Fur­
thermore, results in this disclosure extend to kernels other 
than radial basis functions, whenever the smoothing penalty 

FIG. 11 is a graph illustrating normalized mean-square 
prediction error on the dataset estimated via two-fold cross 
validation. 

FIG. 12 is a block diagram illustrating a comparison 
between KDL and NBP; (top) dictionary B and sparse coef­
ficients Ym for KDL, where MNs equations are sufficient to 
recover C; (bottom) low-rank structure A=CBr presumed in 
KMC. 

is replaced by a norm induced from an RKHS. 
In one example implementation, techniques are used for 15 

cross fertilizing sparsity-aware signal processing tools with 
kernel-based learning. The disclosure describes non-para­
metric basis pursuit as foundation for sparse kernel-based 
learning (KBL), including blind versions that emerge as non­
parametric nuclear norm regularization and dictionary learn- 20 

ing. 

FIG. 13 is a graph illustrating aggregate power distribution 
across space. 

FIG. 14 is a graph illustrating PSD measurements at a 
representative location 

FIG. 15 is a graph illustrating NBP for spectrum cartogra­
phy using MKL. 

FIG. 16 shows a detailed example of various devices that 
may be configured to execute program code to practice some 
embodiments in accordance with the current disclosure. Moreover, KBL is connected herein with Gaussian pro­

cesses (GP) analysis, including an example implementation 
of a Bayesian viewpoint in which kernels convey prior infor­
mation. Alternatively, KBL can be regarded as an interpola- 25 

tion toolset though its connection with the Nyquist-Shannon 
Theorem (NST), indicating that the impact of a prior model 
choice is attenuated when the size of the dataset is large, 
especially when kernel selection is also incorporated. 

FIG. 17 is a flowchart illustrating an example process in 
accordance with the techniques described herein. 

DETAILED DESCRIPTION 

FIG. 1 is a block diagram illustrating a system 10 in which 
a plurality of sensors 12 (e.g., cognitive radios (CR) in this 
example) deployed within a spatial region. Each of CRs 12 
sense the ambient interference spectrum from other RF -en-

The details of one or more embodiments of the invention 30 

are set forth in the accompanying drawings and the descrip­
tion below. Other features, objects, and advantages of the 
invention will be apparent from the description and drawings, 
and from the claims. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is a block diagram illustrating a system in which a 
plurality of sensors and a centralized computing center coop­
erate to construct PSD maps. 

FIG. 2 is a block diagram illustrating a system in which a 
plurality of sensors executed distributed techniques to con­
struct PSD maps. 

FIG. 3 is a graph showing expansion with overlapping 
raised cosine pulses. 

FIG. 4 includes a graph (top) showing positions of sources 
and obstructing wall and a graph (bottom) showing an 
example PSD generated by the active transmitters. 

FIG. 5: includes a graph (top) representing an aggregate 
map estimate in dB and a graph (bottom) showing group­
Lasso path of solutions lsvl2 asµ varies. 

FIG. 6: includes a graph (top) illustrating frequency bases 
selected by the group-Lassoed spline-based estimator and a 
graph (bottom) showing frequency bases selected by ridge 
regression. 

FIG. 7 includes a graph (top) illustrating minimization of 
the CV error over A and a graph (bottom) illustrating mini­
mization of the CV error overµ. 

FIG. 8 includes four graphs: (Top) Power distribution 
across space g6(x) in the band of2437 MHz; (top-left) actual 
distribution; (top-right) estimated PSD map. (bottom) Power 
distribution across space gll(x) in the band of 2462 MHz; 
(bottom-left) actual distribution; (bottom-right) estimated 
map. 

FIG. 9 includes two graphs: (Top) Bases supported in the 
estimate generated by GLasso; (bottom) evolution of the 
duality gap for GLasso. 

abled devices 15 within its surrounding region and commu­
nicate the sensed observations to one another via messages 
14. In the example of FIG. 1, CRs 12 communicate power 

35 spectral density (PSD) observations to a computing system 
(e.g., fusion center 'FC') to construct one or more power 
spectral density (PSD) maps based on the PSD observations. 

In general, the PSD maps representative of the distribution 
of radio frequency (RF) power as a function of both frequency 

40 and spatial location within the geographic region. In the 
example of FIG. 1, system 10 includes a centralized fusion 
center (FC) 16 that performs the techniques described herein 
to compute a non-parametric basis expansion model 19 that 
models the PSD throughout the geographic region of interest 

45 across space and frequency based on the sensed observations 
relayed to the fusion center via the CRs. In accordance with 
non-parametric basis expansion model 19, fusion center 16 
may compute and output one or more PSD maps 17. In one 
example of system 10, FC 16 includes and maintains PSD 

50 maps 17 and model 19 within a database or other computer­
readable storage device along with location data for each of 
CRs 12. Each location may, for example, be represented as a 
position vector within the geographic region. A dedicated 
control channel may be established by which CRs 12 

55 exchange PSD observations via messages 14, which are ulti­
mately related to FC 16 by those CRs in communication with 
the FC. As described below, such as shown in the example 
system of FIG. 2, the techniques may readily be used in a 
distributed fashion for in-network spectrum cartography 

60 without a fusion center. 
With respect to FIG. 1, in general, FC 16 applies the tech­

niques described herein to compute one or more PSD maps 
for the geographic region. In one example, FC 16 applies 
non-parametric basis pursuit as a form of signal expansion for 

65 constructing model 19 and PSD maps 17 based on the obser­
vations. That is, FC 16 may apply the techniques described 
herein to construct a non-parametric basis expansion model 
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19 representative of the power spectral density for RF power 
distribution throughout the geographic region of interest. In 
general, a basis expansion model consists of a superposition 

6 

of shifted and scaled versions of reference basis functions. In 
one example, the non-parametric basis expansion model 
described herein comprises a set of reference basis functions 
and a set ofkernel-based interpolating functions as coefficient 
functions to the reference basis functions, i.e., basis weight­
ing functions. The reference basis functions represent the 
frequency distribution of the RF power, i.e., RF power present 
at different frequency slots. The kernel-based interpolating 
functions represent the physical distribution of the RF power 
throughout the geographic region for the frequency slots and 
operate to interpolate the PSD measurements across space 
using one or more kernel-based methods. The kernel-based 15 

interpolating functions that represent the physical distribu­
tion of the RF power may, for example, belong to a reproduc­
ing kernel Hilbert space (RKHS). 

the derivatives of g, which is otherwise treated as a generic 
function. While this generality is inherent to the variational 
formulation, the smoothness penalty renders the estimated 
map unique and finitely parameterized. With the variational 
problem solution expressible by polynomials and specific 
kernels, the aforementioned map approximation task reduces 
to a parameter estimation problem. Consequently, thin-plate 
splines operate as a reproducing kernel Hilbert space (RKHS) 
learning machine in a suitably defined (Sobolev) space. 

10 Although splines emerge as variational LS estimators of 

As described herein, FC 16 computes sparse coefficients 
forthe basis expansions as bases weighting functions, i.e., the 20 

kernel-based interpolating functions used to interpolate 
across space, instead of scalars to more accurately represent 
the signals transmitted from RF-enabled devices 15. As used 
herein, a nonparamentric basis expansion model refers to a 
basis expansion model where scaling coefficients of the ref- 25 

erence basis functions are computed as basis weighting func­
tions that belong to a function space instead of scalars, as used 
in a parametric basis expansion model. As such, in accor­
dance with the techniques described herein, kernel-based 
interpolating functions that interpolate the PSD across space 30 

are computed as coefficients to the reference basis functions. 
In this way, the kernel-based interpolating functions operate 
as bases weighting functions in the non-parametric basis 
expansion model. Moreover, as described in further detail 
below, in some example, a number of different types ofker- 35 

nels may be used to accurately model the physical (i.e., geo­
graphic) distribution of RF power over the region so as to 
enhance the ability of the model to accurately reflect fading 
and multi-path characteristics of the environment. In this way, 
multiple different types of kernel-based interpolating func- 40 

tions may be incorporate to interpolate the PSD measure­
ments and used as basis weighting functions within the 
model. 

deterministic fields, they are also connected to classes of 
estimators for random fields. The first class assumes that 
estimators are linearly related to the measured samples, while 
the second one assumes that fields are Gaussian distributed. 
The first corresponds to the Kriging method while the second 
to the Gaussian process model; but in both cases one deals 
with a best linear unbiased estimator (BLUE). Typically, wide 
sense stationarity is assumed for the field's spatial correlation 
needed to form the BLUE. The so-termed generalized cova­
riance model adds a parametric nonstationary term compris-
ing known functions specified a priori. Inspection of the 
BLUE reveals that if the nonstationary part is selected to 
comprise polynomials, and the spatial correlation is chosen to 
be the splines kernel, then the Kriging, Gaussian process, and 
spline-based estimators coincide. 

Bearing in mind this unifying treatment of deterministic 
and random fields, one example technique described in this 
disclosure is spline-based estimation, and the practically 
motivated sparse (and thus parsimonious) description of the 
wanted RF field forthe spatial region ofinterest. Toward these 
goals, the following basis expansion model (BEM) is adopted 
for the computing PSD maps 17: 

Nb (1) 

<l>(x, f) = 2=g,(x)b,(f) 
v=l 

with xER2
, fER, and the L2 -norms {llbv(f)llL

2
=l} v~iNb nor­

malized to unity. 
The bases {bv(f)} v~i Nb are preselected, and the functions 

gJx) are to be estimated based on noisy samples of <I>. This 
way, the model-versus-data balance is calibrated by introduc-In some example, FC 16 may perform a most parsimonious 

sparse signal expansion using an overcomplete basis set to 
compute the basis expansion model and construct one or more 
the PSD maps. That is, examples of the expansion model 
described herein may utilize a sparsest subset of the overcom­
plete set of bases when computing the model to construct the 
PSDmaps. 

45 ing a priori knowledge on the dependence of the map <I> with 
respect to variable f, or more generally a group of variables, 
while trusting the data to dictate the functions gv(x) of the 
remaining variables x. 

In one example, FC 16 includes a computing system of one 
or more computing devices that employ a novel field estima­
tor based on a regularized variational least-squares (LS) cri­
terion that yields finitely-parameterized (function) estimates 
spanned by thin-plate splines. An over-complete set of (pos­
sibly overlapping) basis functions may be used, while a spar­
sifying regularizer augmenting the LS cost endows the esti­
mator with the ability to select a few of these bases that 
"better" explain the data using a parsimonious field represen­
tation. 

In general, spline-based field estimation involves approxi­
mating a deterministic map g:Rn---;.R from a finite number of 
its noisy data samples, by minimizing a variational least­
squares (LS) criterion regularized with a smoothness-control­
ling functional. In the dilemma of trusting a model (paramet­
ric) versus trusting the data (non-parameteric), splines favor 
the latter since only a mild regularity condition is imposed on 

Consider selecting Nb basis functions using the basis pur-
50 suit approach, which entails an extensive set of bases thus 

rendering Nb overly large and the model overcomplete. This 
motivates augmenting the variational LS problem with a suit­
able sparsity-encouraging penalty, which endows the map 
estimator with the ability to discard factors ~(x)bv(f), only 

55 keeping a few bases that "better" explain the samples 
acquired by CRs 12. This attribute is inherited because the 
novel sparsity-aware spline-based method of this disclosure 
induces a group-Lasso estimator for the coefficients of the 
optimal finitely-parameterized gv. Group-Lasso estimators 

60 set groups of weak coefficients to zero (here the Nb groups 
associated with coefficients per gv), and outperform the spar­
sity-agnostic LS estimator by capitalizing on the sparsity 
present. 

In one example, the novel estimator of FC 16 applies an 
65 iterative group-Lasso algorithm that yields closed-form esti­

mates per iteration. In another example, CRs 12 or any other 
plurality of processing centers implement a distributed ver-
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sion of this algorithm, described herein, for the samples col­
lected by the CRs. This provides for computational load­
balancing of multi-device or multiprocessor architectures. 

In one example, FC 16 implements the basis expansion 
model described herein for spectrum cartography for wireless 
cognitive radio (CR) networks. CR technology may be used 
to address bandwidth under-utilization versus spectrum scar-

8 
objective of revealing which of these portions (sub-bands) are 
available for new systems to transmit, motivates modeling the 
transmit-PSD of each us(t) as 

Nb (2) 

<l>,(f) = ~ G"b,(f), s = 1, ... , N, 
v=l 

city, which has rendered fixed-access communication net­
works inefficient. CRs 12 sense the ambient interference 
spectrum to enable spatial frequency reuse and allow for 
dynamic spectrum allocation in accordance with the PSD 
maps 17 computed by FC 16. Collaboration among CRs 12 
can markedly improve the sensing performance and reveal 
opportunities for spatial frequency reuse. Unlike existing 
approaches that have mostly relied on detecting spectrum 
occupancy per radio, the techniqeus described herein account 
for spatial changes in the radio frequency (RF) ambiance, 
especially at intended receiver(s) which may reside several 
hops away from the sensed area. 

10 where the basis bvCf) is centered at frequency fv, v=l, ... , N6 . 

The example depicted in FIG. 3 involves (generally overlap­
ping) raised cosine bases with support Bv=[fv-Cl+Q )/2T,, 
fv+(l+Q )/2TJ, where T)s the symbol period, and Q stands 

15 
for the roll-off factor. Such bases can model transmit-spectra 
of e.g., multicarrier systems. In other situations, power spec­
tral masks may dictate sharp transitions between contiguous 
sub-bands, cases in which non-overlapping rectangular bases 
may be more appropriate. All in all, the set of bases should be 

The novel field estimation techniques applied in system 10 20 selected to accommodate a priori knowledge about the PSD. 
The power transmitted by a source s (e.g., any of RF­

enabled devices 15) will propagate to the location xER2 

according to a generally unknown spatial loss function l/x): 
R2 --;.R. Specifically, ls takes the form ls(x):=E[IHsxCf)l 2

], 

25 where Hsx stands for the frequency response of the channel 
from source s to the receiver positioned at x. The propagation 
model ls(x) not only captures frequency-flat deterministic 
pathloss, but also stationary, block-fading and even fre­
quency-selective Rayleigh channel effects, since their statis-

is a collaborative sensing scheme whereby receiving CRs 12 
and FC 16 cooperate to estimate the distribution of power in 
space x and frequency f, namely the power spectrum density 
(PSD) map <I>(x,f), from local periodogrammeasurements. In 
examples, the estimator is precise enough to identify spec­
trum holes, which justifies adopting the known bases to cap­
ture the PSD frequency dependence. As far as the spatial 
dependence is concerned, the techniques account for path 
loss, fading, mobility, and shadowing effects, all of which 
vary with the propagation medium. For this reason, the col­
lected PSD observations 14 data is used dictate the spatial 
component. Determination of the PSD at any location may 
allow remote CRs 12 to reuse dynamically idle bands. It also 
enables CRs 12 to adapt their transmit-power so as to mini­
mally interfere with licensed transmitters. The spline-based 
PSD map here provides an alternative to conventional tech­
niques, where known bases are used both in space and fre­
quency. In one example, the field estimator here does not 
presume a spatial covariance model or pathloss channel 
model. Moreover, it captures general propagation character- 40 

30 ti cal moments do not depend on the frequency variable. In this 
case, the following vanishing memory assumption is required 
on the transmitted signals for the spatial receive-PSD <I>(x,f) 
to be factorizable as l/x)<I>/f). 

Sources 15 represented as {us( t)} F 1 N, are stationary, mutu-
35 ally uncorrelated, independent of the channels, and have van­

ishing correlation per coherence interval; i.e., rssC-t):=E[ us(t+ 
i:)us(t)]=O, 'v':li:l>Tc-L, where Tc and L represent the 
coherence interval and delay spread of the channels, respec-
tively. 

