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1
ROBUST PARAMETRIC POWER SPECTRAL
DENSITY (PSD) CONSTRUCTION

This application claims the benefit of U.S. Provisional
Application No. 61/661,109, filed Jun. 18, 2012, the entire
contents of which are incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
ECCS-1002180 awarded by the National Science Founda-
tion. The government has certain rights in the invention.

TECHNICAL FIELD

The invention relates to wireless communication and, more
specifically, to spectrum cartography.

BACKGROUND

All wireless transmissions use a portion of the radio fre-
quency spectrum. Cellular phones, broadcast television, sat-
ellite, and short-distance wireless networks such as Bluetooth
and wireless local area networks (WLAN) utilize different
portions of the Wi-Fi, for example, typically use wireless
frequency spectrum. Often it is important to coordinate the
use of the various technologies and frequency ranges to
ensure that the technologies do not interfere with each other
or with planned future services.

SUMMARY

This disclosure describes techniques for constructing
power spectral density (PSD) maps representative of the dis-
tribution of radio frequency (RF) power as a function of both
frequency and space (geographic location). For example, the
disclosure describes techniques for construction PSD maps
using robust basis pursuit form of signal expansion.

To further address the challenges encountered with this
multi-dimensional sensing vision, the present paper presents
a collaborative sensing scheme whereby CRs cooperate to
localize the actively transmitting primary users (Pus) and
estimate their PSD across space in the presence of model
uncertainties.

One example of the techniques described herein is a novel
sensing scheme based on a parsimonious system model
accounting for the scarce presence of active PUs in the same
frequency band(s), in the monitored area, due to mutual inter-
ference. Using a virtual grid-based approach for the potential
PU transmitter locations, a form of spatial-domain sparsity
emerges because actual PU transmitters are present in only
few of the potential (grid) locations. A basis expansion model
is then adopted to approximate the PU transmit-PSD distri-
bution in frequency, which renders the sensing objective tan-
tamount to estimating the PSD basis coefficients correspond-
ing to each grid point. Since individual PU transmissions are
narrow-band relative to the large swath of frequencies a CR
can sense, only few of the PSD basis coefficients are non-
zero—a fact giving rise to frequency-domain sparsity.

This parsimonious system model thus entails a form of
hierarchical dual-domain sparsity in the PSD basis coeffi-
cients that are to be estimated, in the sense that groups of
coefficients corresponding to locations with no PUs will be
collectively zero. In addition, some of the basis coefficients
within groups corresponding to active PU locations will be
zero. Capitalizing on this form of hierarchical sparsity, a
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group sparse regression problem is formulated, which is to be
solved centrally by either a fusion center (FC), or, individual
CRs using their measured PSDs. A novel low-complexity
algorithm for solving such a problem is developed using the
alternating direction method of multipliers (ADMoM).

One challenge addressed by the techniques is acquiring the
grid-to-CR channel gains present in the underlying regression
matrix. One way to acquire such information is through the
channel gain cartography approach. However, possible inac-
curate channel gains or adoption of a shadowing-agnostic
pathloss-only model could deteriorate the performance of the
sensing algorithm. Also, a grid-based approach introduces
itself possible model offsets, as the actual PU locations may
not coincide with points of the grid. To account for these
uncertainties, a robust version of the group sparse (GS) least-
absolute-shrinkage-and-selection  operator (Lasso) is
described herein. One technique described herein is an exten-
sion of the sparse total least-squares (TLS) framework to
incorporate the hierarchical sparsity inherent to this sensing
application. Combining the merits of Lasso, group Lasso, and
TLS, the proposed group sparse (GS-)TLS approach
described herein yields hierarchically-sparse PSD estimates
that are also robust to model uncertainties induced by the
random channel, grid offsets, and basis approximation errors.
In spite of the non-convexity of the proposed GS-TLS crite-
rion, an iterative solver with guaranteed convergence to at
least a locally-optimal solution is described.

Additional factors that may compromise accuracy of PSD
estimates at the CRs, are abrupt changes in shadow fading that
may be due to, e.g., moving obstacles or moving CRs, and,
possible failures of the sensing modules themselves. A robust
GS-TLS formulation is proposed here, that is capable of
discerning and removing such so-called model outliers,
which in turn leads to reliable PSD estimates. However, sort-
ing out unreliable measurements not only promotes estima-
tion accuracy, but also leads to self-healing and re-organiza-
tion mechanisms for the CRs network.

This disclosure introduces the basis expansion model, and
describes the PSD observations used for the model fitting
approach. A centralized algorithm for solving GS-Lasso
problems is described, whereas perturbations in the channel
(regression) matrices are considered. An outlier-resilient
sensing algorithm is devised, numerical results are provided.

In one example, a method comprises sensing local radio-
frequency (RF) interference spectrum at each of a plurality of
sensors positioned at a plurality of locations within a geo-
graphic region, and computing a basis expansion model from
the sensed RF interference spectrum at each of the sensors to
construct a power spectral density (PSD) map representative
of the distribution of RF power throughout the geographic
region as a function of frequency and location. The basis
expansion model is computed as a plurality of functions hav-
ing a corresponding coefficient, each of the functions repre-
senting a power emitted by an RF-enabled device on a corre-
sponding frequency band. Moreover, the coefficients are
computed of the basis expansion model using a group sparse
least-absolute-shrinkage-and-selection operator (GS-Lasso).

In another example, a system comprises a plurality of sen-
sors to sense a local radio-frequency (RF) interference spec-
trum at each of a plurality of locations within a geographic
region. A processor computes a basis expansion model from
the sensed RF interference spectrum at each of the sensors to
construct a power spectral density (PSD) map representative
of the distribution of RF power throughout the geographic
region as a function of frequency and location. The processor
computes the basis expansion model is computed as a plural-
ity of functions having a corresponding coefficient, each of
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the functions representing a power emitted by an RF-enabled
device on a corresponding frequency band. The processor
computing the coefficients of the basis expansion model
using a group sparse least-absolute-shrinkage-and-selection
operator (GS-Lasso).