As such, the contribution of source s to the PSD at point x 

istics including both shadowin,S.._ and fading. is 
In this disclosure, operators (20, (•)',tr(•), rank(•), bdiag(•), 

E[•] will denote Kronecker product, transposition, matrix 
trace, rank, block diagonal matrix and expectation, respec­
tively; l•I will be used for the cardinality of a set, and the 45 

magnitude of a scalar. The L2 norm of function b:R--;.R is 

50 

while the EP norm of vector xER1' is 

55 

( 

p )!/p 
lxlp := ~ lx;IP 

for p;;,;l; and IMIF:=v'tr(MM') is the matrix Frobenius norm. 60 

Positive definite matrices will be denoted by >O. The pxp 
identity matrix will be represented by IP, while OP will denote 
the pxl vector of all zeros, and Opxq:=OPO'q· The i-th vector in 
the canonical basis for R1' will be denoted by eP-'' i=l, ... , p. 

Nb 

l,(x) ~ G"bAf); 
v=l 

and the PSD due to all sources received at x will be given by 

N, N 

<l>(x, f) = I l,(x) ~ G"bAf). 

s=l 

Note that <I>(x,f) is not time dependent, but takes into account 
the randomness of the channels. Such spatial PSD model can 
be simplified by defining the function 

N, 

g,(x) := ~ 0"1,(x). 
s=l 

Basis Expanion Model for Spectrum Cartography 
Consider a set of Ns sources transmitting signals 

{ us(t)} Fl N, using portions of the overall bandwidth B. The 

65 With this definition and upon exchanging the order of sum­
mation, the spatial PSD model takes form, where functions 
{gvC x)} v~i Nb are to be estimated. They represent the aggregate 
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distribution of power across space corresponding to the fre­
quencies spanned by the bases {bJ. Observe that the sources 
are not explicitly present in (eq. 1). Even if this model could 
have been postulated directly for the cartography task at hand, 
the previous discussion justifies the factorization of the <I>(x,f) 5 

map per band in factors depending on each of the variables x 
and f. 

In one example, FC 16 and CRs 12 applies cooperative 
Spline-Based PSD Field Estimation to compute PSDs 17. In 
this example, the sensing strategy relies on the periodogram 10 

estimate <Prn(t) at a set of receiving (sampling) locations 
X:={xr},~1N'ER2 , frequencies F:={fn}n~iNEB, and time­
slots {i:} ,,~ 1 r. In order to reduce the periodogram variance and 
mitigate fading effects, <Prn(i:) is averaged across a window of 

15 
T time-slots to obtain: 

(3) 

10 
Proposition 1: The estimates {&}v~iNb in (4) are thin-plate 

splines expressible in closed form as 

N, (5) 

g ,(x) = ~ /3"K(llx - x,112) + 0:;1 x + a:,o 
~1 

where K(p ):=p2 log(p ), and ~v:=[~v 1 , ... , ~vN.J' is con­

strained to the linear subspace l3 :={~EIRSr ; ~ro=IN,~r=O, 
~ro=lN,~,xr=02,:xrEX} for v=l, ... , N6 . 

If the basis functions have finite supports which do not over­
lap, then ( eq. 4) decouples per~· One novelty of Proposition 
1 is that the basis functions with spatial spline coefficients in 
(eq. 1) are allowed to be overlapping. The implication of 
Proposition 1 is a finite parametrization of the PSD map [cf. 
(eq. 5)]. This is particularly important for non-FDMA based 
CR networks. In the forthcoming description, an overcom-1 T 

!/Jm := T ~ \Om(T). 
T=l 

20 plete set is adopted in ( eq. 1 ), and overlapping bases naturally 
arise therein. 

Hence, the envisioned setup consists of Nr receiving CRs, 
which collaborate to construct the PSD map based on PSD 
observations {<I>rn}. The bulk of processing is performed 25 
centrally at a fusion center (FC), which is assumed to know 
the position vectors X of all CRs, and the sensed tones in F. 
The FC receives over a dedicated control channel, the vector 
of samples <I>r:=[<I>r1 , ... , <I>rN]'ERN taken by node r for all 
r=l, ... 'Nr. 30 

While a BEM could be introduced for the spatial loss 
function l/x) as well, the uncertainty on the source locations 
and obstructions in the propagation medium may render such 
a model imprecise. This will happen, e.g., when shadowing is 
present. Instead, the techniques described here utilize estima- 35 
tionofthe functions gJx) based on the data {<Pm}. To capture 
the smooth portions of <I>(x,f), the criterion for selecting gv(x) 
will be regularized using a so termed thin-plate penalty. This 
penalty extends to R2 the one-dimensional roughness regu­
larization used in smoothing spline models. Accordingly, 40 
functions {~} v~i Nb are estimated as: 

(4) 

45 

What is left to determine are the parameters 

a::= [a10, a~l• ... 'aNbo' a~bi]' E R3Nb, 

and j3 := [/3;, ... , /3~.]' E RN,Nb 

in (eq. 5). To this end, define the vector 

¢:=[!/Ju,··· , !/J1N, ··· , !/JN,1, ... , !/JN,NY E RN,N 

containing the network-wide data obtained at all frequencies 
in F. Three matrices are also introduced collecting the regres­
sion inputs: i) TERN,x3 withrthrowt'r:=[l:x'rl forr=l, ... , Nr 
andxrEX; ii) BERNxNbwithnthrowb'n:=[b1 (fn), ... , bNb(fn)] 
for n=l, ... ,N; and iii) KERN,xN, with ij-th entry [KJ,/=K 
Cl lx,-x) I) for x,,x1EX. Consider also the QR decompositions of 
T=[Q1 :Q2 ][R' 0'] and B=[Q 1:Q2][r1 O]'. 

Upon plugging (eq. 5) into (eq. 4), the optimal {a,~} 
satisfy the following system of equations: 

(B(i) Q'2)<i>~[(B'B(i) Q'2KQ2)+N,NMNb(N,-3)]Y (6) 

(7) 

~~(JNb (i) Q1)y. (8) 

where llV2gvllF denotes the Frobenius norm of the Hessian of 
gv. 

The optimization is over S, the space ofSobolev functions. 

Matrix Q'2KQ2 is positive definite, and 
50 rank(r0 R)=rank(r)rank(R). It thus follows that ( eq 6)-( eq. 

7) admit a unique solution if and only ifr and Rare invertible 
(correspondingly, B and T have full column rank). These 
conditions place practical constraints that should be taken 
into account at the system design stage. Specifically, T has 

The parameter A2:0 controls the degree of smoothing. Spe­
cifically, for A.=O the estimates in (eq. 4) correspond to rough 
functions interpolating the data; while as A.~oo the estimates 
yield linear functions (cf. V2 gJx)=02x2 ). A smoothing 
parameter in between these limiting values will be selected 
using a leave-one-out cross-validation (CV) approach, as dis­
cussed later. 

55 full column rank if and only if the points in X, i.e., the CR 
locations, are not aligned. Furthermore, B will have linearly 
independent columns provided the basis functions 
{bvCf)}v~iNb comprise a linearly independent and complete 
set, i.e., B-'=-nvBv. Note that completeness precludes all fre-

60 quencies { fn} n~I N from falling outside the aggregate support 
of the basis set, hence preventing undesired all-zero columns 
inB. The thin-plate splines solution is now described. The opti­

mization problem ( eq. 4) is variational in nature, and in prin­
ciple requires searching over the infinite-dimensional func­
tional space S. It turns out that (eq. 4) admits closed-form, 65 

finite dimensional minimizers gJx), as presented in the fol­
lowing proposition. 

The condition on X does not introduce an actual limitation 
as it can be easily satisfied in practice, especially when CRs 
12 are randomly deployed. Likewise, the basis set is part of 
the system design, and can be chosen to satisfy the conditions 
onB. 
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Therefore, in one example, FC 16 may execute program to 
perform the following method constituting the spline-based 
spectrum cartography algorithm, which amounts to estimat­
ing <I>(x,f): 

12 
In one example, FC 16 utilizes Group-Lasso on Splines as 

an improved spline-based PSD estimator to fit the unknown 
spatial functions {&} v~i Nb in the model 

Step 1: Given <I>, solve ( eq. 6)-( eq. 8) for' a', ~'after select- 5 

ing A as detailed herein. Nb 

<l>(x, f) = ~g,(x)b,(f), Step 2: SubstituteOa and'~ into (eq. 5) to obtain 
{gv(x)} v~lNb. 

v=l 

Step 3: Use {gJx)}v~iNb in (eq. 1) to estimate <I>(x,f). 
In one embodiment, FC 16 includes PSD tracker 24 that 10 

adapts to time-varying PSDs. The real-time requirements on 
the sensing radios and the convenience of an estimator that 
adapts to changes in the spectrum map are the motivating 
reasons behind the PSD tracker introduced in this section. 

15 
The spectrum map estimator will be henceforth denoted by 
<I>(x,f,i:), to make its time dependence explicit. 

with a large (N6>>N,N), and a possibly overcomplete set of 
known basis functions {bJv~iNb. These models are particu­
larly attractive when there is an inherent uncertainty on the 
transmitters' parameters, such as central frequency and band­
width of the pulse shapers; or, e.g., the roll-off factor when 
raised-cosine pulses are employed. In particular, adaptive 
communication schemes may rely on frequently adjusting 
these parameters. A sizeable collection of bases to effectively 
accommodate most of the possible cases provides the desir­
able robustness. Still, prior knowledge available on the 

PSD tracker 24 defines the vector <Pn(i:):=[cjl 1n(i:), ... , 
<PN,,,(i:)]' of periodogram samples taken at frequency fn by all 
CRs, and forms the supervector 

Per time-slot i:=l,2, ... , the periodogram cp(i:) is averaged 
using the following adaptive counterpart of ( eq. 3 ): 

20 incumbent communication technologies being sensed may be 
exploited to choose the most descriptive classes of basis func­
tions; e.g., a large set of raised-cosine pulses. Known bases 
may be selected to describe frequency characteristics of the 
PSD map, while a variational approach may be used to cap-

25 ture spatial dependencies. 

T 

¢(r) := ~ 6T-T' cp(r') = 6¢(r - 1) + cp(r) 
(9) 30 

In this context, the envisioned estimation method should 
provide the CRs with the capability of selecting a few bases 
that "better explain" the actual transmitted signals. As a 
result, most functions & are expected to be identically zero; 
hence, there is an inherent form of sparsity present that can be 
exploited to improve estimation. The rationale behind the -r'=l 

which implements an exponentially weighted moving aver­
age operation with forgetting factor oE(0,1 ). For every i:, the 
online estimator <I>(x,f,i:) is obtained by plugging in ( eq. 1) the 
solution {gv(x,i:)}v~lNb of (eq. 4), after replacing <I>rn with 
<I>rn(i:) [cf. the entries of the vector in (eq. 9)]. In addition to 
mitigating fading effects, this adaptive approach can track 
slowly time-varying PSDs because the averaging in (eq. 9) 
exponentially discards past data. 

Suppose that per time-slot i:, FC 16 receives raw peri­
odogram samples cp(i:) from the CRs in order to update <I>(x, 

proposed approach can be rooted in the basis pursuit prin­
ciple, a technique for finding the most parsimonious sparse 
signal expansion using an overcomplete basis set. A major 

35 differentiating aspect however, is that the sparse coefficients 
in the basis expansions are not treated as scalars but instead 
model (eq. 1) implemented by FC 16 entails bases weighted 
by functions gv. 

The proposed approach to sparsity-aware spline-based 
40 field estimation from the space-frequency power spectrum 

measurements <I>rn [cf. (eq. 3)], is to obtain {gJv~iNb as 

f,i:). The techniques described herein apply for everyi:, mean-
ing that {gJx,i:) L~iNb are given by ( eq. 5), whilethe optimum 45 1 fi ~( Nb )

2 

coefficients {a(i:):~(i:)} are found after solving (eq. 6)-(eq. {g,)~!1 :=argmi11g,cs1N,N L..JL..J !/Jm- ~g,(x,)bAfn) + 

8). Capitalizing on ( eq. 9), straightforward manipulations of r=l n=I 

(12) 

( eq. 6)-( eq. 8) show that { a(i:):~(i:)} are recursively given for 
all i:;;,;l by: 

(10) 
50 

Relative to (eq. 4), the cost here is augmented with an addi-
'a(i:)~oa(i:-1 )+G2<j>(i:) (11) tional regularization term weighted by a tuning parameter 

where the time-invariant matrices G1 and G2 are 
µ;;,;O. Ifµ=O then (eq. 12) boils down to (eq. 4). To appreciate 

55 the role of the new penalty term, note that the minimization of 

G1 := [(B' B 0 Q;KQ2) + N,NA!Nb(N,-3Jr
1(B 0 Q;J 

G2 := [f @Rr1[ (flj 0Qj)- (f 0 QjKQ2)G1J. 
60 

Recursions (eq. 10)-(eq. 11) provide a means to update <I>(x, 
f,i:) sequentially in time, by incorporating the newly acquired 
data from the CRs in cp(i:). There is no need to separately 
update <I>(i:) as in ( eq. 9), yet the desired averaging takes 65 

place. Furthermore, matrices G 1 and G 2 need to be computed 
only once, during the startup phase of the network. 

intuitively shrinks all pointwise functional values {gv 
(X1), .... , gJXN,)} to zero for sufficiently largeµ. Interest­
ingly, it will be shown in the ensuing section that this is 
enough to guarantee that gJx)=O Vx, forµ large enough. 

Estimation using the group-Lasso technique is described. 
Consider linear regression, where a vector yERn of observa­
tions is available, along with a matrix XERnxp of inputs. The 



US 9,191,831 B2 
13 

group Lasso estimate for the vector of features s:=[s\, ... , 
s'N.J'ER1', is defined as the solution to 

1 Nb 

min? 2ly- X?I~ + µ ~ l?,12 . 

v=l 

(13) 5 

14 
enforces sparsity in the parameters of the splines expansion 
for <I>(x,f) at a factor level, which potentially nulls the less 
descriptive functions &· 

The group-Lassoed splines-based approach to spectrum 
cartography applied by one example of FC 16 can be sum­
marized in the following method to estimate the global PSD 
map <I>(x,f): 

This criterion achieves model selection by retaining relevant 
factors S,.ER1'1Nb in which the features are grouped. In other 10 

words, group-Lasso encourages sparsity at the factor level, 
either by shrinking to zero all variables within a factor, or by 
retaining them altogether depending on the value of the tun­
ing parameter µ;;:0. As µis increased, more sub-vector esti-

15 
mates S,. become zero, and the corresponding factors drop out 

Step 1. Given <I> and utilizing any group Lasso solver, 
obtain's:=['s\, ... ,'s'NJ by Solving (eq. 13). 

Step 2. Form the estimates' a;~ using the change of vari-
ables ['Wv;a'v]'=bdiag(Q2 ,I3 )[KQ2 ::T]-1'S,. for 
v=l, ... , N6 . 

Step 3. Substitute'a and '~ into (eq. 15) to obtain 
{~(x)} v~lNb. 