In another example, a mobile device comprises a sensor to
sense a local radio-frequency (RF) interference spectrum at
locations within a geographic region. The mobile device fur-
ther comprises a processor that computes a basis expansion
model from the sensed RF interference spectrum at each of
the sensors to construct a power spectral density (PSD) map
representative of the distribution of RF power throughout the
geographic region as a function of frequency and location.
The processor computes the basis expansion model is com-
puted as a plurality of functions having a corresponding coef-
ficient, each of the functions representing a power emitted by
an RF-enabled device on a corresponding frequency band.
The processor computes the coefficients of the basis expan-
sion model using a group sparse least-absolute-shrinkage-
and-selection operator (GS-Lasso).

The details of one or more examples are set forth in the
accompanying drawings and the description below.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating a system in which a
plurality of sensors and a centralized computing center coop-
erate to construct PSD maps.

FIG. 2 is a block diagram illustrating a system in which a
plurality of sensors executed distributed techniques to con-
struct PSD maps.

FIG. 3 illustrates a basis expansion model with overlapping
raised cosine pulses.

FIG. 4 shows an example CR network topology.

FIGS. 5A, 5B represent PSD maps.

FIG. 6 illustrates evolution of the entries of @Y.

FIG. 7 illustrates a true PSD map with shadowing propa-
gation effects.

FIGS. 8A, 8B illustrate estimated PSD maps of FIG. 7.

FIG. 9 illustrates a true PSD map with deep shadowing
caused by an obstacle.

FIGS. 10A, 10B illustrate estimated PSD maps of FIG. 9

FIG. 11 illustrates an example CR topology and PU trans-
mitter locations for numerical testing of the described tech-
niques.

FIG. 12 is a graph illustrating interference power using the
batch technique.

FIG. 13 is a graph illustrating interference power using the
online technique.

FIG. 14 is a graph illustrating average normalized RMSE.

FIG. 15 is a graph illustrating one-time slot prediction.

FIG. 16 shows a detailed example of various devices that
may be configured to execute program code to practice some
embodiments in accordance with the current disclosure.

DETAILED DESCRIPTION

FIG. 1is a block diagram illustrating a system 10 in which
a plurality of sensors 12 (e.g., cognitive radios (CR) in this
example) deployed within a spatial region. Each of CRs 12
sense the ambient interference spectrum from other RF-en-
abled devices 15 within its surrounding region and commu-
nicate the sensed observations to one another via messages
14. CRs 12 collaborate to construct one or more power spec-
tral density (PSD) maps based on the exchanged PSD obser-
vations. In general, the PSD maps are representative of the
distribution of radio frequency (RF) power as a function of
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both frequency and spatial location within the geographic
region. In the example of FIG. 2, system 10 includes a cen-
tralized fusion center (FC) 16 that performs the techniques
described herein to compute the PSD maps 17 based on the
sensed observations relayed to the fusion center via the CRs.
In one example of system 10, FC 16 includes and maintains
PSD maps 17 within a database along with location data for
each of CRs 12. Each location may, for example, be repre-
sented as a position vector within the geographic region. A
dedicated control channel may be established by which CRs
12 exchange PSD observations via messages 14, which are
ultimately related to FC 16 by those CRs in communication
with the FC.

In general, FC 16 is a computing system of one or more
computing devices that applies the techniques described
herein to compute one or more PSD maps for the geographic
region. In one example, FC 16 applies robust parametric basis
pursuit as a form of signal expansion for construction PSD
maps based on the observations. FC may, for example, com-
pute the basis expansion model from the sensed RF interfer-
ence spectrum at each of the CRs 12 to construct a power
spectral density (PSD) map representative of the distribution
of RF power throughout the geographic region as a function
of frequency and location. In general, a basis expansion
model consists of a superposition of shifted and scaled ver-
sions of reference basis functions. The reference basis func-
tions represent the frequency distribution of the RF power,
i.e., RF power present at different frequency slots. The basis
expansion model may be computed as a plurality of reference
basis functions having corresponding coefficients, each of the
reference basis functions representing a power emitted by an
RF-enabled device 15 on a corresponding frequency band. As
used herein, a paramentric basis expansion model refers to a
basis expansion model where scaling coefficients of the ref-
erence basis functions are computed as scalars.

Moreover, as described below, FC 16 may apply a group
sparse least-absolute-shrinkage-and-selection operator (GS-
Lasso) in computing the coefficients of the basis expansion
model. In general, least-absolute-shrinkage-and-selection
operator (LASSO) is one example of a compressive sensing
operator. Group sparse (GS) LASSO techniques are
described in which a group sparsity structure for the basis
expansion model is encoded and enforced. In this way, as
further described below, a parametric PSD map representa-
tive of the power distribution of the RF power can be recov-
ered, i.e., computed, with fewer measurements. The GS Lasso
operator, in effect, is applied to select which coefficients in
the model are non-zero and are to be estimated by FC 16. For
example, in accordance with the techniques described herein,
the group sparse Lasso (GS Lasso) identifies the locations in
space where and RF-enabled device 15 is actively transmit-
ting, and the frequency band(s) where transmission occurs.
Specifically, by application of the GS Lasso described herein,
non-zero coefficients in the basis expansion model for a trans-
mitter’s location correspond to occupied bands. In this way,
FC 16 may apply the GS Lasso operator described herein to
enforce group sparsity within the basis expansion model,
thereby reflecting sparsity within system 10 that may arise
due to geographic sparsity of sensors RF-enabled devices 15
within the measured environment and sparsity in the fre-
quency domain since individual transmissions may occupy
small portions of the spectrum. In some cases, FC 16 may use
a most parsimonious sparse signal expansion using an over-
complete basis set may be used to constructing the PSD maps.

Consider an incumbent PU system comprising N trans-
mitters (sources) located in a geographical area A < R?. Their
activity over a frequency band B is to be monitored via coop-
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eration of N, CRs, also located in A. Let S:={x eA},_,™®
denote the PU locations. The sensing objective is to localize
the PU sources, and reveal available portions of B for the CRs
to transmit opportunistically.

Let u/(t) be the (unknown) signal transmitted by PU s at
timet. Then, the signal received at CR positionx, at time t can
be expressed as

Ny Lgp—1

V1= DTN g, (6 Dt = ) +v(0)

s=1 (=0

where b, __ (t]) is the I-th tap of the time-varying channel
impulse response of the link x,—x,, and v(t) denotes the
additive white noise. Regarding 51gnals {u (1)}, the following
is assumed.

(Asl) Sources {uyt)} are stationary, mutually uncorre-
lated, independent of {h, o (G 1)}, with vanishing correlation
per channel coherence interval.

Consider approximating the transmit-PSD of PU s using
the following basis expansion model:

Ny M
Of) =) Ouby(f)s =12 . Ny

v=1

where N, is assumed sufficiently large, and {®_} _* are
nonnegative coefficients. Possible choices of {b (D}, ™
include the set of non-overlapping rectangles of unit height
spanning the bandwidth B of interest. In this case, each O,
represents the power emitted by source s on the frequency
band corresponding to the basis function b, (f). Alternatively,
overlapping raised cosine bases can be employed with sup-
port B =[f —-(1+@/2T),f +(1+Q@/2T )], where Q is the roll-
offfactor and T, the symbol period, can be employed; see also
FIG. 3.
Channel {h, _,, (t;))} can be decomposed as

1
Bgon, (15 D) = Vxgony Sy ) 5oy (6 D)

where v, _,, stands for the path loss, s, _,, the temporally-
and spatially-colored shadowing, and {f, e (D} fOr the
multi-path fast time-varying fading. The latter satisfies the
following. (As2) Variables {f, — (t 1)} are complex Gaussian
with zero mean and variance GfS, , stationary with respect to
t, and uncorrelated across the lag variable 1 and the spatial
variables x and x,.. Without loss of generality, assume that

L

Z U—%,xr =1
=1

for every s and r.

Received samples {y,(t)} are parsed into N-dimensional
blocks, where N is chosen equal to (or smaller than) the
coherence interval of the small-scale fading, over which
h, .. (t;]) remains approximately invariant with respect to
(v&;rt) . These data blocks are hereafter indexed by n, so that
t=nN+m, with m=0, 1, .. . , N-1.

Shadowing and small-scale fading are characterized by
different dynamics. The following is assumed regarding
channel propagation and modeling.
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(As3) The coherence interval of shadow fading exceeds
thatof £, _,, (t1). Also, shadowing variations are sufficiently
slower than the coherence interval of the PU signals.

Based on (Asl)-(As3), it is possible to express the PSD
measured at location x due to N, simultaneous PU transmis-

sions as

Ny Ns Ny 2
Do) = ) el f) + 02 = ngxz Ouby(f)+ 0}
=1 — V=
where o> denotes noise variance at the receiver, and

the averaged channel gain.

L, T Vx—x,Sx,—x,

As neither the number of PU sources nor their locations are
known to the CRs, a set of N, candidate transmit-PUs is
postulated on a grid of locations G:={x,eA},_,"s. Without
prior knowledge of the area(s) where PU activity is more
likely, the set of candidate locations G can be simply formed
by discretizing A to the set of grid points G.

Define the N,x1 vector ©,:=[0,,, .. ., G)ng]Tcollecting
the basis coefﬁcients that correspond to location x,, and let
G)::[G)lT, - T] ; also, let B, be the NxN, N matrix

=[b, (), , b, (fN)] , Wlth b.(f.) haVlng entrles
{g)C - v(fk)} Then upon defining ¢, :=[®, (f,), . o
(fN)] , 'the recelved PSD at CR location X, sampled at fre-
quencies {f,},_,", can be compactly written as:

¢,,=B, 0+0,71x. 3)

The sensing objective of revealing PU locations and the
available portions (sub-bands) of B is tantamount to estimat-
ing ©. To this end, CRs rely on the periodogram estimate of
@, () at the samphng locations {x,},_,", and N frequency
bins {f,},_,". The fast Fourier transform of samples {y,(t)},
namely Y J\,(n ), and the periodogram "¢, ,(n;D):=
(/MDY A(n, )I? are computed per data block n. To average
out small-scale fading effects, and allow for tracking of
shadow fading as well as possible variations of the PUs’
power spectra, the periodogram estimate at CR r is formed
using an exponentially weighted moving average operation as

" @)

with oe(0,1] denoting the so-called forgetting factor. As
shown gives an estimate of the PSD measured at point x,, and
frequency f as

@, )=, (Tfite, xS &)

with (asymptotic) variance bounded as

lim 3
arle, (7, )] < 5

2
Voo 51—l ().

After dropping T for notational brevity, let

"9, =
[(®(f),..., D ()]
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Based on the linear model (3), the sensing objective is to
estimate ® from the received-PSD estimate

~ » » T
i=[duys s by |

gathered at CR locations {x,},_

The following describes spectrum sensing via Group
Sparse Lasso. The number of active PUs transmitting over the
same spectral band in a given area is naturally limited by
mutual interference. As a consequence, the number of PU
sources (N,) is far smaller than N, for a sufficiently dense
grid. Absence of PU sources in most grid locations gives rise
to a group sparsity of the vector ®, since ®,=0,, for each of
the locations x, that are not occupied by a PU transmitter. In
addition to space, sparsity in the vector © is also manifested
in the frequency domain because of the parsimonious linear
model (2). Compared to the possibly large swath of frequen-
cies that the CRs can sense, individual PU transmissions
typically occupy small portions of the spectrum (say, in the
order of MHz). Sparsity in the frequency domain implies that
individual entries within each group O, are zero.

One criterion for estimating © is the (non-negative) least-
squares (LS). However, LS fails to provide a parsimonious
model estimate involving only the prominent variables. The
Lasso and the so-called group Lasso on the other hand, were
proposed to overcome such a limitation of LS. In the Lasso
criterion, the LS cost is augmented with the 1,-norm 101, to
encourage sparsity at the single-coefficient level; while in the
group Lasso, the regularization term

Ng
Re(©):= ) 10,1,

g=1

is referred to herein as a group sparse (GS) penalty that
enforces group sparsity within the model.

Combining Lasso with group Lasso, the so-called group
sparse (GS-)Lasso provides a parsimonious model estimate,
where sparsity is accounted for both at the group- and at the
single-coefficient levels. This hierarchical sparsity is possible
by regularizing the conventional LS cost with the term

Ng

Re(©):= ) 10,1,

g=1

combined with 101,.