Step 4. Use {~(x)L~iNb in (eq. 1) to estimate <I>(x,f). 
of the model. It can be shown from the Karush-Kuhn-Tucker 
optimality conditions that only for µ;;:µmax:=max,IX',yl 2 it 
holds that s 1 = ... =sNb =Op/Nb' so that the values ofinterest are 
µE[O,µmaxl· 

The connection between (eq. 13) and the spline-based field 
estimator ( eq. 12) builds on Proposition 1, which still holds in 
this context. That is, even though criteria (eq. 4) and (eq. 12) 
purposely differ, their respective solutions gv(x) have the 
same form in ( eq. 5). The essential difference manifested by 
this penalty is revealed when estimating the parameters a and 
~ in ( eq. 5), as presented in the following proposition: 

Proposition 2: The spline-based field estimator (12) is 
equivalent to group-Lasso (13), under the identities 

(14) 

1 ' y := r::;-;:-;- [\O, O] 
vN,N 

with their respective solutions related by 

N, (15) 
g ,(x) = ~ f3"K(llx - x,112) + 0:;1 x + a:,o 

~1 

(16) 

Implementing Steps 1-Stes 4 presumes that CRs 12 com­
municate their local PSD estimates to a fusion center, which 
uses their aggregation in <I> to estimate the field. In certain 

20 examples, a designer or system operator of system 10 may 
forgo FC 16 to avoid an isolated point of failure, or to aims at 
a network topology which scales well with an increasing 
number of CRs 12 based on power considerations. For 
example, CRs located far away from the FC will drain their 

25 batteries more to reach the FC. A fully distributed counterpart 
of system 10 is described next. 

FIG. 2 shows an example system 40 that utilizes distributed 
Group-Lasso for in-network spectrum cartography without a 
fusion center (e.g., FC 16 of FIG. 1). Consider N, networked 

30 CRs 12 that are capable of sensing the ambient RF spectrum, 
performing some local computations, as well as exchanging 
messages 14 among neighbors via dedicated control chan­
nels. In lieu of a fusion center, the CR network is naturally 
modeled as an undirected graph G(R,E), where the vertex set 

35 R:={l, ... ,N,} corresponds to the sensing radios, and the 
edges in E represent pairs of CRs that can communicate. 
Radio rER communicates with its single-hop neighbors in 
N,, and the size of the neighborhood is denoted by IN,I. The 
locations {x,},~1N':=X of the sensing radios are assumed 

40 known to the CR network. To ensure that the measured data 
from an arbitrary CR can eventually percolate throughout the 
entire network, it is assumed that the graph G is connected; 
i.e., there exists a (possibly) multi-hop communication path 
connecting any two CRs. 

45 

where ~v:=[~v 1 , ... , ~vNl' and Uy:=[av0 ,a'v 1J'. 
The factors {sv}v~iNb in (eq. 13) are in one-to-one corre- 50 

spondence with the vectors {[Wv,a'vl'} v~i Nb through the lin­
ear mapping (eq. 16). This implies that whenever a factor S,. 

For the purpose of estimating an unknown vector 
s:=[s\, ... , s'Nb'ER]P, each radio rER has available a local 
vector of observations y,ERn, as well as its own matrix of 
inputs X,ERn,xp. Radios collaborate to form the wanted 
group-Lasso estimator ( eq. 13) in a distributed fashion, using 

1 Nr Nb (17) 
is dropped from the linear regression model obtained after 
solving (eq. 13), then gJx)=O, and the term corresponding to 
bvCf) does not contribute to (eq. 1). Hence, by appropriately 55 
selecting the value ofµ, criterion (eq. 12) has the potential of 
retaining only the most significant terms in 

= ar~n2~ lly, - X,?11~ + µ ~ ll?,11 2 
r=l v=l 

where y:=[y\, ... , y'N ]'ER" x 1 with n:=~,~i N,n,, and X:= 
[X\, ... , X'N ]'E R11 xp' The motivation behind developing a 
distributed solverof (17) is to tackle (12) based on in-network 

Nb 

<l>(x, f) = ~g,(x)bAf), 
v=l 

60 
processing of the local observations cp,:=[ cp,1 , ... , cp,N]' 
available per radio [cf. (3)]. Indeed, it readily follows that (17) 
can be used instead of (13) in Proposition 2 when 

and thus yields parsimonious PSD map estimates. All in all, 
the motivation behind the variational problem (eq. 12) is now 65 

unravelled. The additional penalty term not present in (eq. 4) 
renders (eq. 12) equivalent to a group-Lasso problem. This 

1 [\O'] 
y, := ,/ N,N 0 
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-continued 

16 
Problem (eq. 19) is an instance of the group-Lasso (eq. 13) 
whenX'X=IP, anda:=X'. 

corresponding to the identifications nr=N VrER. p=N6Nr. 
Note that because the locations {xr} are assumed known to 
the entire network. CR r can form matrices T. K. and thus, the 1 o 
local regression matrix xr. 

In order to take advantage of Lemma 2, auxiliary variables 
yr' r= 1, ... , N r are introduced as copies of Sr· Upon intro­
ducing appropriate constraints yr =sr that guarantee the 
equivalence of the formulations along the lines of Lemma 1, 
problem (eq. 18) can be recast as 

(22) 

s. to I;, = y; =I;; , r E 'R, r' E N, 

In one example, CRs 12 use consensus-based reformula­
tion of the group-Lasso. To distribute the cost in (eq. 17), 
replace the global variable s which couples the per-agent 

N 15 summands with local variables {sr L~i 'representing candi- y, = !;,, r E 'R. 

date estimates of s per sensing radio. It is now possible to 
reformulate ( eq. 17) as a convex constrained minimization 
problem 

N, r N 1 A N, . 1 2 2µ b 
{I;,} ~ 1 = argrmn -

2 
'\"' lly, - X,l;,11, + N-~ 111;~112 

l&l ~ r~1 

(18) 

The dummy variables y/' are inserted for technical reasons 

20 that will become apparent in the ensuing section, and will be 
eventually eliminated. 

In one example, the distributed group-Lasso algorithm is 
constructed by optimizing ( eq. 22) using an alternating direc­
tion method of multipliers (AD-MoM). In this direction, 

25 associate Lagrange multipliers m-r'and /'with the constraints 
Yr=s" sr'=y/'and sr=y/, respectively, and consider the aug­
mented Lagrangian with parameter c>O 

The equality constraints directly effect local agreement 
across each CR's neighborhood. Since the communication 
graph G is assumed connected, these constraints also ensure 30 

global consensus a fortiori, meaning that sr=s'" Vr,r'ER. 
Indeed, let P(r,r'):r,rur2 , ... , rmr' denote a path on Gthatjoins 

L[{l;,J,y, v]= (23) 

an arbitrary pair of CRs (r,r'). Because contiguous radios in 
the path are neighbors by definition, the corresponding chain 
of equalities sr=sr1=sr,= ... =srn=s'r imply sr=s'r, as desired. 35 

Thus, the constraints can be eliminated by replacing all the 
{sr} with a commons, in which case the cost in (eq. 18) 
reduces to the one in ( eq. 17). This argument establishes the 
following result. 

Lemma 1: If g is a connected graph, (17) and (18) are 40 

equivalent optimization problems, in the sense that ~glasso =~" 
VrER. 
To reduce the computational complexity of the resulting algo­
rithm, for a given aER1' consider the problem: where for notational convenience we group the variables 

45 
y:={yr, {y/t'ENr}rER, and multipliers v:=t,{/'t'ENr, 
{/'}r'ENr}rER. 

1 Nb 

rninl;2111;11~-a'l;+µ~ll;,12'1;:=[1;{, ··· .l;~b]' 
(19) Application oftheAD-MoM to the problem at hand con-

v=l 

and notice that it is separable in the N6 subproblems 

(20) 

Interestingly, each of these subproblems admits a closed­
form solution as given in the following lemma. 

sists of a cycle of £c minimizations in a block-coordinate 
fashion w.r.t. {sr} firstly, and y secondly, together with an 

50 update of the multipliers per iteration k=O, 1,2, .... The four 
main properties of this procedure with respect to the resulting 
algorithm can be highlighted as follows. 

Thanks to the introduction of the local copies Sr and the 
dummy variables y/', the minimization of Le w.r.t. both {sr} 

55 and y decouple per CR r, thus enabling distribution of the 
algorithm. Moreover, the contraints in (22) involve variables 
of neighboring CR' s only, which allows the required commu­
nication to be local within each CR's neighborhood. 

Lemma 2: The minimizers* v of (20) is obtained via the 
60 

vector soft-thresholding operator T µ( •) defined by 
Introduction of the variable yr separates the quadratic cost 

llsr-Yrll/ from the group-Lasso penalty ~v~iNbllrirvlb. As a 
result, minimization of (23) w.r.t Sr takes the form of (19), 
which admits a closed-form solution via the vector soft­
thresholding operator Tµ(•) in Lemma 2. (21) 

where (•)+:=max{•, O}. 

65 Minimization of (23) w.r.t. y consists of an unconstrained 
quadratic problem, which can also be solved in closed form. 
In particular, the optimal y /'at iteration k takes the value 
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I (k) = (l;,(k) + /;1 (k)) 
Yr 2 

, 

18 
Algorithm 2 (below). Notice that the thresholding operator T P 

in GLasso sets the entire subvector Sv(k+ 1) to zero whenever 
(cyv(k)-vJk)lb does not exceed µ, in par with the group­
sparsifying property of group-Lasso. An attractive feature of 

and thus can be eliminated. 
Itturns out that it is not necessary to carry out updates of the 

Lagrange multipliers {v/,vrn}r'EN separately, but only of 
their sums which are henceforth de~oted by Pr:=~r'EN(vrn+ 
v r n). Hence, there is one price Pr per CR= 1, ... , N r' whi~h can 
be updated locally. 

5 proximal algorithms relative to GLasso, is that they come 
with convergence rate guarantees. GLasso can handle a gen­
eral (not orthonormal) regression matrix X. GLasso does not 
require an inner Newton-Raphson recursion per iteration. 
GLasso yields the Lasso estimator. 

10 

Building on these four features, the proposed AD-MoM 
scheme may utlize four parallel recursions run locally per 
each CR 12 of FIG. 2: 

Recursions (24)-(27) comprise the novel DGL algorithm, 15 
tabulate as Algorithm 1. 

Algorithm 1: DGLasso 

All radios r ER initialize {l:;,(O), y,(O), p,(-1), v,(-1)} to 
zero, and locally nm: 
fork= 0, 1, ... do 

Transmit l:;,(k) to neighbors in N,. 
Update p,(k) = p,(k - 1) + c L,, EN,[1;,(k) - l:;,,(k)]. 
Update v,(k) = v,(k- 1) + c[1;,(k) -y,(k)]. 
Update l:;,(k + 1) using (26). 
Update y,(k + 1) using (27). 

end for 

20 

25 

Algorithm 2: GLasso 

Initialize {l:;(O), y(O), v(-1)} to zero, and run: 

fork~O, 1, ... do 

Update v(k) ~ v(k - 1) + c[1;(k) - y(k)] 

Updatel;Ak+ 1) = (~)Tµ(cy,(k)-vµ(k)), v = 1, ... , Nb. 

Update y(k + 1) ~ [clp + X'xr 1 (X'y + cl:;(k + 1) + v(k)). 

end for 

p,(k) = p,(k - 1) + c ~ [l;,(k) - ?1 (k)] 

r'ENr 

v,(k) = v,(k - 1) + c[l;,(k) -y,(k)] 

(24) 

(25) 

In one example, CRs 12 computational load balancing the 
operations. For example, processing associated with updating 
(eq. 27) involves inversion of the pxp matrix cIP+X'X" that 
may be computationally demanding for sufficiently large p. 

3° Fortunately, this operation can be carried out offiine before 
running the algorithm. More importantly, the matrix inver­
sion lemma can be invoked to obtain [cIP+x•xi- 1=c- 1[IP-X'r 
(cIP,+XX'rt 1Xrl· In this new form, the dimensionality of the 

?~(k+ 1) = (26) 35 
matrix to invert becomes nrxn" where nr is the number of 
locally acquired data. For highly underdetermined cases 
(nr<<p) (D)GLasso provides considerable computational 
savings through the aforementioned matrix inversion iden­
tity. The distributed operation parallelizes the numerical com-

TP( N{cy~(k) + c I~, [l;~(k)-l;h(k)] - p~(k)- v,Ak)JJ 

cN,(2N, I +l) 

v = 1, ... , Nb 

(27) 

40 putation across CRs 12: ifGLasso is run at a central unit (FC 
16) with all network-wide data available centrally, then the 
matrix to invert has dimension=~rERNr, which increases lin­
early with the network size N r· Beyond a networked scenario, 
DGLasso provides an alternative for computational load bal-

45 ancing in contemporary multi-processor architectures. The algorithm entails the following steps. During iteration 
k+l, CR r receives the local estimates {s'r(k)}r'EN from the 
neighboring CRs and plugs them into ( eq. 24) to e~aluate the 
dual price vector rCk). The new multiplier rCk) is then obtained 
using the locally available vectors { y r(k),sr(k)}. Subse­
quently, vectors Uk)"(k)} are jointly used along with 50 

{sr'(k)}r'EN to obtain Sr(k+l) via N6 parallel vector soft­
thresholding operations Tµ(•) as in (eq. 21). Finally, the 
updated Yr(k+l) is obtained from (eq. 27), and requires the 
previously updated quantities along with the vector of local 
observations rand regression matrix xr. The (k+ 1 )st iteration 55 

is concluded after CR r broadcasts Sr(k+l) to its neighbors. 
Even if an arbitrary initialization is allowed, the sparse nature 
of the estimator sought suggests the all-zero vectors as a 
natural choice. 

Distributed Lasso Algorithm as a Special Case: When 60 

N 6 =p, and there are as many groups as entries of s, then the 
sum ~v~i -Nbl IS,,I I becomes the 11 -norm of s, and group-Lasso 
reduces to Lasso. In this case, DGLasso offers a distributed 
algorithm to solve Lasso. 

For Nr=l, the network consists of a single CR. In this case, 65 

DGLasso yields an AD-MoM-based algorithm for the cen­
tralized group-Lasso estimator ( eq. 17), which is specified as 

Convergence of Algorithm 1, and thus of Algorithm 2 as 
well, is ensured by the convergence of the AD-MoM. 

Proposition 3: Let be a connected graph, and consider 
recursions (24)-(27) that comprise the DGLasso algorithm. 
Then, for any value of the step-size c>O, the iterates Sr(k) 
converge the group-Lasso solution [cf.(17)] as k-oo, for 
example: 

liml;,(k) = 
k~= 

V, E'R. (28) 

In words, all local estimates Sr(k) achieve consensus 
asymptotically, converging to a common vector that coin­
cides with the desired estimator 'sgzasso. Formally, if the num­
ber of parameters p exceeds the number of data n, then a 
unique solution of (eq. 13) is not guaranteed for a general 
design matrix X. Proposition 3 remains valid however, ifthe 
right-hand side of ( eq. 28) is replaced by the set of minima; 
that is, 
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Experimental Test 
1bree numerical tests were performed, starting from a 

simulated spectrum cartography example where five fre­
quency bases are identified from an overcomplete set of 
Nb =90 candidates. The signal propagation is affected by path­
loss and Rayleigh fading. This setup is also considered to 
exemplify the use of cross-validation in selecting the param­
eters A andµ in (eq. 12). The second example introduces 
shadowing effects, and transmit signal parameters adhering 
to the IEEE 802 .11 standard. A third numerical test is run on 
real RF power measurements taken at different locations in an 
indoor area, and frequencies in the 2.4 GHz unlicensed band. 

Spectrum Cartography Test 
Consider a set ofNr=lOO CRs uniformly distributed in an 

area of 1 Km2
, cooperating to estimate the PSD map gener­

ated by N s =5 licensed users (sources) TX 1-TX 5 located as in 
FIG. 4 (top). The five transmitted signals are raised cosine 
pulses with roll-off factors p=O or p=l, and bandwidths 
WE{l0,20,30} MHz. They share the frequency band 
B=[l00,260] MHz with spectra centered at frequencies 
fc=105, 140, 185, 215, and 240 MHz, and 240 MHz, respec­
tively. FIG. 4 (bottom) depicts the PSD generated by the 
active transmitters TX 1-TX 5. 