Taking also into account the non-negativity of PU power
spectra, © can be estimated by solving the following sparse
regression problem, where ® indicates the location in space
and the frequency band for any active transmitter (RF-en-
abled device 15):

©

Z 113,

= B, 0= oy Il + 410l +A:Rc(0)

where the coefficient A;=0 enforces sparsity at individual
entries, whereas A,=0 promotes group sparsity. For A,=0
(A,=0), (6) reduces to the Lasso (group Lasso) based esti-
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mate. In this way, the group sparse Lasso (GS Lasso) identi-
fies the locations in space where and RF-enabled device 15 is
actively transmitting, and the frequency band(s) where trans-
mission occurs. Specifically, non-zero coefficients in the
basis expansion model for a transmitter’s location correspond
to occupied bands. PU localization and PSD estimation was
viewed as a sparse linear regression model; here, the formu-
lation is considerably broadened by taking into account both
individual and group sparsity.

To obtain regression matrices {er}, the channel gains
{2, ... } need to be estimated. To this end, CRs can simply
neglect shadowing, and in resort to the distance-dependent
pathlossmodel &, _. =min{1,(x,—x,ll/d;)™}, where d, and
M are preselected‘g constants dependlng on the propagation
environment. Alternatively, more sophisticated techniques
can be employed. Perturbations in the regression matrices
{er} arising due to inaccurate channel estimation and grid-
mismatch effects are dealt with below.

With respect to the PSD atlas, it is worth re-iterating that
identifying the support of the vector ® reveals not only the
primary sub-bands occupied, but also the locations where the
active PU transmitters reside. Complementing this informa-
tion with either the PUs’ channel gain maps or a simple path
loss-based propagation model, CRs can readily reconstruct
the PSD atlas; that is, estimate PSD maps at any location of
the monitored area as

M

Ng Ny
&(f) = Z g ), Onbr(f). VxeA
v=1
g=1

with g __ the estimate of A Having available estimates
of the BSD map across space per frequency band (hence the
term atlas), CRs can adjust their transmit power to prevent
harmful interference inflicted to the PUs. In fact, the positions
of potential PU receivers can be deduced from the PSD atlas;
and thus, CR transmission powers can be properly adapted.

ADMoM-based Solver: In this section, a reduced-com-
plexity algorithm attaining the optimal solution of GS-Lasso
problems will be developed using the alternating direction
method of multipliers (ADMoM). The disclosure show that
(6) admits an equivalent reformulation that can be solved via
ADMOoM. Before doing so, the following lemmas are needed.

Lemma 1 Consider the following convex minimization
problem in the variable yeR"™

8
Y = argmin, | > SVTy- ya+/\Iy|2] ®

Albeit non differentiable, (8) admits a closed-form solu-
tion. Specifically, the global minimizer y* is given by the
following soft-thresholding vector operation expressed in
terms of [a],:=max{0,a} as

*

y AL ®

—_{lal
aj
T Clal T

Proof. It will be argued that the solver of (8) takes the form
y=za for some scalar z=0. This is because among all y with the
time 1,-norm, the Cauchy-Schwarz inequality implies that the
maximizer of a’y is collinear with (and in the same direction
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of) a. Substituting y=za into (8) renders the problem scalar
720, with solution z*=(||al|-A),/(cllal|,), which completes the
proof.

Lemma 2 Consider the following non-smooth convex
problem in the vector variable yeRY

. € 10
¥ = argmin,| 537y —a”y+ A, | 1o

Using operator T, (-) defined as

Ti(@:=[sgnlap[las-A],, . .. aSg-U(aN)[‘aN‘—MJr]T

the global minimized of (10) can be written as

an

1
¥ = =Tia).
c

Ifnon-negativity of the entries in y is imposed, the solution of
(10) subject to y=0,, is obtained by using the vector soft-
thresholding operator

T3 (@) := [max{0, a; — A}, ... , max{0, ay —A}]7 (12)

as

1
* = =Ty (a).
Y A A (@)

Proof. Note first that (12) can be solved element-wise; spe-
cifically, each entry y, of y is found by solving the scalar
problem y*=arg minyC(y)::(c/2y2—(xiy+7xlyl), which has a
non-differentiable cost. The necessary and sufficient condi-
tion for y*, to minimize C(y) is [27, p. 92]

la;l =4, it yf =0 a3

*

Vi
l¥il

cyi —a+A

=0, if y: 20

which is satisfied by y*,=sgn(a)[la,|-A],; see also [21].
When y is enforced to be non-negative, solution (12) can be
easily derived from (13) element-wise. []

Consider now the N,N_x1 auxiliary vector variables y and
&, and neglect irrelevant terms to re-write the GS-Lasso prob-
lem as:

o M , (14
(0.5, &) = scein| SRO— "1+ Al + ARo)

where R=%,_ "B "B, r=2_ "B, %, and
$,.=¢,-0,"1,. For simplicity, 0, is assumed to be known;
however, it could be incorporated in (14) and estimated as the
intercept.

Lettingm and p denote the Lagrange multipliers associated
with the equality constraints ®=y and ©=E, respectively, the
quadratically augmented Lagrangian function of problem
(14) is
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1 - T 15
L@y, &) = 50 RO=07r + 0 [lly + A2 Rey) +

€1 2
7 O-y) +u (0-8)+ TII0—7II§ + TIIO—é“II%
where c,, ¢,>0 are arbitrary constants. Then, for any initial

vectors vy, E©@ @, 1, the ADMoM algorithm entails the
following primal-dual iterative updates

o) = argmin £, JUD 7D DDy (16a)
D, ey = arg)l;%i;(l) LD, 5, &, gD -y (16b)
79 = gD ey (@) — 4 (16¢c)
©D = D g (@D — gy (16d)

where j=1, 2, . . . is the iteration index. The first step updates
the primal vector ®Y by using the values of the auxiliary
variables and the Lagrange multipliers obtained at the previ-
ous iteration j-1; since L(-) is quadratic in ©, the convex
optimization problem (16a) can be solved in closed form as

OP—~(R(erter) ) (e 19 DesEY -
D_yo Dy,

nY -y (17

Next, variables y and & can be updated using the newly
computed vector 6%, with the Lagrange multipliers fixed
from the previous iteration. Inspection of the function L(6%,
1, E, MUY, u¥ by reveals that (16b) can be split into two
sub-problems, where minimization over y and & can be per-
formed separately. After neglecting irrelevant terms, minimi-
zation of (16b) wrt vy reduces to the following non-differen-
tiable convex problem

C1

_ ‘ s 18
o) :argmym[jyry_yr(cleuunu 1))+/12(Rc(y)] (18)

which, in turn, can be separated in following N, sub-problems

cy . .
FVEve =Vheat + )+ Al

7§’ = argmin a9
Yg

N

g=1,...,N,

wherey, andm are N, x1 sub-vectors of y and m, respectively,
collecting elements {yn}n:Ngcg_ Dot 2 and {nn}n:Ngcg_ G

From Lemma 1, the global minimizer of each sub-problem
(19) is given by

10§ + 1™ — - 2], 20

) — (@ —1.(-1)
v =@ +crnd™) D
—10¢ +7f ' —

Upon neglecting constant terms, minimization of (16b) wrt
the non-negative variable £ can be obtained after solving the
following non-smooth convex problem
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; . 2 i ; 21
&V = ngmgzo[jsTsfsT(ﬂ(J REXACED) +/\1*§*1] @b

which, from Lemma 2, admits the following closed-form
solution

22

f(J) T+ (CZG)(J) +/l(J 1))

The overall ADMoM-based solver for GS-Lasso problems
is tabulated as Algorithm 1.

Algorithm 1 ADMoM-based GS-Lasso solver

Initialize y© = = Onyg LE@= = Onpng N = ONW ,and p©@ =
ONbN
Form R and r
forj=0,1,...do
Update 0(/) Via 17
Update v, via (20) forallg=1,..., Ng
Update £ via (22)
Update ’r](/) = n(/’l) +c; (0(/) - y(/))
Update p = pv=9 4+ ¢, 09 - £9)
end for

The distinct feature of the proposed ADMoM-based algo-
rithm for solving the GS-Lasso problem (14) is its computa-
tionally affordable implementation, offered by the closed-
form expressions for the primal variable updates; as well as
the simple updates of the dual variables %’ and pn%. Further-
more, since ADMoM has provable convergence to the global
minimizer when the considered problem is convex, conver-
gence of the proposed algorithm to "® in (6) is ensured as
stated next.

Proposition 1

For any ¢, ,c,>0 and any initializing vectors y©, £, 1
and p, the iterates (17) for ®%, () for {y,”}, () for EY and
(16¢)(16d) forn®” and u?”, respectively, are convergent. Also,
OY converges to the solution of the GS-Lasso (6); i.e.,

lim Y

Jj—= 4o

Shadow fading as well as possible slow temporal variations
of the PU transmit-PSDs lead to time-varying {®, (f)}. Fol-
lowing the lines, time-varying PSDs can be tracked by
employing the following time-weighted version of the GS-
Lasso.

o) = 23

arg min
G0Ny N

t Ne
[ Z Besy 19, (0) = Bo (DAIE + aléll, + 22Ra(6)
=1 r=1

where £, €(0,1] is the so-called forgetting factor, and index
1=1, . .., t emphasizes the temporal variability of channels
and received PSDs. Also, to address the need for real-time
processing, the estimation of O in (23) can be performed
on-line, where each iteration of the ADMoM algorithm is
performed after acquiring new estimates {¢, (t)}. In this case,
the ADMoM iteration index j coincides with the temporal
index T.
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Algorithm 1 is centralized, meaning that the whole set of
PSD estimates {¢, },_,"" are available at either an FC or a CR
cluster head. To reduce the considerable message-passing
overhead associated with globally sharing PSD measure-
ments across CRs, and to address scalability and robustness
concerns (FC constitutes an isolated point of failure), a dis-
tributed counterpart of Algorithm 1 can be derived along the
lines.

Techniques for Spectrum Sensing under Channel Uncer-
tainties are now described, in including a Group Sparse Total
Least-Squares (TLS) technique.

Uncertainty in the matrices {B, } is manifested because of
(1) errors in the estimates of {g)C ex} (with or without
accounting for shadowing; (ii) grlé offsets when PUs are
located between grid points; and, (iii) basis expansion
approximation errors. To cope with these perturbations, a
robust version of the GS-Lasso is developed in this section.
That is, TLS may be applied as described herein to address
situations having perturbed compressive sampling, which
may arise whenever any of the uncertainties result in a mis-
match between actual and estimated bases reference func-
tions computed for the model.

TLS is the workhorse used for estimating non-sparse vec-
tors obeying an over-determined linear system of equations
with uncertainty present in both the regression matrix and the
observations (fully-perturbed model). Sparsity in the esti-
mate was taken into account, where the TLS framework was
extended to solve sparse under-determined fully-perturbed
linear systems. The sparse TLS approach is broadened here to
account for sparsity present both at individual entries, and
also at groups of entries.

Define
T
Be=[B]. .. .B |
and let
¢u=[el. 0 T

ANy

and E a NN, xN_N,, matrix capturing perturbations corrupting
the matrix B. Consider now estimating © as follows:

. o , Lo (24
{6, ) =arg min [5||¢—(B+E>0n2+§||E||F+A1||e||l+mc(e>.

gzoNbNg

Relative to the classical TLS, the cost in the group sparse
(GS-)TLS problem (24) is augmented with the regularization
terms accounting for the two forms of sparsity inherent to ©.
Compared to, problem (24) includes also the term A,R5(0).

Problem (24) is generally non-convex due to the presence
of the product EO; thus, it is in general difficult to obtain a
globally-optimal solution. However, a novel reduced-com-
plexity algorithm with provable convergence to a stationary
point of (24) will be developed in the ensuing section.

An Alternating Descent Solver is no described. The cost in
(24) will be optimized here iteratively using a block coordi-
nate descent algorithm, which cyclically minimizes it wrt E
(keeping O fixed), and wrt © after fixing E. Specifically, the
following two steps are performed at the i-th iteration:
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A(t 1)

(i1) Fix E = s 2%

and update 0

A(i-1)

2
o =i [3llo=(o+ £ e 1t 2ot
b

() Fix 6= 87, 26)
and obtain E(i)

E(t) A(t) A(t)”

= argmin 5 || B2 X —||E||F-

By ﬁxmg "E®, (24) boils down to a GS-Lasso problem;
thus, "©% can be computed by using the ADMoM-based
solver after replacing (17) with the following update, where j
still represents the index for the (inner) ADMoM iterations:

-t @n

Al ) )
J+ e+ Cz)leNg] X

8 =B+ B (B4 B

|5+ £

)T¢ + ey D 4 gD i D),
The quadratic convex problem (26) admits the following
closed form solution

EO=(1469),2) " [§-BOD)6DOT 28
2

which can be obtained after equating the derivative of the cost
in (26) with zero. The overall solver for GS-TLS is tabulated
as Algorithm 2.