20 
PSD map'<I>(x,f) was formed. This map was summed across 
frequencies, and the result is shown in FIG. 5 (top) which 
depicts the positions of transmitting CRs, as well as the radi­
ally-decaying spectra of four of them (those not affected by 

5 the obstacle). It also identifies the effect of the wall by "flat­
tening" the spectrum emitted by the fifth source at the top-left 
corner. Inspection of the estimate'<I>(x,f) across frequency 
confirmed that group-Lasso succeeded in selecting the, can­
didate bases. FIG. 6 (top) shows points representing ls) 2 , 

10 v=l, ... , Nb, where 'Sv is the sub-vector in the solution of the 
group-Lasso estimator (eq. 13) associated with gJx) and 
bJf). They peak at indexes v=l, 28, 46, 51, and 70, which 
correspond to the "ground-truth" model, since bases bu b28 , 

b46 , b51 , and b70 match the spectra of the transmitted signals. 
15 Even though approximately 75% of the variables drop out of 

the model, some spurious coefficients are retained and their 
norms are markedly smaller than those of the "ground-truth" 
bases. Nevertheless, the effectiveness of group-Lasso in 
revealing the transmitted bases is apparent when compared to 

20 other regularization alternatives. FIG. 6 (bottom) depicts the 
counterpart of FIG. 6 (top) when using a sparsity-agnostic 
ridge regression scheme instead of (eq. 13). In this case, no 
basis selection takes place, and the spurious factors are mag­
nified up to a level comparable to three of the "true" basis 

25 function bJf). 
In summary, this test case demonstrated that the spline­

based estimator can reveal which frequency bands are (un) 
occupied at each point in space, thus allowing for spatial reuse 
of the idle bands. For instance, transmitter TX5 at the top-right 

30 corner is associated with the basis function b46(f), the only 
one of the transmitted five that occupies the 230-260 MHz 
sub-band. Therefore, this sub-band can be reused at locations 
x away from the transmission range ofTX5 , which is revealed 

The PSD generated by source s experiences fading and 
shadowing effects in its propagation from xs to any location x, 
where it can be measured in the presence of white Gaussian 
noise with variance a2. A 6-tap Rayleigh model was adopted 
for the multipath channel HsxCf) between xs and x, whose 
expected gain adheres to the path-loss law E(IHsxCf)l 2)=exp 35 

(-11xs-xll//ll2
), with ll=800 m. A deterministic shadowing 

effect generated by a 18 m-high and 500 m-wide wall is 
represented by the black segment in FIG. 4 (top). It produces 

in FIG. 5 (top). 
Results in FIGS. 5 (top) and 6 depend on the judicious 

selection of parameters A and µ in (eq. 12). Parameter A 
affects smoothness, which translates to congruence among 
PSD samples, allowing the CRs to recover the radial aspect of 
the transmit-power. Parameter µ controls the sparsity in the a knife-edge effect on the power emitted by the antennas at a 

height of 20 m. The simulated tests presented here accounted 
for the shadowing at ground level. 

When designing the bases functions in ( eq. 1 ), it is known 
a priori that the transmitted signals are indeed normalized 
raised cosine pulses with roll-off factors pE{0,1 }, and band­
widths WE{l0,20,30} MHz. However, the actual combina­
tion of bandwidths and roll-off factors used can be unknown, 
which justifies why an overcomplete set of bases becomes 
handy. Transmitted signals with bandwidth W=lO MHz are 
searched over a grid of 16 evenly spaced center frequencies fc 
in B. Likewise, for W=20 and 30 MHz, 15 and 14 center 
frequencies are considered, respectively. This amounts to 
2x(16+15+14)=90 possible combinations for Q , W, and fc; 
thus, Nb =90 raised-cosine bases were adopted with corre­
sponding values of Q , fv and Bv to match the aforementioned 
signal specifications; see also FIG. 4 (bottom). 

Each CR computes periodogram samples'cprn(i:) at N=64 
frequencies fn=(101.25+2.5(n-1)) MHz, n=l, ... , 64 with 

( 
1 ~ ~ <l>(x,, fn) J SNR := 10log10 -L.., L_, --2- = -5 dB. 

NNr r=l n=l CT 

Then, these periodogram samples are averaged across T= 100 
time-slots to form <I>rn,:n=l, ... , 64. These network-wide 
observations at T=lOO were collected in <I>, and following 
steps Sl-S4, the spline-based estimator (eq. 12), and thus the 

40 solution, which dictates the number of bases, and thus trans­
mission schemes that the estimator considers active. 

To select A and µ jointly so that both smoothness and 
sparsity are properly accounted for, one could consider a 
two-dimensional grid of candidate pairs, and minimize the 

45 CV error over this grid. However, this is computationally 
demanding. A three-step alternative is followed here. First, 
estimator (eq. 12) is obtained using an arbitrarily small value 
of"A=lxl0-6

, and selecting µ=0.1 µmax' where µmax is given 
above. In the second step, only the surviving bases are kept, 

50 and the sparsifying penalty is no longer considered, thus 
reducing the estimator. If the reduced matrix B, built from the 
surviving bases, is full rank (otherwise repeat the first step 
with a larger value ofµ), the procedure in described herein is 
followed to adjust the value of A via leave-one-out CV. The 

55 result of this step is illustrated in FIG. 7 (top), where the 
minimizer "-cv=7.9433x1 o-6 of the OCV cost is selected. The 
final step consists of reconsidering the sparsity enforcing 
penalty in (eq. 12), and selecting µusing 5-fold CV. The 
minimizer of the CV error µcv=0.0078 µmax corresponding to 

60 this step is depicted in FIG. 7 (bottom). Using the "-cvandµcv 
so obtained, the PSD map plotted in FIG. 5 (top) was con­
structed. The rationale behind this approach is that it corre­
sponds to a single step of a coordinate descent algorithm for 
minimizing the CV error CV("A,µ). Function CV("A,µ) is typi-

65 cally unimodal, with much higher sensitivity on µthan on A, 
a geometric feature leading the first coordinate descent 
update to be close to the optimum. 
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The importance of an appropriateµ value becomes evident 
when inspecting how many bases are retained by the estima­
tor asµ decreases from µmax to lxl0-4 µmax· The N6 lines in 
FIG. 5 (bottom) link points representing IS,.(µ)1 2 , asµ takes on 
20 evenly spaced values on a logarithmic scale, comprising 5 

the so-termed group-Lasso path of solutions. When µ=µmax is 
selected, by definition the estimator forces airS,. to zero, thus 
discarding all bases. As µ tends to zero all bases become 
relevant and eventually enter the model, which confirms the 

10 premise that LS estimators suffer from overfitting when the 
underlying model is overcomplete. The cross-validated value 
µcv is indicated with a dashed ve~ical line that crosses the 
path of solutions at the values ofls) 2 . At this point, five 
sub-vectors corresponding to the factors v=l, 28, 46, 51, and 

15 
70 are considerably far away from zero hence showing strong 
effects, in par with the results depicted in FIG. 6 (top). 

Bias reduction and Improved Support Selection: The pen­
alty term in (eq. 13) introduces bias in the estimator. As µ 
decreases the bias decreases, reducing the prediction error. 20 

There is a tradeoffhowever, as increasingµ gives rise to fewer 
nonzero entries approaching the true support, thus reducing 
the prediction error as well. The aforementioned CV tech­
nique yields an intermediate value ofµ balancing these two 
effects and thus it tends to overestimate the support. These 25 

insigh;s suggest that reducing bias of the estimator improves 
subset selection and prediction error. Different approaches 
are available for reducing the bias of (group-) Lasso estima­
tors, using e.g., weighted-norm penalties. Larger weights are 
given to terms that are most likely to be zero, while smaller 30 

weights are assigned to those that are most likely to be non­
zero. Another simpler approach is to retain only the support in 
the minimizer of (13), and re-estimate the amplitudes via, 
e.g., LS. 

IEEE 802.11 signal parameters and shadowing effects- 35 

The N 6 =14 overlapping frequency bands (channels) specified 
in the IEEE 802.11 wireless LAN standard, were considered 
for this second simulated scenario. The frequency bases 
adopted correspond to Hann-windowed Nyquist pulses, and 
the center frequencies are fv=(2412+5(v-1)) MHz for 40 

v=l, ... , 13 and f14=2484 MHz. The PSD map to be esti­
mated is generated by two sources located at coordinates 
x =[75 25] m and x =[25 75] m. They transmit through 

Sl ' S2 ' 

channels v=6 and v=l 1, at carrier frequencies 2437 MHz and 
2462 MHz, respectively. Thus, the "ground truth" PSD is 45 

generated by bases b6 (f) and b11 (f). These bases are to be 
identified by a set ofNr=lOO CRs randomly deployed in an 
area of lOOxlOO m2

. A 6-tap Rayleigh model was used to 
generate the multipath channel H (f), whose expected gain 
adheres to the path-loss law E(IHs;(f)1 2)=min{l,(Mlxs-xl 3

)}, 50 

with ll=60 m. Shadowing effects are simulated with a=5 dB 
and o=25 m. FIGS. 8 (top-left) and (bottom-left) depict the 
"true" PSD maps generated due to the transmissions of the 
active sources s1 and s2 , respectively. Periodogram samples 
are acquired per CR at SNR=20 dB, on N=64 frequencies 55 

uniformly spaced between 2400 MHz and 2496 MHz, and 
during T=lOO time-slots to average out fast-fading effects. 

Estimator ( eq. 12) applied to the simulated data is success-
ful in identifying the actual transmission bands, as can be 
deduced from FIG. 9 (top). In the surviving bands v=6 and 60 

v=ll, the power is distributed across space as given by g6 (x) 
and g11 (x), respectively. FIG. 8 represents these functions and 
compare the "ground truth" distributions with the estimated 
g6(x) and g11 (x). As in the previous example, these figures 
reveal small zones of no coverage, represented in blue, where 65 

bands v=6 and v=l 1 could be reused without affecting the 
existing communication system. 

22 
FIG. 9 (bottom) corroborates the convergence of GLasso 

by showing the evolution of the duality gap 

gap [?(k), y(k), v(k)] = (29) 

Nb 1 
~lly- Xy(kJll 2 + µ ~ ll?AkJll, - ;;:lly- Xy'(v(k)Jll 2 + vT(k)y'(v(k)) 

v=l 

with y*(v):=(Xrxt 1cxry+v), and the iterates s(k), y(k), v(k) 
are generated as in Algorithm 2. 

Real data test case-A dataset is formatted into triplets 
(x,fc,P) of positions, carrier frequencies, and aggregate RF 
power levels of the signals transmitted over carrier frequency 
f and measured at position x. These measurements were 
~odeled as acquired by N r = 166 sensing radios located in an 
indoor area A of 14x34 m, which is represented by the rect­
angles in FIG. 10. These radios were modeled as being 
deployed on a regular grid over the subarea Ar depicted by 
sectors in the first column of the same figure. 

A set ofN 6 =14 nonoverlapping rectangular bases centered 
at these frequencies are adopted, and the nonparametric esti­
mator ( eq. 12) is run again to obtain the distribution of power 
across A. Parameters A andµ are selected via two-fold cross 
validation, searching over a grid of 30 candidate pairs. A 
minimum normalized error of0.0541 is attained for µcv=0.01 
µmax and "-cv=l0-4

, as shown in FIG. 11. Results are further 
presented in the third column in FIG. 10, representing t~e 
estimated power maps g1 (x) to g14(x). The second column m 
the same figure-included for visual comparison-corre­
sponds to the results in the third column masked to the sub­
area A where the data were acquired. 

The ;roposed estimator is capable of recovering the center 
frequencies that are being utilized for transmission, eliminat­
ing the noise affecting the 13th basis. It also recovers the 
power levels in the surveyed area Ar, with a smooth extrapo­
lation to zones where there are no measurements, and sug­
gests possible locations for the transmitters. 

Proofof(eq. 6)-(eq. 8): Upon substituting (eq. 5) into (eq. 
4), the optimal coefficients {a;~} specifying {gJx)}v~iNb are 
obtained as solutions to the following constrained, regular­
ized LS problem 

miDap -
1
-1¢- (B0K)f3- (B0 T)a:j~ +l<./3'(/Nb 0K)f3 

· N,N 

(30) 

Observe first that the constraints ~vEB in Proposition 1 can be 
expressed as T'~v =03 for each v= 1, ... , N 6 , or jointly as 
(IN QT')~=03N. Note that gv(xr)=k'r~v+t'rav, where k'r and 
t' :re the rthrow~ ofK and T, respectively. The first term in the 

r -l 
cost can be expressed (up to a factor (NrN) ) as: 

N N, 

= ~~(</>m-(bn©k,)'j3-(bn0t,)'a:)2 

n=l r=l 

N 

= ~ l<l>n - (b~ 0 K)/3 - (b~ 0 T)a:I~ 
n=l 
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-continued 
= 1¢- (Be>K)/3- (B0T)a:I~-

24 

Nb Nb (33) 

A~ f3;Kf3, = y ~ u;bdiag(K, O)u, 
v=l v=l 

Consider next the penalty term in the cost of ( eq. 4 ). Substi- 5 

tuting into (eq. 5), it follows that fllV2gJx)llF2dx=~v·K~v· It 
thus holds that 

Nb 

=A~ v;bdiag(Q;KQ2, O)v, 
v=l 

Nb Nb 

A~ L ll\72 g,(xJll~ dx =A~ f3;Kf3, = A/3' (/Nb 0 K)/3 
~1 R ~1 

from which (eq. 30) follows readily. 
Now that the equivalence between ( eq. 4) and ( eq. 30) has 

been established, the latter must be solved for a and~- Even 
though K (hence INb0K) is not positive definite, it is still 
possible to show that W(INb0K)~>O for any~ such that 

10 

15 

20 

while the last term is f.l2:v~lNbllK~v+Tavlb=f.l2:v~lNbll[K 
TJuvlb=f.l2:v~lNbll[KQ2TJvvlb- Combining (32) with (33) by 
completing the squares, problem (31) is equivalent to 

. {ll['P] [ Be>[KQ2 T] l 112 
~n 0 - /Nb 0bdiag((N,N,l.Q;KQ2)112, 0) v 

2 
+ 

(34) 

and becomes (13) under the identities (14), and after the 
implying that ( eq. 30) is convex. Note first that the constraint 25 change of variables s:=[s\, ... ' s'NJ=(INb 0 [KQ2 T])v. By 

definition ofu, v, ands, the original variables can be recov­
ered through the transformation in (16). 

implies the existence of a vector yERNb(N,-3
) satisfying (eq. 

8). After this change of variables, this is transformed into an 
unconstrained quadratic program, which can be solved in 
closed form for { a,y}. Hence, setting both gradients w.r.t. a 
and y} to zero yields ( eq. 6) and ( eq. 7). 