Algorithm 2 GS-TLS

Initialize E© = Oy, Wy
while Stopping crlterlon i§ not satisfied (i iteration mdex) do

Initialize y© = 0 E(O) = ONW n®= Onongs uc
O

While® Stopping criterion is not satisfied (j iteration index) do
Update 6% via (27)

Update y 7 via (20) with 0% in place of 89, forall g =
1,
Update %5) via 22) with 6% in place of 69
Updaten® =m91 4 ¢, (6% —y9)
Update u® = p0=b + ¢, (6% — £9)
end while
Update 0® = g
UpdateE® = (1+ 6,2
end while

q) Be(l)] e(l)T

Under certain conditions, the block coordinate descent
algorithm is known to converge (at least) to a local optimum
point, as asserted next.

Algorithm 3 Robust GS-TLS

Initialize 6@ = O, and EO = Oy,
while stopping crﬁenon is not satlsﬁed fl iteration index) do
Initialize y© = e E( = Oy, o n®= ON ,and p©@ =
O,
whilé Stopping criterion is not satisfied (j iteration index ) do
Update 69 via (37)
Update yg(/) via (20) with 6% in place of 69 forall g =
1,...,N
Update o via (38)
Update 9 via (22) with 0% in place of 6
Updaten® =10V +¢, (89 - 40
Update H(/) - ll(/ D4 ¢y (e(w) %(/))
end while
Update 0D = gliv) and o0 = oG
Update E® = (1+ 09,2 ' [§ - BOD+6@] 6T
end while
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Proposition 2.

For any initialization {6, B®}, the Iterates {#®, E®}
(25)-(26) converge monotonically to a stationary point of
problem (4).

The following describes outlier-resilient spectrum sensing
techniques, including Robust GS-TLS.

The problem dealt with in the previous section accounts for
uncertainty in the entries of the regression matrix B. However,
due to particularly abrupt local shadow fading, failures of the
sensing modules, or unexpected narrow-band impulsive
noise and/or interference, CRs observations may be affected
by abundant errors. This section develops schemes for dis-
cerning and removing the observations that largely deviate
from the underlying model (a.k.a. outliers).

A simple heuristic to detect unreliable data could be to
estimate © via (24), compute the residuals and, then, reject
the PSD observations whose residuals exceed a certain
threshold. A systematic method that accounts for possible
outliers can be found, where the underlying linear regression
model is augmented by an auxiliary outlier vector. Using this
model, the receiver PSD at the CR locations ¢ can be
expressed as

¢=(B+E)O+o+e (29

where the nonzero entries of the NN, x1 real vector o capture
outliers; and e is a proper vectorization of the periodogram
estimation errors. Since few outliers are expected compared
to the total number of data collected in ¢, the vector o is
sparse.

Capitalizing on the three forms of sparsity emerging from
(1) the grid-based model (group sparsity), (ii) the PSD basis
expansion (single-coefficient sparsity) and (iii) the outliers
(single-coefficient sparsity), and accounting for perturbations
in the regression matrix, the following robust GS-TLS is
considered. In this way, a robust GS-TLS technique is
described that addresses errors introduced by uncertainties,
such as estimate errors, grid offsets, and BEM approximation
errors, and also handles measurement corruption by inclusion
of outliers.

[6.E 8] = 30
N PR
g min [Slp— B+ + ol + SUEIR + el + ARal) +

E
QEONbNg

Asllolly

where A;=0 promotes the (single-coefficient) sparsity of vec-
tor 6. The nature of the perturbations captured in E and o is in
general different: o collects unmodeled errors, whereas E
describes (small) perturbations. It is also worth noticing that
the support of 6 reveals the unreliable CR data.

An alternating descent algorithm is described. Although
(30) is generally a non-convex problem, a block coordinate
descent algorithm can still be employed. In this case, the cost
in (30) will be iteratively minimized wrt E and {©,0}; that s,
the following two updates are performed at the i-th iteration:
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Y]

(il) Fix E = f;"(‘; and solve

{9(1')’ 6(;)} = arg 31
1 ~li— 2
min [§||¢ —(B+ 70+ o, + Aullell, + L Re®) + Aslloll |

o
gzoNbNg

(i2) Fix 0 = 7" and 0 = 6% and update £ as

NG () (32)

1 W a2 1
£ = argmin Sl - 88" + 0" + o, + S

The quadratic problem (32) can be solved in closed form,
to obtain

ED~(14]69),2) [¢-BOD+6D16T. (33)

As for (31), the ADMoM can be employed to find its
optimal solution. To this end, (31) can be re-formulated as:

()

(07, y, €07 = (34

arg min
020
=0N, Ng
V50

1 ali— 2
[l (54 £ Vool + il + 2:Retr) +

Kllolh | st €2 0n,5, 6=7.0=¢

withy and § denoting auxiliary vector variables. Letting again
1 and p denote the Lagrange multipliers associated with the
constraints ®@=y and @=E, respectively, the quadratically aug-
mented Lagrangian function (34) is given by

1 ~(-1) 2 (35)
L0y, & 0,m, 1) = z||¢ —(B+E )0 +o|, + ulilly + 2Ry +

cy [
Asllolly + 170 =)+ 47 (0= )+ 310 =3+ 10 - €15

Starting from any initial vectors o, ¥, £ n© u® each
iteration j of the ADMoM (within each iteration i of the block
coordinate descent) proceeds in these steps:

gind = argmin £(6, B U VR T R CR TR (362)

YD = argmin £, 5, 70 D -1 (1)) (36b)
Y

&0 = argrggl LD D g gD =11 (36¢)

0% = argmin £0), y, €071, o, gUD, 41 (36d)
0

g9 = 9 4 o (0D — A (36e)

4D = D g (@D - gy, (36£)

Since (34) is convex and satisfies the requirements for the
ADMOoM to be convergent, iterates { @ 0%} will converge
to the solution {"®®,"0®} of (31).
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Problem (36a) admits the closed-form solution given by

~li- -1 (37)

600 =8+ B (B+ Bk (e eniy |

[(B+ j;“"”)(@ + 0D e i) s 0o g=D =D _ D)

where v and £9 are still computed via (20) and (22). Using
Lemma 2, it is possible to show that the solution of (36d) is
computed via soft-thresholding as

O(ij):(:gks @_ (B+E(i’l))0(i")).