Proofof Proposition 2: After substituting (eq. 15) into (eq. 
12), one finds the optimal {a,~} specifying {&(x)}v~iNb in 
( eq. 15), as solutions to the following constrained, regularized 
LS problem 

1 
milb,fl N,N 1¢- (B 0 K)/3- (B 0 T)a:I~ + 

(31) 

Nb 

,l.f3'(/Nb 0 K)/3 + µ ~ IK/3, + fo,I, 
v=l 

With reference to ( eq. 31 ), consider grouping and reordering 
the variables {a,~} in the vector u:=[u\, ... , u'Nb]', where 
uv:=[Wv: :a'vl'. The constraints T'~v =O can be eliminated 
through the change of variables u =bdiag(Q2,I3)vv for 
v=l, ... , N6 ; or compactly as u=(INb0bdiag(Q2,I3 ))v. The 
next step is to express the three summands in the cost of ( eq. 
31) in terms of the new vector optimization variable v. Noting 
that k',~v +t',av =[k',: :t',]uv, the first summand is 

Selection of the smoothing parameter in (eq. 4): The 
method to be developed builds on the so-termed leave-one-

30 out CV, which proceeds as follows. Consider removing a 
single data point <I> rn from the collection of N ,N measure­
ments available to the sensing radios. For a given A.k, 
le(<!">,,_ C-rnl(x,f) denote the leave-one-out estimated PSD map, 
following steps Sl-S3, using the N,N-1 remaining data 

35 points. The aforementioned estimation procedure is repeated 
N,N times by leaving out each of the data points <Pm, 
r= 1, ... , N, and n= 1, ... , N, one at a time. The leave-one-out 
or ordinary CV (OCV) for the problem at hand is given by 

40 

45 

1 Nr N A (-m) 2 
OCV(,l.) = N N ~ ~ (</>m - <l>,c (x,, fn)) 

r r=l n=l 

(35) 

while the optimum A is selected as the minimizer ofOCV(A.), 
over a grid of values AE[O,"-maxl. Function ( eq. 35) constitutes 
an average of the squared prediction errors over all data 
points; hence, its minimization offers a natural criterion. The 

50 method is quite computationally demanding though, since the 
system oflinear equations ( eq. 6)-( eq. 8) has to be solved N ,N 
times for each value of A on the grid. Fortunately, this com­
putational burden can be significantly reduced for the spline-

55 based PSD map estimator considered here. 

1 
-ll<p-(B0K)/3-(B0T)a:ll~ = 
N,N 

(32) 60 

Recall the vector <I> collecting all data points measured at 
locations X and frequencies F. Define next a similarvector'<I> 
containing the respective predicted values at the given loca­
tions and frequencies, which is obtained after solving (eq. 4) 
with all the data in <I> and a given value of A. The following 
lemma establishes that the PSD map estimator is a linear 

1 1 
-ll<p-(B0[K T]Jull~ = -ll<p-(B0[KQ2 T]Jvll~. 
N,N N,N 

The second summand due to the thin-plate penalty can be 
expressed as 

smoother, which means that the predicted values are linearly 
related to the measurements, i.e.,' =S,,_ <I> for a A-dependent 
matrix S,,_ to be determined. Common examples of linear 

65 smoothers are ridge regressors and smoothing splines. For 
linear smoothers, by virtue of the leave-one-out lemma it is 
possible to rewrite ( eq. 35) as 
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Nr N A 2 
OCV(A) = _l_ '\' '\' ( !/Jm - <1>,c(x,, fn)) 

N,N U U 1 - [S,c];; 
r=l n=l 

(36) 

where'<I\_(x,f) stands for the estimated PSD map when all 
data in <I> are utilized in ( eq. 4 ). The beauty of the leave-one­
out lemma stems from the fact that given A and the main 
diagonal of matrix SA, the right-hand side of ( eq. 36) indicates 10 
that fitting a single model (rather than N,N of them) suffices 
to evaluate OCV(A.). The promised lemma stated next speci­
fies the value of SA necessary to evaluate ( eq. 36). 
Lemma 3: The PSD map estimator in ( 4) is a linear smoother, 
with smoothing matrix given by 

(37) 

Proof: Reproduce the structure of cjJ in Section III-A to form 

15 

the supervector ~:=[~\, ... , ~rf]'E!RNTN, by stacking each 20 

vector ~:=[<i>A(X 1 ,fn), ... , <i>A(XN ,fn)l' corresponding to the 
special PSJ? predict~ons at fre~_!leitcy )zEF.

1 

from (5), i
1

t fo~­
lows that <I>A(Xr,fn)-(bnQkr) ~-(bn\2SJTr) a, where b n' k r 
and t'r are the nth and rth rows ofB, Kand T, respectively. By 
stacking the PSD map estimates, it follows the 25 

t =(b')i) K)~-(b'n0 T)a, which readily yields 

~~(BG)K)~-(BQ I)a. (38) 

26 
Focusing first on [S2], observe that (23) is separable across 

the collection of variables { yJ and { 65 r n} that comprise y. 
The minimization w.r.t. the latter group reduces to 

(44) 

c(l;,(k + 1) + ?1 (k + l))y;} 

= ~(l;,(k + 1) +1;1 (k + 1)) + _'._(v; (k) +;;~(kl) 
2 2c 

1 
= 2(1;,(k + 1) +l;1(k + 1)). 

The result in ( 44) assumes thatvrn(k)+v /'(k)=O, 'v'kA simple 
inductive argument over (42), (43) and (44) shows that this is 
indeed true if the multipliers are initialized such that 
vrn(O)+v/'(0)=0. 

The remaining minimization in (40) with respect to {yJ 
de-couples into Nr quadratic subproblems [cf. (23)], that is 

which admit the closed-form solutions in (27). 

Because the estimates {a, ~} are linearly related to the 
measurements cjJ [cf. (6)-(8)], so is~ as per (38), establishing 
that the PSD map estimator in ( 4) is indeed a linear smoother. 
Next, solve explicitly for {a, ~}in (6)-(8) and substitute the 
results in (38), to unveil the structure of the smoothing matrix 
SA such that ~=SAcp. Simple algebraic manipulations lead to 
the expression (37). 

Focusing first on [S2], observe that (23) is separable across 

30 
the collection of variables {y1} and {Yrn} that comprises y. 
The minimization w.r.t. the latter group reduces to 

The effectiveness of the leave-one-out CV approach is 
corroborated via simulations in 

Section 
Proof of (eq. 24)-(eq. 27): Recall the augmented 

Lagrangian function in (eq. 23), and let s:={c~w}rER for nota­
tional brevity. When used to solve ( eq. 22), the three steps in 
the AD-MoM are given by: 

[Sl] Local estimate updates: 

l;(k + 1) = ar~nLJI;, y(k), v(k)]. (39) 

[S2] Auxiliary variable updates: 

35 

40 

y/'(k+ l)~arg miny,A clly/'ll2~(V/'(k)+ V/'(k))y/'-c( 
~,(k+ 1)+~,-Ck+1 ))y ,"}~Y2~,(k+ 1 )+ 
~Ak+ 1))+1!2c(V,"(k)+ V,"(k) )~Yl~,(k+ 1 )+ 
~,'(k+l)). (44) 

The results in (44) assumes that Vrn(k)+Vrn(k)=O, 'v'k A 
simple inductive argument over( 42), ( 43) and (44) shows that 
this is indeed true if the multipliers are initialized such that 
V/'(0)+ yrn(O)=O. 

The remaining minimization in (40) with respect to {yr} 
decouples into Nr quadratic subproblems [cf. (23)], that is 
Y rCk+ 1 )=arg minY, 1hllY r -Xry rll2

/2-V r'(k)y r +c/2llsr(k+ 1 )-y rll 2h 
which admit the closed-form solutions in (27). 

45 
In order to obtain the update (eq. 24) for the prices r' 

consider their definition together with (eq. 42), (eq. 43) and 
(eq. 44) to obtain 

50 
,('+11 = ~ (; (k + lJ +I (k + lJJ 

r'ENr 

= ~ (;(k)+/(k))+ ~ c(21;,(k+l)-y;(k)-y/(k)) 

r'ENr r'ENr 

55 
= ,(k) + c ~ (1;,(k + 1) - ?1(k+1)) 

IENr 

y(k + 1) = argmin.[,o[l;(k + 1), y, v(k)]. 
y 

(40) which coincides with (eq. 24). 

[S3] Multipliet updates: 

V,(k+ 1 )~ V,(k)+c{r,,(k+ 1 )-y ,(k+ 1 )] 

V/'(k+ 1 )~ V/'(k)+cfr,,(k+ 1 )-y /'(k+ 1 ). J 

V/'(k+l)~V,"(k)+cfr,,{k+l)-y/'(k+l)l 

(41) 

Towards obtaining the updates for the local variables ins, 
60 the optimization (eq. 39) in [Sl] can be also split into Nr 

sub-problems, namely 

(42) 65 1;,(k + 1) = argrnin{.!!.._ t ll?~lli + v;(k)I;, + '.:11;;, -y,(kJll~ + 
Sr Nr v=l 2 

(45) 

(43) 
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-continued 

~ [v;(k)+v/(kJ]'?,+ 
r'ENr 

~ ~ [II?, -y; (kJll~ +II?, -y/ (kJll~]} 
r'ENr 

28 
In this context, techniques for nonparametric basis pursuit 
(NBP) are described that unifying and advance a number of 
sparse KBL approaches. 

= ar~n{-kt ll?~lli + ~ (1+21N,IJll?,ll~ -

(
c ~ (?,(k) + ?; (k)) + cy,(k) - p,(k) - v,(k))' ?,}. 

r'ENr 

In this disclosure, RKHS in connection with GPs, are 
described. The Representer Theorem and a kernel trick are 
described, and the Nyquist-Shannon Theorem (NST) is pre­
sented as an example of KBL. Sparse KBL is addressed 
including sparse additive models (SpAMs) and multiple ker­
nel learning (MKL) as examples of additive nonparametric 

10 models. NBP is introduced, with a basis expansion model 
capturing the general framework for sparse KBL. Blind ver­
sions of NBP for matrix completion and dictionary learning 
are developed. Finally, numerical tests using real and simu-

Upon dividing by c(l +21N)) each subproblem becomes iden­
tical to problem (19)m and thus by Proposition 2 takes the 
form of (26). 

15 lated data are presented, including RF spectrum measure­
ments, expression levels in yeast, and network traffic loads. 
KBL Preliminaries 

Non-Parametric Basis Pursuit via Sparse Kernel-based 
Learning 

As described in further detail below, in some example, a 
number of different types of kernels may be used to accu­
rately model the physical (i.e., geographic) distribution of RF 
power over the region so as to enhance the ability of the model 

20 

to accurately reflect fading and multi-path characteristics of 25 
the environment. 

Reproducing kernel Hilbert spaces (RKHSs) provide an 
orderly analytical framework for nonparametric regression, 
with the optimal kernel-based function estimate emerging as 
the solution of a regularized variational problem. The role of 30 
RKHS is further appreciated through its connections to 
"workhorse" signal processing tasks, such as the Nyquist­
Shannon sampling and reconstruction result that involves 
sine kernels. Alternatively, spline kernels replace sine ker­
nels, when smoothness rather than bandlimitedness is to be 35 
present in the underlying function space. 

Kernel-based function estimation can be also seen from a 
Bayesian viewpoint. RKHS and linear minimum mean­
square error (LMMSE) function estimators coincide when 
the pertinent covariance matrix equals the kernel Gram 40 

matrix. This equivalence has been leveraged in the context of 
field estimation, where spatial LMMSE estimation referred to 
as Kriging, is tantamount to two-dimensional RKHS interpo­
lation. Finally, RKHS based function estimators can linked 45 
with Gaussian processes (GPs) obtained upon defining their 
covariances via kernels. 

In the context of reproducing kernel Hilbert spaces 
(RKHS), nonparametric estimation of a function f:X~R 
defined over a measurable space X is performed via interpo­
lation of N training points { (x1 ,z1), ... , (xMzN)}, where 
xnEX, and Zn =f(xn)+enER. For this purpose, a kernel func­
tion k:XxX~R selected to be symmetric and positive defi­
nite, specifies a linear space of interpolating functions f(x) 
given by 

For many choices ofk(•,•), Hxis exhaustive with respect to 
(w.r.t) families of functions obeying certain regularity condi­
tions. The spline kernel for example, generates the Sobolev 
space of all low-curvature functions. Likewise, the sine kernel 
gives rise to the space of bandlimited functions. Space Hx 
becomes a Hilbert space when equipped with the inner prod­
uct 

(f, J')'Hx := ~ O:nO:~,k(xno X~' ), 

n,n'=l 

and the associated norm is lflHx:=V<f,f>Hx·Akey result in this 
context is the so-termed Representer Theorem, which asserts 
that based on { (xmzn)} n~i N' the optimal interpolator in Hx, in 
the sense of 

(l.l) 

The techniques described herein recognize use of matrix 
completion, where data organized in a matrix can have miss­
ing entries due to e.g., limitations in the acquisition process. 50 
This disclosure makes use of the assertion that imputing 
missing entries amounts to interpolation, as in classical sam­
pling theory, but with the low-rank constraint replacing that of 
bandlimitedness. From this point of view, RKHS interpola­
tion emerges as a framework for matrix completion that 
allows effective incorporation of a priori information via ker­
nels, including sparsity attributes. 

55 admits the finite-dimensional representation 

Building blocks of sparse signal processing include the 
(group) least-absolute shrinkage and selection operator 
(Lasso) and its weighted versions, compressive sampling, and 60 
nuclear norm regularization. The common denominator 
behind these operators is the sparsity on a signal's support 
that the 11 -norm regularizer induces. Exploiting sparsity for 
kernel-based learning (KBL) leads to several innovations 
regarding the selection of multiple kernels, additive model- 65 
ing, collaborative filtering, matrix and tensor completion via 
dictionary learning, as well as nonparametric basis selection. 

N 

}(x) = ~ a:nk(xno x). 

(l.2) 

n=l 

This result is nice in its simplicity, since functions in space 
Hxare compound by a numerable but arbitrarily large number 
of kernels, while'f is a combination of just a finite number of 
kernels around the training points. In addition, the regulariz­
ing term µlflH/ controls smoothness, and thus reduces over­
fitting. After substituting (1.2) into (1.1 ), the coefficients ar:= 
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[ a 1 , ... , aN] minimizing the regularized least-squares (LS) 
cost in (1.1) are given by a=(K+µIf 1z, upon recognizing that 
lflH/:=arKa, and defining zr:=[z1 , ... , zN] as well as the 
kernel dependent Gram matrix KERNxN with entries Kn n ,:=k 

30 
comprising instances of the field, and thus its specific zero­
mean Gaussian distribution. In particular, the vector 
ST:=[f(x),f(x1), ... , f(xN)] collecting the field at the explora­
tion and measurement points is Gaussian, and so is the vector 

(xn,xn,) (•r stands for transposition). ' 
Remark 1. The finite-dimensional expansion (1.2) solves 

(1.1) for more general fitting costs and regularizing terms. In 
its general form, the Representer Theorem asserts that (1.2) is 
the solution 

5 zr:=[f(x), f(x1)+ri(x1), ... , f(xN)+ri(xN)]=[s,zr]. Hence, the 
MMSE estimator, given by the expectation of f(x) condi­
tioned on z, reduces to [17] 

10 

N 

A f = argminfc'Hx ~ f(Zn, f(xn)) + µfl(lfl'Hx) 
(l.3) 

n=l 

15 

where the loss function l(zn,f(xn)) replacing the LS cost in 
(1.1) can be selected to serve either robustness (e.g., using the 
absolute-value instead of the square error); or, application 
dependent objectives (e.g., the Hinge loss to serve classifica- 20 
ti on applications); or, for accommodating non-Gaussian 
noise models when viewing (1.3) from a Bayesian angle. On 
the other hand, the regularization term can be chosen as any 
increasing function Q of the norm lflHx' which will turn out to 
be crucial for introducing the notion of sparsity, as described 25 
in the ensuing sections. 
LMMSE, Kriging, and GPs 

N 
A T -1 T '\' f(x) = E(f(x) I z) = z Ru r,i; = L_, O:ncov(xn. x). 

(l.6) 

n=l 

By comparing (1.6) with (1.5), one deduces that the MMSE 
estimator of a GP coincides with the LMMSE estimator, 
hence with the RKHS estimator, when cov(x,x')=k(x,x'). 

The Kernel Trick 

Analogous to the spectral decomposition of matrices, Mer­
cer's Theorem establishes that ifthe symmetric positive defi­
nite kernel is square-integrable, it admits a possibly infinite 
eigenfunction decomposition 

k(x, x') = ~A;e;(x)e;(x'), 
i=l 

Instead of the deterministic treatment of the previous sub­
section, the unknown f(x) can be considered as a random 
process. The KBL estimate (1.2) offered by the Representer 
Theorem has been linked with the LMMSE-based estimator 
of random fields f(x), under the term Kriging. To predict the 
value s=f(x) at an exploration point x via Kriging, the predic­
tor'f(x) is modeled as a linear combination of noisy samples 
zn:=f(xn)+ri(xn) at measurement points { xn} n~I N; that is, 

30 with <e,(x),e,,(x)>Hx=o,_, where o, stands for Kronecker's 
delta. Using the weighted eigen functions cp,(x):=VA,e,(x), 

35 

N 
A '\'A TA 
f(x) = L_, /3nZn = Z /3 

(1.4) 

n=l 

40 

where'~r:=[~ 1 , ... :~N] are the expansion coefficients, and 
zr:=[z1 , ... , zN] collects the data. The MSE criterion is 
adopted to find the optimar~:=arg min13E[f(x)-zr~]

2 . Solv­
ing the latteryields'~=R22 - 1r2~, where R

22
:=E[ zzr] andr2~:=E 45 

[zf(x)]. Ifri(x) is zero-mean white noise with power a>i 2, then 
Rzz and rz~ can be expressed in terms of the unobserved sT:= 
[f(x1), ... , f(xN)] as R22=R~~+a>i2I, where R~~:=E[ssr], and 
r2~~r~~' with r~~:=E[sf(x)]. Hence, the LMMSE estimate in 
(1.4) takes the form 50 

N 
A T 2 -1 '\' 
f(x) = z (Rp; + ~/) rz,z, = L_, <Ynr(x, Xn) 

(l.5) 

n=l 

where ar:=zr(R~~+a>i 21)-1
, and then-th entry of r~~' denoted 

by r(xmx):=E[f(x)f(xn)J, is indeed a function of the explora­
tion point x, and the measurement point xn. 

55 

With the Kriging estimate given by (1.5), the RKHS and 60 

LMMSE estimates coincide when the kernel in (1.2) is cho­
sen equal to the covariance function r(x,x') in (1.5). 

The linearity assumption in (1.4) is unnecessary when f(x) 
ande(x) are modeled as zero-meanGPs [25]. GPs are those in 
which instances of the field at arbitrary points are jointly 65 

Gaussian. Zero-mean GPs are specified by cov(x,x'):=E[f(x) 
f(x')], which determines the covariance matrix of any vector 

iEN, a point xEX can be mapped to a vector (sequence) 
cjJER= such that cp,=cp,(x), iEN. This mapping interprets a 
kernel as an inner product in R =, since for two points 

x, x' EX, k(x, x') = ~ cp;(x)cp;(x') := cpT (x)cp(x'). 
i=l 

Such an inner product interpretation forms the basis for the 
"kernel trick," as used herein. 

The kernel trick allows for approaches that depend on inner 
products of functions (given by infinite kernel expansions) to 
be recast and implemented using finite dimensional covari­
ance (kernel) matrices. A simple demonstration of this valu­
able property can be provided through kernel-based ridge 
regression. Starting from the standard ridge estimator 

N 
A • '\' T2 2 nD 

/3 := argrmn/lERD L_, (Zn - 'Pn/3) + µ1/31 for 'fin E JC, 

n=l 

and <l> := [<p1, ··· , <f!N], 

it is possible to rewrite and solve'~=arg min13ERnlz-<I>r~l
2+ 

µ1~1 2=(<I><I>r+µIf 1 <I>z. After~ is obtained in the training 
phase, it can be used for prediction of an ensuing'zN+l = 
<PN+I r,~ given <PN+l. By using the matrix inversion lemma, 
'zN+I can be written as'zN+i=(l/µ)<PN+l r<I>z-(1/µ)cjJN+l r<I> 
(µI +<I>r<I> f l<I>T<I>z. 

Now, if <Pn =cp(xn) with D=oo is constructed from xnEX 
using eigenfunctions { cp,(xn)} ;~i =, then <PN+/<I>=kr(xN+i):= 
[k(xN+ux1), ... , k(xN+1,x1)], and <I>r<I>=K, which yields 
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AZN+I = (1 I µ)kr (xN+iJ[/ - (µI+ KJ- 1 K]z (l.7) 

32 
as a sparse sum of nonparametric components, and both rely 
on group Lasso to find it. The additive models considered in 
this section will naturally lend themselves to the general 
model for NBP introduced below, and used henceforth. 

coinciding with (1.6), (1.5), and with the solution of (1.1) 

5 Sparse Additive Models (SpAMs) for High-Dimensional 
Models 

Expressing a linear predictor in terms of inner products 
only is instrumental for mapping it into its kernel-based ver­
sion. Although the mapping entails the eigenfunctions {cp, 10 
(x)}, these are not explicitly present in (7), which is given 
solely in terms ofk(x,x'). This is crucial since cjJ can be infinite 
dimensional which wouldrenderthemethodcomputationally 
intractable, and more importantly the explicit form of cp,(x) 
may not be available.Use of kernel trick was demonstrated in 15 

the context of ridge regression. However, the trick can be used 
in any vectorial regression or classification method whose 
result can be expressed in terms of inner products only. One 
such example is offered by support vector machines, which 
find a kernel-based version of the optimal linear classifier in 20 

the sense of minimizing Vapnik's E-insensitive Hinge loss 
function, and can be shown equivalent to the Lasso. 

Additive function models offer a generalization of linear 
regression to the nonparametric setup, on the premise of 
dealing with the curse of dimensionality, which is inherent to 
learning from high dimensional data. 

Consider learning a multivariate function f:X--;.R defined 
over the Cartesian product X:=x/:~ .... Q XP of measur­
able spaces X,. Let xr:=[xu ... , xP] denote a point in X, k, the 
kernel defined over X,xX,, and H, its associated RKHS. 
Although f(x) can be interpolated from data via (1.1) after 
substituting x for x, the fidelity of (1.2) is severely degraded in 
high dimensions. Indeed, the accuracy of (1.2) depends on the 
availability of nearby points xm where the function is fit to the 
(possibly noisy) data zn. But proximity of points xn in high 
dimensions is challenged by the curse of dimensionality, 
demanding an excessively large dataset. For instance, con­
sider positioning N datapoints randomly in the hypercube 
[O,l]F, repeatedly for P growing unbounded and N constant. 

In a nutshell, the kernel trick provides a means of designing 
KBL algorithms, both for nonparametric function estimation, 
as well as for classification. 25 Then 

KBL Vis a Vis Nyquist-Shannon Theorem 

that is, the expected distance between any two points is equal 
to the side of the hypercube [16]. 

Kernels can be clearly viewed as interpolating bases. This 
viewpoint can be further appreciated if one considers the 
family of bandlimited functions B,,:={fEL2(X): 
ff(x)e-""xdx=O, 'v'lwl>it}, where L2 denotes the class of 30 

square-integrable functions defined over X=R (e.g., continu­
~us-time, finite-power signals). The family B,, constitutes a 
lmear space. Moreover, any fEB,, can be generated as the 
linear combination (span) of sine functions; that is, 

To overcome this problem, an additional modeling 
assumption is well motivated, namely constraining f(x) to the 

35 family of separable functions of the form 

f(x) = 2= f(n)sinc(x- n). 

nEZ 

This is the cornerstone of signal processing, namely the NST 
for sampling and reconstruction, but can be viewed also under 
the lens of RKHS with k(x,x')=sinc(x-x') as a reproducing 
kernel. The following properties (which are proved in the 

40 

Appendix) elaborate further on this connection. 45 

Pl. The sine-kernel Gram matrix KERNxN satisfies K;;:O. 
P2. The sine kernel decomposes over orthonormal eigen­

functions { <Pn(x)=sinc(x-n), nEZ} 
P3. The RKHS norm is lflH 2=f f2 (x)dx. 
Pl states that sinc(x-x') q~alifies as a kernel, while P2 50 

characterizes the eigenfunctions used in the kernel trick, and 
P3 shows that the RKHS norm is the restriction of the L 2 norm 
to B,,. 

Pl-P3 establish that the space ofbandlimited functions B 
is indeed an RKHS. Any fEB,, can thus be decomposed as~ 55 

numerable combination of eigenfunctions, where the coeffi­
cients and eigenfunctions obey the NST. Consequently, exist­
ence of eigenfunctions { <Pn(x)} spanning B,, is a direct con­
sequence ofB,, being a RKHS, and does not require the NST 
unless an explicit form for <Pn(x) is desired. Finally, strict 60 

adherence to NST requires an infinite number of samples to 
reconstruct fEB,,. Alternatively, the Representer Theorem fits 
fEB,, to a finite set of (possibly noisy) samples by regulariz­
ing the power off. 
Sparse Additive Nonparametric Modeling 65 

The account of sparse KBL methods begins with SpAMs 
and MKL approaches. Both model the function to be learned 

p 

f(x) = 2= c;(x;) 
i=l 

(l.8) 

with c,EH, depending only on the i-th entry ofx, as in e.g., 
linear regression models 

p 

ftineaAx) := 2= /3iXi· 

i=l 

With f(x) separable as in (1.8), the interpolation task is split 
into P one-dimensional problems that are not affected by the 
curse of dimensionality. 

The additive form in (1.8) is also amenable to subsect 
selection, which yields a SpAM. As in sparse linear regres­
sion, SpAMs involve functions fin (1.8) that can be expressed 
using only a few entries of x. Those can be learned using a 
variational version of the Lasso given by [26] 

1 N p 

A f = argminfEFp 22= (Zn - f(xn))
2 + µ 2= lc;I'}{; 

n=l i=l 

(l.9) 

where 'Tp := {f: X--+ R: f(x) = t c;(x;) }· 
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With xn, the ith entry of xm the Representer Theorem (1.3) 
can be applied per component c,(x,) in (1.9), yielding kernel 
expansions 

N 

(\(xi)=~ YnikJxni• Xi) 

n=l 

34 

N 

Ci(Xi) = ~ AYnik(Xni, Xi) 
n=l 

with scalar coefficients {yn,, i=l, ... , P, n=l, ... , N} 

will be identically zero in (1.8). Thus, estimation via (1.9) 
provides a nonparametric counterpart of Lasso, offering the 
flexibility of selecting the most informative component-func­
tion regressors in the additive model. 

10 The separable structure postulated in (1.8) facilitates sub-
set selection in the nonparametric setup, and mitigates the 
problem of interpolating scattered data in high dimensions. 
However, such a model reduction may render (1.8) inaccu-

The fact that (1.9) yields a SpAM is demonstrated by substi­
tuting these expansions back into (1.9) and solving for y/:= 
[Yw ... , y,N], to obtain 

(l.10) 

15 rate, in which case extra components depending on two or 
more variables can be added, turning (1.8) into the ANOVA 
model. 
Multi-Kernel Learning 

Specifying the kernel that "shapes" Hx, and thus judi-

where K, is the Gram matrix associated with kernel k,, and 
l•IK; denotes the weighted 12 -norm ly,IK;:=(y,rK,y,)112

. 

20 ciously determines'f in (1.1) is a prerequisite for KBL. Dif­
ferent candidate kernels kv ... , kP would produce different 
function estimates. Convex combinations can be also 
employed in (1.1 ), since elements of the convex hull 

Nonparametric Lasso 

Problem (1.10) constitutes a weighted version of the group 25 

Lasso formulation for sparse linear regression. Its solution 
can be found either via block coordinate descent (BCD) [26], 
or by substituting y',=K/12y, and applying the alternating­
direction method of multipliers (ADMM) [6], with conver­
gence guaranteed by its convexity and the separable structure 

30 conserve the defining properties of kernels. 

of the its non-differentiable term [30]. In any case, group 
Lasso regularizes sub-vectors y, separately, effecting group­
sparsity in the estimates; that is, some of the vectors'y, in 
(1.10) end up being identically zero. To gain intuition on this, 35 

(1.10) can be rewritten using the change of variables 
K/12y,=t,u,, with t,;;:O and lu,l=l. It will be argued that ifµ 
exceeds a threshold, then the optimal t, and thus'y, will be 
null. Focusing on theminimizationof(l .lO)w.r.t. a particular 
sub-vector y,, as in a BCD algorithm, the substitute variables 40 

t, and u, should minimize 

1 1/2 2 (l.11) 

A data-driven strategy to select "the best" kEK is to incor­
porate the kernel as a variable in (1.3), that is 

(l.13) 

where the notation Hxk emphasizes dependence on k. 
Then, the following Lemma brings MKL to the ambit of 
sparse additive nonparametric models. 
Lemma 1 (MP05) Let {k1 , ... , kP} be a set of kernels andk 
an element of their convex hull K. Denote by H, and Hxk the 
RKHSs corresponding to k, and k, respectively, and by H x the ;;: lz; - K; t;u;l 2 + µt; 

45 direct sum Hx:=H1 EB ... EBHP. It then holds that: 
where 

Z; :=z- ~K/YJ· 
ft-i a) '}{~ = 'Hx, V k E 'K; and 

Minimizing (1.11) over t, is a convex univariate problem 
whose solution lies either at the border of the constraint, or, at 
a stationary point; that is, 

According to Lemma 1, HxcanreplaceHxk in (1.13), render-
55 ing it equivalent to 

(l.12) 

60 
The Cauchy-Schwarz inequality implies that z,r 

K/12u,s1K/12z,I holds for anyu, with lu,l=l. Hence, it follows 
from (1.12) that ifµ;;:IK/ 12z,I, then t,=O, and thus y,=O. 

The sparsifying effect of (1.9) on the additive model (1.8) 
is now revealed. If µ is selected large enough, some of the 65 

optimal sub-vectors'y, will be null, and the corresponding 
functions 

N p 

argminfc'Hx ~(Zn - f(xn))
2 + µ ~ lc;l'H; 

(l.14) 

n=l i=l 

s.to{f = f c;, c; E 'H;, 'Hx := 'H1 $ ... $'Hp}. 
1=1 

MKL as in (1.14) resembles (1.9), differing in that compo­
nents c,(x) in (1.14) depend on the same variable x. Taking 
into account this difference, (1.14) is reducible to (1.10) and 
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thus solvable via BCD or ADMoM, after substituting k,(xmx) 
for k,(xn,,x,). On the other hand, in a more general case of 
MKL, where x is the convex hull of an infinite and possibly 
uncountable family of kernels. 

An example of MKL applied to wireless communications 5 

is offered below, where two different kernels are employed 
for estimating path-loss and shadowing propagation effects in 
a cognitive radio sensing paradigm. 