At each step of the ADMoM algorithm the soft-thresholding
in (38) tags as outliers the (current) residuals §—(B+E¢)p%
that exceed A. The overall solver is tabulated as Algorithm 3.
With arguments similar to Proposition 2, the following result
can be asserted.

Proposition 3. For any initialization {#©, 6©, E©)}, the
iterates {6®, 6, E®) in (32)-(31) converge monotonically to
a stationary point of problem (30).

Simulations are now described. Consider a set of N =50
CRs uniformly distributed in an area of 100 mx100 m, coop-
erating to localize N =2 active PUs and estimate their PSD
map. CRs and PU sources are marked with blue circles and
red triangles, respectively, in FIG. 4. PUs transmit raised
cosine pulses with unitary amplitude (0 dB), roll-off factor
@=0.5, and bandwidth W=10 MHz. They share the band
B=[100,200] MHz with spectra centered at frequencies
f.=115 and 175 MHz for “PU 1” and “PU 27, respectively.
CRs adopt a path loss-only model to accomplish the sensing
task.

Transmitted signals are searched over a grid of N,=10
evenly spaced center frequencies f =95+vW, ve{l, ..., 10}.
Each CR computes periodogram samples at N=64 frequen-
cies at signal-to-noise-ratio (SNR)-5 dB, and averages them
across T=100 time-slots to form ACI)xr('c,fk), k=1,...,64,asin
4.

In the first experiment, the PSD generated by PU s experi-
ences only small-scale fading in its propagation from x to any
location x, where it is measured in the presence of noise with
variance 0,=0.1. To simulate small-scale fading {h, ..}, a
6-tap Rayleigh model with exponential power delay profile is
adopted. Since the expected gain adheres to a path loss propa-
gation law, the regression matrix is in this case perfectly
known. FIG. 5A depicts the true PSD map summed across
frequencies, which peaks at the active PU locations. To local-
ize and estimate the transmit-PSDs, a grid of N,=100 equi-
distant points is used. The map obtained by using the GS-
Lasso-based sensing algorithm is shown in FIG. 5B, which
also depicts the estimated positions of the transmitting PUs
along with their transmission powers (in dB) represented by
the coefficients of the normalized raised-cosines. One can
readily notice that “PU 1” is perfectly localized and its trans-
mit-PSD is estimated accurately. As for “PU 2”, its location is
revealed although spurious power is also leaked to an adjacent
grid point. The sparsity-promoting parameters A, and A, are
set to A, =30-max{B”"¢} and A,=10-max,{1B, “"¢|,}, respec-
tively. FIG. 6 corroborates the convergence of the GS-Lasso
solver by showing the evolution of the elements of 9.

In FIG. 7, the transmit-PSDs undergo not only small-scale
fading but also log-normal shadowing. As the CRs employ a
path loss-based model, shadowing here perturbs the regres-
sion matrix. Expressed in logarithmic scale, the shadowing
process has zero mean and standard deviation 6 dB. The

(39)
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estimated PSD maps obtained by using the “plain” GS-Lasso
and the GS-TLS-based sensing algorithm are compared in
FIG. 8.

FIG. 8A illustrates that the GS-Lasso is unable to localize
the two PUs, as clouds of PU sources are falsely revealed
around the actual locations of “PU 1 and “PU 2”. Also, it
does not accurately estimate their PSDs. On the other hand,
the GS-TLS algorithm reveals the exact location of both PUs,
although a rather small amount of spurious power is leaked to
a grid point close to “PU 1”. Note also that the transmit-
powers are estimated with considerably higher accuracy.
Numerical experiments have shown that only a few (5 to 10)
iterations suffice for the alternating descent algorithm to con-
verge.

The enhanced localization and power estimation capabili-
ties impact also the subsequent CR power allocation task,
which relies on the estimated coverage region of the PU-
transmitters to re-use the licensed bands without causing
harmful interference to any potential PU receiver. GS-Lasso
will be preferable if a coarse description of the “interference-
heavy” areas in terms of PU activity is desired over say
accurate localization and transmit-power estimation of the
PUs. Such a coarse can be useful for e.g., temporal (rather
than spatio-temporal) frequency re-use purposes.

As described, abrupt local shadow fading may severely
compromise the PSD estimates at CRs, and thus degrade the
sensing performance. This is the case considered in FIG. 9,
where an obstacle positioned in the upper-left part of the
monitored area causes deep fades of the receive-power at
some CRs. FIG. 10A demonstrates that “plain” GS-Lasso
fails to localize the two PU transmitters. Activity is revealed
around the actual location of “PU 17, and shadowing causes
the false detection of a third low-power PU in position x,=
(80,70) transmitting over the same band of “PU 2”. This
false-detection event is not present in FIG. 10B, where the
robust GS-TLS algorithm is used. In fact, “PU 2” is well-
localized and its transmit-PSD is estimated accurately. A
small amount of power is still dribbled on an adjacent grid
point of “PU 2. With A,=30-max{B7"¢}, further analysis of
the data reveals that 15% of the periodogram samples, spe-
cifically those collected by the “faded CRs”, was declared
unreliable, and was thus discarded
Cognitive Radio Spectrum Prediction Using Dictionary
Learning

As described above, the radio frequency (RF) spectrum is
a precious resource that must be utilized efficiently. Fixed
spectrum allocation, which confers exclusive access rights on
spectrum license holders, has resulted in significant under-
utilization of the valuable spectral resource, depending on
time and locations. The cognitive radio (CR) strategy aims at
alleviating this inefficiency by allowing unlicensed second-
ary users to opportunistically transmit, provided that the
transmissions do not disturb the communication of licensed
primary users (PUs). To achieve the necessary protection of
PU systems, CR systems provide spectrum sensing and intel-
ligent resource allocation. Spectrum sensing is used to iden-
tify unused spectral resources in the frequency, time and
space domains. The “spectrum holes™ can then be exploited
through agile resource allocation.