In the ensuing section, basis functions depending on a 
second variable y will be incorporated to broaden the scope of 10 

the additive models just described. 
Nonparametric Basis Pursuit 

Consider function f:Xx Y---;. Rover the Cartesian product of 
spaces X and Y with associated RKHSs Hx and Hy, respec-

15 
tively. Let f abide to the bilinear expansion form 

p (l.15) 

36 
which constitutes the feasible set for the NBP-tailored non­
parametric Lasso 

N P (l.17) 

f = argminfEFb~ (Zn - f(xno Yn))
2 + µ ~ lc;l'}{x· 

n=l i=l 

The Representer Theorem in its general form (0.13) can be 
applied recursively to minimize (1.17) w.r.t. each c,(x) at a 
time, rendering'f expressible in terms of the kernel expansion 
as 

p N 

f (x, y) = ~ ~ Y;nk(xno x)b;(y), 
i=l n=l 

f(x, y) = ~ c;(x)b;(y) 
i=l 

where coefficients y,r:=[y,u ... , y,N] are learned from data 
20 

zr:=[z1 , ... , zN] via group Lasso 

where b,:Y---;.R can be viewed as bases, and c,:X---;.R as 
expansion coefficient functions. Given a finite number of 
training data, learning { c,,b,} under sparsity constraints con- 25 

stitutes the goal of the NBP approaches developed in the 
following sections. 

with K ,:=Diag[b,(y 1), ... , b,(yN)]K. 

(l.18) 

The first method for sparse KBL off in (1.15) is related to 
a nonparametric counterpart of basis pursuit, with the goal of 
fitting the function f(x,y) to data, where {b,} are prescribed 30 

and { c,}s are to be learned. The designer's degree of confi­
dence on the modeling assumptions is key to deciding 
whether {b,}s should be prescribed or learned from data. If 
the prescribed {b,}s are unreliable, model (1.15) will be inac­
curate and the performance ofKBL will suffer. But neglecting 35 

the prior knowledge conveyed by {b,}s may be also damag­
ing. Parametric basis pursuit [9] hints toward addressing this 
tradeoffby offering a compromising alternative. 

Group Lasso in (1.18) effects group-sparsity in the subvec­
tors {y,},~t· This property inherited by (1.17) is the capabil­
ity of selecting bases in the nonparametric setup. Indeed, by 
zeroing ythe corresponding coefficient function 

N 

c;(x) = ~ Y;nk(xn, x) 
n=l 

is driven to zero, and correspondingly b,(y) drops from the 
expansion (1.15). 

A functional dependence z=f(y)+e between input y and 
output z is modeled with an overcomplete set of bases {b,(y)} 40 

( a.k.a. regressors) as Remark 2. A single kernel kxand associated RKHS Hxcan be 
used for all components c,(x) in (1.17), since the sUllilllands in 
(1.15) are differentiated through the bases. Specifically, for a 
common K, a different b,(y) per coefficient c,(x), yields a p 

z = ~ c;b;(y) + e, e-N(O, a2). 
i=l 

(l.16) 

Certainly, leveraging an overcomplete set of bases {b,(y)} 
can accommodate uncertainty. Practical merits of basis pur­
suit however, hinge on its capability to learn the few {b,}s that 
"best" explain the given data. 

The crux ofNBP on the other hand, is to fit f(x,y) with a 
basis expansion over the y domain, but learn its dependence 
on x through nonparametric means. Model (1.15) comes 
handy for this purpose, when {b,(y)},~t is a generally over­
complete collection of prescribed bases. 

With {b,(y)} ,~t known, { c,(x)} ,~t need to be estimated, 
and a kernel-based strategy can be adopted to this end. 
Accordingly, the optimal function'f(x,y) is searched over the 
family 

rb := {f(x, y) = t c;(x)b;(y) }· 

45 distinct diagonal matrix Diag[b,(y,), ... , b,(yN)], defining an 
individual K, in (1.18) that renders vectory, identifiable. This 
is a particular characteristic of (1.17), in contrast with (1.9) 
and Lemma 1 which are designed for, and may utilize, mul­
tiple kernels. 

50 Remark 3. The different sparse kernel-based approaches pre­
sented so far, namely SpAMs, MKL, and NBP, should not be 
viewed as competing but rather as complementary choices. 
Multiple kernels can be used in basis pursuit, and a separable 
model for c,(x) may be due in high dimensions. An NBP-

55 MKL hybrid applied to spectrum cartography illustrates this 
point, where bases are utilized for the frequency domain y. 
Blind NBP for Matrix and Tensor Completion 

A kernel-based matrix completion scheme will be devel­
oped in this section using a blind version of NBP, in which 

60 bases {b,} will not be prescribed, but they will be learned 
together with coefficient functions { c,}. The matrix comple­
tion task entails imputation of missing entries of a data matrix 
ZERMxN. Entries of an index matrix WE{ 0, 1 }MxN specify 
whether datum zmn is available (w mn =l ), or missing (w mn =O). 

65 Low rank of Z is a popular attribute that relates missing with 
available data, thus granting feasibility to the imputation task. 
Low-rank matrix imputation is achieved by solving 
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A 1 2 Z = argminAcRMxN ;;:l(Z -A) 0 Wlps.torank(A) s P 
(l.19) 

where 0 stands for the Hadamard (element-wise) product. 
The low-rank constraint corresponds to an upperbound on the 
number of nonzero singular values of matrix A, as given by its 
la-norm. Specifically, if sr:=[ s1 , ... , smin{M,N}] denotes vector 
of singular values of A, and the cardinality l{s,,.O, i=l, ... , 10 
min{M,N} }l:=lsla defines its la-norm, then the ball of radius 
P, namely lslasP, can replace rank(A)sP in (1.19). The fea­
sible set lslasP is not convex because Isla is not a proper norm 
(it lacks linearity), and solving (1.19) requires a combinato­
rial search for the nonzero entries of s. A convex relaxation is 15 

thus well motivated. If the la-norm is surrogated by the 
11 norm, the corresponding ball Is 11 sP becomes the convex 
hull of the original feasible set.As the singular values of A are 

38 
(m,n)-th entry of the approximant matrix A in (1.22), and Pa 
prescribed overestimate of its rank. Consider estimating f:Xx 
Y~R in (1.15) over the family 

F := {f(m, n) = t c;(n)b;(m), C;EHx, b;EHy} via 
(l.23) 

l M N 

A f = argminfcF'.22= 2= Wmn(Zmn - f(m, n))2 + 
m=l n=l 

p 
µ'\' 2 2 2Li (lc;I Hx + lb;I Hy). 

i=l 

If both kernels are selected as Kronecker delta functions, then 
(1.23) coincides with (1.22). This equivalence is stated in the 
following lemma. 

non-negative by definition, it follows that 

ISl 1 =rnin{M, N)2=. 
Sj i=l 

20 Lemma2 ConsiderspacesX:={l, ... , M},Y:={l, ... , N} and 
kernels kx(m,m'):=o(m-m') and ky(n,n'):=o(n-n') over the 
product spaces XxX and Y x Y, respectively. Define functions 
f:XxY~R, c,:X~R, and b,:Y~R, i=l, ... , P, and matrices 
AERMxN, BERNxP, and CERMxP. It holds that: 

Since the sum of singular values equals the dual norm of the 
12 -norm of A, lsl 1 defines a norm over the matrix A itself, 
namely the nuclear norm of A, denoted by IAI •. 

25 

Upon substituting IAI. for the rank, (1.19) is further trans­
formed to its Lagrangian form by placing the constraint in the 30 
objective as a regularization term, i.e., 

A 1 2 (l.20) 

a) RKHS Hx(H y) of functions over X (correspondingly Y), 
associated with kx(ky) reduce to Hx=RM (Hy=RN). 

b) Problems (1.23), (1.22), and (1.20) are equivalent upon 
identifying f(m,n)=Amm b,(n)=Bn,, and c,(m)=Cm;· 

According to Lemma 2, the intricacy of rewriting (1.20) as 
in (1.23) does not introduce any benefit when the kernel is 
selected as the Kronecker delta. But as it will be argued next, 
the equivalence between these two estimators generalizes 
nicely the matrix completion problem to sparse KBL of miss-

Z = argminAcRMxN ;;:l(Z -A) 0 WIF + µIAI,. 
35 ing data with arbitrary kernels. 

The next step towards kernel-based matrix completion 
relies on an alternative definition of IAI •. Consider bilinear 
factorizations of matrix A=CBr with BERNxP and CERMxP, 
in which the constraint rank(A)sP is implicit. The nuclear 40 

norm of A can be redefined as 

(l.21) 

45 

Result (1.21) states that the infimum is attained by the 
singular value decomposition of A. Specifically, if A=illVr 
with U and V unitary and ~:=diag(s), and if B and C are 

50 
selected as B=~112 , and C=ill 112

, then 

1 2 2 p 
;;:(IBIF + IClp) = ~S; = IAI,. 

55 

Given (1.21), it is possible to rewrite (1.20) as 

The separable structure of the regularization term in (1.23) 
enables a finite dimensional representation of functions 

M 

A ( ) - '\' • ''x ( ' ) - 1 ci m - L..J tm m , m , m - , ... 
(l.24) 

,M, 
m'=l 

N 

b;(n) = 2= /3;n' ky(n', n), n = 1, ... , N 
n'=l 

Optimal scalars {y,m} and {~,n} are obtained by substituting 
(1.24) into (1.23), and solving 

(l.25) 

µ [ (-T -i (-T -ii 2 trace C KxC +trace B KyB 

where matrix C(B) is formed with entries Ym,C~n,). 
A Bayesian approach to kernel-based matrix completion is 

(l.22) 
60 given next, followed by an algorithm to solve for B and C. 

Matrix completion in its factorized form (1.22) can be refor­
mulated in terms of (1.15) and RKHSs. Define spaces 
X:={l, ... , M} and Y:={l, ... , N} with associated kernels 
kx(m,m') and ky(n,n'), respectively. Let f(m,n) represent the 

Bayesian Low-Rank Impuation and Prediction 

To recast (1.23) in a Bayesian framework, suppose that the 
available entries of Z obey the additive white Gaussian noise 

65 (AWGN) model Z=A+E, with E having entries independent 
identically distributed (i.i.d.) according to the zero-mean 
Gaussian distribution N(O,a2

). 
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Matrix A is factorized as A=CBr without loss of generality 
(w.l.o.g.). Then, a Gaussian prior is assumed for each of the 
colunms b, and c, of B and C, respectively, 

b,-N(O,RB), c,-N(O,Rc) (1.26) 5 

40 
model-agnostic KBL is to learn the dictionary from data, 
along with the sparse regression coefficients. Under the 
sparse linear model 

(1.28) 

with dictionary of bases BERNxP, and vector of coefficients 
YmERP, the goal of dictionary learning is to obtain B and 
C:=[y1 , ... , YMf from data Z:=[zu ... , zM]r. A swift count 

independent across i, and with trace(RB)=trace(Rc). Invari­
ance across i is justifiable, since columns are a priori inter­
changeable, while trace(RB)=trace(Rc) is introduced w.l.o.g. 
to remove the scalar ambiguity inA=CBr. 

UndertheAWGN model, and with priors (1.26), the maxi­
mum a posteriori (MAP) estimator of A given Z at the entries 
indexed by W takes the form [cf. (1.25)] 

10 of equations and unknowns yields NP+MP scalar variables to 
be learned from MN data (see FIG. 12). This goal is not 
plausible for an overcomplete design (P>N) unless sparsity of 
{ y m} m~l Mis exploited. Under proper conditions, it is possible 
to recover a sparse y m containing at most S nonzero entries 

1 T 2 
min -ll(Z - CB ) 0 WllF + 

CEIR.MxP 2 
BEIR.NxP 

(l.27) 
15 from a reduced number Ns:=E>S log PsN of equations, where 

8 is a proportionality constant. Hence, the number of equa­
tions needed to specify C reduces to MN,, as represented by 
the darkened region of zr in FIG. 1. With Ns<N, it is then 
possible and crucial to collect a sufficiently large number M 

20 of data vectors in order to ensure that MN;;:NP+MNs, thus 
accommodating the additional NP equations needed to deter­
mine B, and enable learning of the dictionary. With Rc=Kx and RB=Ky, and substituting B:=~B and 

C:=K~, the MAP estimator that solves (1.24) coincides with 
the estimator solving (1.25) for the coefficients of kemel­
based matrix completion, provided that covariance and Gram 
matrices coincide. From this Bayesian perspective, the KBL 
matrix completion method (1.23) provides a generalization of 
(1.20), which can accommodate a priori knowledge in the 
form of correlation across rows and colunms of the incom- 30 

plete Z. 

Having collected sufficient training data, one possible 
approach to find B and C is to fit the data via the LS cost 

25 IZ-CBrlF2 regularized by the 11 -norm of C in order to effect 
sparsity in the coefficients. This dictionary leaning approach 
can be recast into the form ofblind NBP (1.23) by introducing 
the additional regularizing term 

With prescribed correlation matrices R8 and R0 (1.23) can 
even perform smoothing and prediction. Indeed, if a column 
(or row) of Z is completely missing, (1.23) can still find an 
estimate 'Z relying on the covariance between the missing and 
available colunms. This feature is not available with (1.20), 
since the latter relies only on rank-induced co linearities, so it 
cannot reconstruct a missing colunm. The prediction capabil-

35 with 

ity is useful for instance in collaborative filtering [3], where a 
group of users rates a collection of items, to enable inference 40 

of new-user preferences or items entering the system. Addi­
tionally, the Bayesian reformulation (1.27) provides an 
explicit interpretation for the regularization parameter µ=a2 

as the variance of the model error, which can thus be obtained 
45 

from training data. The kernel-based matrix completion 
method (1.27) is summarized in Algorithm 1, which solves 
(1.27) upon identifying Rc=Kx, RB=~, and a2=µ, and solves 
(1.25) after changing variables B:=~B and C:=K~ (com­
pare (1.25) with lines 13-14 in Algorithm 1). 50 

Detailed derivations of the updates in Algorithm 1 are 
provided in the Appendix. For a high-level description, the 
colunms ofB and Care updated cyclically, solving (1.27) via 
BCD iterations. This procedure converges to a stationary 
point of (1.27), which in principle does not guarantee global 55 

optimality. Opportunely, it can be established that local 
minima of (1.27) are global minima, by transforming (1.27) 
into a convex problem through the same change of variables 
proposed in [22] for the analysis of (1.22). This observation 
implies that Algorithm 1 yields the global optimum of (1.25), 60 

and thus (1.23). 
Kernel-Based Dictionary Leaming 

Basis pursuit approaches advocate an overcomplete set of 
bases to cope with model uncertainty, thus learning from data 
the most concise subset of bases that represents the signal of 65 

interest. But the extensive set of candidate bases (a.k.a. dic­
tionary) still needs to be prescribed. The next step towards 

M 

lcd1 := ~ lc;(m)I. 
m=l 

The new regularizer on functions c,:X-;.R depends on their 
values at the measurement points m only, and can be absorbed 
in the loss part of (1.3). Thus, the optimal { c,} and {b,} 
conserve their finite expansion representations dictated by the 
Representer Theorem. Coefficients {Ymp'~np} must be 
adapted according to the new cost, and (1.27) becomes 

(l.29) 

Remark4. Kernel-based dictionary learning (KDL)via (1.29) 
inherits two attractive properties of kernel matrix completion 
(KMC), that is blind NBP, namely its flexibility to introduce 
a priori information through RB and R0 as well as the capa­
bility to cope with missing data. While both KDL and KMC 
estimate bases {b,} and coefficients { c,} jointly, their differ­
ence lies in the size of the dictionary. As in principal compo­
nent analysis, KMC presumes a low-rank model for the 
approximant A=CBr, compressing signals { zm} with P'<M 
components (FIG.12 (bottom)). LowrankofAisnotrequired 
by the dictionary learning approach, where signals { zm} are 
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spanned by P;;,;M dictionary atoms {b,} (FIG. 12 (top)), pro­
vided that each zm is composed by a few atoms only. 

Algorithm 1 can be modified to solve (1.29) by replacing 
the update for colunm c, in line 7 with the Lasso estimate 

(l.33) 

42 
a computing center, a cluster of servers or other example 
embodiments of a computing environment, centrally located 
or distributed, capable of executing the techniques described 
herein. 

In this example, a computer 500 includes a processor 510 
that is operable to execute program instructions or software, 
causing the computer to perform various methods or tasks. 
Processor 510 is coupled via bus 520 to a memory 530, which 

10 
Example Application-Spectrum Cartography via NBP and 

is used to store information such as program instructions and 
other data while the computer is in operation. A storage 
device 540, such as a hard disk drive, nonvolatile memory, or 
other non-transient storage device stores information such as 
program instructions, data files of the multidimensional data 

MKL 

15 
and the reduced data set, and other information. The computer 
also includes various input-output elements 550, including 
parallel or serial ports, USB, Firewire or IEEE 1394, Ether­
net, and other such ports to connect the computer to external 
device such a printer, video camera, surveillance equipment 

Consider a setup with Nc=lOO radios distributed over an 
area X of lOOxlOO m2 to measure the ambient RF power 
spectral density (PSD) at Nf=24 frequencies equally spaced in 
the band from 2,400 MHz to 2,496 MHz, as specified by IEEE 
802.11 wireless LAN standard. The radios collaborate by 
sharing their N=NcNfmeasurements with the goal of obtain­
ing a map of the PSD across space and frequency, while 
specifying at the same time which of the P=14 frequency 
sub-bands are occupied. The wireless propagation is simu­
lated according to a pathloss model affected by shadowing, 
with parameters nP =3, li.0 =60 m, 1\=25 m, a x 2=25 dB, and 
withAWGN variance a/=-10 dB. FIG. 13 depicts the dis­
tribution of power across space generated by two sources 25 

transmitting over bands i=5 and i=8 with center frequencies 
2,432 MHz and 2,447 MHz, respectively. FIG. 14 shows the 
PSD as seen by a representative radio located at the center of 
x. 

20 or the like. Other input-output elements include wireless 
communication interfaces such as Bluetooth, Wi-Fi, and cel­
lular data networks. 

The computer itself may be a traditional personal com­
puter, a rack-mount or business computer or server as shown 
in FIG. 6, or any other type of computerized system such as a 
power grid management system. The computer in a further 
example may include fewer than all elements listed above, 
such as a thin client or mobile device having only some of the 
shown elements. In another example, the computer is distrib-

Model (1.15) is adopted for collaborative PSD sensing, 
with x and y representing the spatial and frequency variables, 
respectively. Bases {b,} are prescribed as Hann-windowed 
pulses, and the distribution of power across space per sub­
band is given by { c,(x)} after interpolating the measurements 
obtained by the radios via (1.17). Two exponential kernels 
kr(x,x')=exp(-lx-x'l 218/), r=l,2 with 8 1=10 m and 8 2 =20 
mare selected, and convex combinations of the two are con­
sidered as candidate interpolators k(x,x'). This MKL strategy 
is intended for capturing two different levels of resolution as 
produced by pathloss and shadowing. Correspondingly, each 
c,( x) is decomposed into two functions cil ( x) and ci2( x) which 
are regularized separately in (1.17). 

Solving (1.17) generates the PSD maps ofFIG.15. Onlyy5 

and y8 in the solution to (1.18) take nonzero values (more 
precisely Ysr and y8" r=l,2 in the MKL adaptation of (1.18)), 
which correctly reveals which frequency bands are occupied 
as shown in FIG. 15(a). The estimated PSD across space is 
depicted in FIG. 15(b) (first row) for each band respectively, 
and compared to the ground truth depicted in FIG. 15(b) 
(second row). The multi-resolution components c5 r(x) and 
c8r(x) are depicted in FIG. 15(b) (last two rows), demonstrat­
ing how kernel k1 captures the coarse pathloss distribution, 
while k2 refines the map by revealing locations affected by 
shadowing. 

These results demonstrate the usefulness of model (1.15) 
for collaborative spectrum sensing, with bases and multi­
resolution kernels. The sparse nonparametric estimator (1.17) 
serves the purpose of revealing the occupied frequency bands, 
and capturing the PSD map across space per source. Com­
pared to a spline-based approach, the MKL adaptation of 
(1.17) here provides the appropriate multi-resolution capabil­
ity to capture pathloss and shadowing effects when interpo­
lating the data across space. 

FIG. 16 shows a detailed example of various devices that 
may be configured to execute program code to practice some 
embodiments in accordance with the current disclosure. For 
example, device 500 may be a CR 12, a FC 16, a workstation, 

30 uted among multiple computer systems, such as a distributed 
server that has many computers working together to provide 
various functions. 

The techniques described herein may be implemented in 
hardware, software, firmware, or any combination thereof. 

35 Various features described as modules, units or components 
may be implemented together in an integrated logic device or 
separately as discrete but interoperable logic devices or other 
hardware devices. In some cases, various features of elec­
tronic circuitry may be implemented as one or more inte-

40 grated circuit devices, such as an integrated circuit chip or 
chipset. 

If implemented in hardware, this disclosure may be 
directed to an apparatus such a processor or an integrated 
circuit device, such as an integrated circuit chip or chipset. 

45 Alternatively or additionally, if implemented in software or 
firmware, the techniques may be realized at least in part by a 
computer readable data storage medium comprising instruc­
tions that, when executed, cause one or more processors to 
perform one or more of the methods described above. For 

50 example, the computer-readable data storage medium may 
store such instructions for execution by a processor. Any 
combination of one or more computer-readable medium(s) 
may be utilized. 

A computer-readable medium may form part of a computer 
55 program product, which may include packaging materials. A 

computer-readable medium may comprise a computer data 
storage medium such as random access memory (RAM), 
read-only memory (ROM), non-volatile random access 
memory (NVRAM), electrically erasable programmable 

60 read-only memory (EEPROM), flash memory, magnetic or 
optical data storage media, and the like. In general, a com­
puter-readable storage medium may be any tangible medium 
that can contain or store a program for use by or in connection 
with an instruction execution system, apparatus, or device. 

65 Additional examples of computer readable medium include 
computer-readable storage devices, computer-readable 
memory, and tangible computer-readable medium. In some 
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examples, an article of manufacture may comprise one or 
more computer-readable storage media. 

In some examples, the computer-readable storage media 
may comprise non-transitory media. The term "non-transi­
tory" may indicate that the storage medium is not embodied in 
a carrier wave or a propagated signal. In certain examples, a 
non-transitory storage medium may store data that can, over 
time, change (e.g., in RAM or cache). 

44 
computing a non-parametric basis expansion model from 

the sensed RF interference spectrum, wherein the non­
parametric basis expansion model comprises a set of 
reference basis functions that represent a frequency dis­
tribution of the RF power and a set of kernel-based 
interpolating functions that represent a physical distri­
bution of the RF power throughout the geographic 
region, and wherein the kernel-based interpolating func-
tions are computed in the non-parametric basis expan­
sion model as coefficients to the reference basis func­
tions and operate as bases weighting functions in the 
non-parametric basis expansion model; and 

constructing, in accordance with the non-parametric basis 
expansion model, a power spectral density (PSD) map 
representative of a distribution of RF power throughout 
the geographic region as a function of frequency and 
location. 

The code or instructions may be software and/or firmware 
executed by processing circuitry including one or more pro- 10 

cessors, such as one or more digital signal processors (DSPs ), 
general purpose microprocessors, application-specific inte­
grated circuits (ASICs), field-progranmiable gate arrays (FP­
GAs ), or other equivalent integrated or discrete logic cir­
cuitry. Accordingly, the term "processor," as used herein may 15 

refer to any of the foregoing structure or any other processing 
circuitry suitable for implementation of the techniques 
described herein. In addition, in some aspects, functionality 
described in this disclosure may be provided within software 
modules or hardware modules. 

Further exemplary details are described in Bazerque, 
"Basis Pursuite For Spectrum Cartography," Proceedings of 
the IEEE International Conference on Acoustics, Speech, and 
Signal Processing, ICASSP 2011, May 22-27, 2011, directly 
included herein as an Appendix and incorporated herein by 25 

reference. 

2. The method of claim 1, wherein the bases weighting 
functions are computed to represent the aggregate distribu-

20 tion of the RF power across the geographic region corre­
sponding to frequencies spanned by the bases. 

3. The method of claim 2, wherein computing the model 
further comprises: 

computing estimates for the RF power at locations within 
the geographic region; and 

computing the kernel-based interpolating functions as 
thin-plate splines that span the estimates. FIG. 17 is a flowchart illustrating an example process in 

accordance with the techniques of this disclosure. As shown 4. The method of claim 3, wherein the coefficients for the 
non-parametric basis expansion model are computed by 

30 applying a group-Lasso estimator to compute the estimates. 
in FIG. 17, initially a plurality of sensors (e.g., radios, mobile 
devices, fixed sensors) sense the local RF interference spec­
trum at each of a plurality of locations within a geographic 
region (600). The sensors communicate observation data 
indicative of the sensed RF interference, such as by exchang­
ing the observation data or by communicating the observation 
data to one or more centralized processors (602). A comput­
ing device, such as a processor of a centralized computing 
device or one or more processors associated with the sensors, 
computes a non-parametric basis expansion model from the 
sensed RF interference spectrum (603). The non-parametric 
basis expansion model is computed as a set of reference basis 40 

functions that represent a frequency distribution of the RF 
power at the plurality of positions and a set of kernel-based 
interpolating functions that represent the RF power distribu­
tion across the geographic region, wherein the kernel-based 
interpolating functions operate as bases weighting functions 45 

that are coefficient functions to the reference basis function in 

5. The method of claim 1, further comprising applying 
discard factors to the set of bases weighting functions of the 
non-parametric basis expansion model to discard a plurality 
of the weighting functions to produce a sparse description of 

35 the RF power throughout the geographic region. 

the non-parametric basis expansion model. In accordance 
with the non-parametric basis expansion model, one or more 
power spectral density (PSD) maps may be constructed and 
output, e.g., displayed, where the PSD MAPs are representa- 50 

tive of a distribution of RF power throughout the geographic 
region as a function of frequency and location (604). More­
over, one or more actions may be triggered in response to the 
computed model and/or maps, such as identifying locations 
within the geographic region where one or more frequencies 55 

are unoccupied. For example, a mobile device may identify 

6. The method of claim 5, further comprising selectively 
discarding a number of the bases weighting functions based 
on a tuning parameter that reduces or increases the set of 
retained vases weighting functions. 

7. The method of claim 1, wherein computing a non-para­
metric basis expansion model comprises performing a most 
parsimonious sparse signal expansion using an overcomplete 
set of reference basis functions. 

8. The method of claim 1, further comprising: 
communicating observation data indicative of the sensed 

RF interference spectrum from each of the sensors to a 
centralized computer; and 

computing, with the centralized computer based on the 
observation data, the non- parametric basis expansion 
model to construct the PSD map. 

9. The method of claim 1, further comprising: 
exchanging, between the sensors, observation data indica­

tive of the sensed RF interference spectrum; and 
computing, with the sensors based on the observation data, 

the non-parametric basis expansion model to construct 
the PSD map. 

an idle frequency band and dynamically use the identified idle 
frequency band. 

Various embodiments of the invention have been 
described. These and other embodiments are within the scope 
of the following claims. 

10. The method of claim 1, further comprising executing a 
PSD tracker to adapt to time-varying radio-frequency (RF) 
interference spectrum throughout the geographic region and 

60 reconstruct the PSD map. 

The invention claimed is: 
1. A method comprising: 
sensing a local radio-frequency (RF) interference spectrum 65 

at each of a plurality of sensors positioned at a plurality 
oflocations within a geographic region; 

11. The method of claim 1, further comprising: 
processing the PSD map to identify a location within the 

geographic region where at least one frequency is unoc­
cupied. 

12. The method of claim 1, wherein computing a non­
parametric basis expansion model comprises applying a 
spline, Kriging, or Gaussian process to compute the coeffi-
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cient~ for the basis expansion model as the bases weighting 
funct10ns to represent the RF signals transmitted by RF­
enabled devices within the geographic region. 

13. The method of claim 1, further comprising identifying 
at least one idle frequency band based on the PSD map and 
dynamically using, with at least one mobile device the iden-
tified idle frequency band. ' 

14. The method of claim 1, wherein computing a non­
parametric basis expansion model comprises applying a plu­
rality of different types of kernel-based interpolation func- 10 

tions to represent a physical distribution of the RF power 
throughout the geographic region. 

15. Th~ metho~ of claim 14, further comprising applying 
the plurality of different types of kernel-based interpolation 
functions to represent fading and shadowing of the RF power. 15 

16. A system comprising: 
a p.lurality of sensors to sense a local radio-frequency (RF) 

mterference spectrum at each of a plurality of locations 
within a geographic region; and 

a p~ocessor that computes a non-parametric basis expan- 20 

s10n model from the sensed RF interference spectrum at 
each of the sensors to construct a power spectral density 
(PSD) map representative of a distribution of RF power 
throughout the geographic region as a function of fre-
quency and location, 25 

wherein the processor computes the non-parametric basis 
expansion model to include comprises a set of reference 
basis functions that represent a frequency distribution of 
the ~F power and a set of kernel-based interpolating 
funct10ns that represent a physical distribution of the RF 30 

power throughout the geographic region, and 
wherein the processor applies the kernel-based interpolat­

ing functions as coefficient functions for the non-para­
metric basis expansion model. 

17. The system of claim 16, wherein the processor applies 35 

the kernel-based interpolating functions to interpolate the RF 
power across the geographic region. 

18. The system of claim 16, wherein the processor com­
p~te~ th~ bases weighting functions to represent the aggregate 
d1stnbut10n of RF power across the geographic region corre- 40 

sponding to frequencies spanned by the bases. 
19. The system of claim 16, wherein the processor com­

putes the coefficients for the non-parametric basis expansion 
model as bases weighting functions by: 

computing estimates for the RF power at locations within 45 

the geographic region; and 

46 
computing the kernel-based interpolating functions as 

thin-plate splines that span the estimates. 
20. The system of claim 19, wherein the processor applies 

a group-Lasso estimator to compute the estimates. 
21. The system of claim 16, wherein the computing device 

receives, from each of the sensors, observation data indicative 
of the sensed RF interference spectrum at the respective sen­
sors and computes, based on the observation data, the non­
parametric basis expansion model to construct the PSD map. 

22. The system of claim 16, 
wherein the sensors exchange observation data indicative 

of the sensed RF interference spectrum, and 
wherein the computing device comprises one of plurality 

of computing devices located at the sensors to compute 
the non-parametric basis expansion model and construct 
the PSD map based on the observation data. 

23. The system of claim 16, wherein the processor applies 
a plurality of different types of kernel-based interpolation 
functions to represent a physical distribution of the RF power 
throughout the geographic region. 

24. A mobile device comprising: 
a sensor to sense a local radio-frequency (RF) interference 

spectrum at a locations within a geographic region; and 
a computing device to receive observation data from a 

plurality of other devices positioned at a plurality of 
locations within the geographic region, 

wherein the observation data indicates an RF interference 
spectrum local to each of the plurality of other mobile 
devices, 

wherein the computing device computes, based on the 
sensed RF interference spectrum local to each of the 
mobile devices, anon-parametric basis expansion model 
having a set of reference basis functions that represent a 
frequency distribution of the RF power and a set of 
kernel-based interpolating functions that represent a 
physical distribution of the RF power throughout the 
geographic region, the kernel-based interpolating func­
tions being coefficients to the reference basis functions 
as bases weighting functions in the non-parametric basis 
expansion model, and 

wherein the computing device constructs a power spectral 
density (PSD) map representative of a distribution of RF 
power throughout the geographic region as a function of 
frequency and location. 

* * * * * 