A simplifying assumption often made for spectrum sensing
is that the spectrum occupancy is more or less invariant over
the deployment region of the CR systems. Based on this,
spectrum sensing is often performed in a collaborative fash-
ion, where the band occupancy by a common set of PU
transmitters is detected using observations fused from mul-
tiple CRs. This mitigates effectively fading and shadowing,
which impede reliable detection of PU presence.

10

15

20

25

30

35

40

45

50

55

60

65

18

However, the assumption might not hold when PU systems
employ a small RF footprint for significant spatial reuse, or
the CR network grows in size and gets deployed in a broader
geographical region. An instrumental concept in this case is
the RF cartography, which provides a map of RF power
distribution over space and reveals the spatial variation of
spectrum occupancy. Such a construct is useful for optimiz-
ing CR network operations, not only in the PHY/MAC, but
also in higher layers.

Techniques are described herein that allow interference
power present at each CR node in the network to be acquired,
and also to predict its future levels. Some example techniques
may address the challenge that CRs do not have prior infor-
mation on the number of PU emitters and the corresponding
PU-CR channel gains, which may be needed for combining
the measurements from different sensors. Moreover, CRs
might not be able to report their measurements every time,
due to energy-saving sleep modes or congested signaling
channels. A network controller operating accordance to the
techniques described herein accounts for missing observa-
tions by performing appropriate interpolation. The future
spectrum state must be inferred based on past measurements.
Machine learning and compressive sensing techniques are
employed herein to tackle these challenges. A general dictio-
nary learning framework is adapted here to learn the spatial
and temporal patterns of the RF power distribution. To aid in
spatial interpolation, the topology information of the CR
network is exploited in a semi-supervised learning fashion.
Batch and online algorithms are developed. The online tech-
niques can track the slow variation of the RF power distribu-
tion, and features low computational complexity and lax
memory requirement.

Spatio-temporal spectrum prediction algorithms for cog-
nitive radios (CRs) are developed using the framework of
dictionary learning and compressive sensing. The interfer-
ence power levels at each CR node locations are predicted
using the measurements from a subset of CR nodes without a
priori knowledge on the primary transmitters. A semi-super-
vised dictionary learning approach for the interpolation of
missing observations in space is described. The proposed
techniques are also extended for spatio-temporal prediction.
Batch and online alternatives are presented, where the online
algorithm features low complexity and memory require-
ments. Numerical tests verify the performance of the pro-
posed novel methods.

Returning to FIG. 1, consider the CR network (system 10)
consisting of M nodes (sensors 12), deployed in a geographi-
cal area, over which the interference due to the incumbent PU
systems vary, albeit smoothly. CRs 12 form a mesh network
by identifying their neighbors, and cooperate for spectrum
sensing. System 10 acquires the interference level at each CR
node location, based on the measurements collected from a
subset of the CR nodes per time. The missing measurements
may be due to various practical limitations, such as errors and
congestion in the control channel, or the fact that radios are in
the sleep mode to save battery.

Suppose that there are K PU transmitters (RF-enabled
devices 15) in the area with the k-th PU transmitting at power
p.(D). Let g,,,(t) denote the channel gain from the k-th PU to
the m-th CR. Then, the interference power level x,, (t) per-
ceived at the m-th CR can be modeled as



US 9,363,679 B2

19

K (1.1)
Tn() = g OPKD, me M:=1{1,2, ..., M}
k=1

Upon defining vectors mt(t):=[mx, (1), . . . , T, (O)]° (. denotes
transposition) and P(t):=[p,(t), . . . , p(D)]° as well as matrix
G(t) whose (m.k)-entry is g,,(t), the matrix-vector counter-
part of (1) can be expressed as

aA(D=G(HP(.

At each time t, a subset M°*(t)= of CRs observe the
interference power levels. The measurements from these CRs
can be stacked in vector y*>*(1)eR™" ' given as

YEO=0@n(0)+z(0)
where (t)eR‘MOb " {5 the measurement noise vector, and (t) is
a matrix consisting of the m-th row of an MxM identity
matrix, where meM°?*(t).

The problem of estimating G(t) and p(t), given the past and
the current measurements y°**(t) fort=1,2, .. ., t, when there
were no missing observations was tackled using dictionary
learning in [13]. Here, the goal is to predict the missing
interference levels m, (1) for x, (t) for meM™*(t):=M\M°>*
(1), given {y* ()},

Techniques for spatial spectrum prediction using semi-
supervised dictionary learning are described. Prompted by
(1.2), suppose that 7t can be represented as a linear combina-
tion of a small number of bases (atoms) taken from a dictio-
nary. Let eR**€ denote a dictionary with Q atoms. Then, the
preceding assumption amounts to

(1.2)

(1.3)

a=Ds 1.4

where vector eR€ is sparse. Fourier bases or the wavelet bases
are some of the dictionaries often used for a variety of natural
or man-made signals. Based on this model, the techniques
described below leverage compressive sensing and machine
learning to predict the unobserved interference levels in
space. In the following, a two-stage approach is first consid-
ered, in which the dictionary learned in the training phase is
used for the desired prediction task in the operational phase.
An alternative algorithm capable of performing the dictionary
learning and spatial prediction simultaneously will be pre-
sented subsequently.

An example two-phase batch implementation is described.
Instead of using oft-the-shelf bases such as Fourier or the
wavelet bases, D can be directly learned from training data,
which can be collected through a sounding procedure. In the
presence of missing entries in the data, it is helpful to augment
this learning process with additional structural information.
In this work, the network topology information, which is
typically maintained for various network control tasks such as
routing, is leveraged in the framework of semi-supervised
learning.

Let Ae{1,0}** denote the adjacency matrix of the CR
network topology. Thus, the (m,m")-th entry a,, ,,,of for m,m'e
is 1 if nodes m and m' are neighbors, and 0 otherwise. Then,
the Laplacian matrix is defined as :=diag(1)-, where 1 is the
all-one vector, and diag(v) is a diagonal matrix with the
entries of vector v on its diagonal.

Training Phase:

In the training phase, given a training set {y, >}, _",
which may contain missing entries, the goal is to form an
estimate D of D such that y,°**~0,Ds, for n=1, 2, . . ., N,
where coefficients s,, are sparse, and matrix O,, discards the
missing entries. Specifically, the following optimization
problem is solved to obtain D.
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) N (1.5)
D :=argminpep s, Z Sulsn, D)

n=1
where

1 1 1.6
s D)= 3052 = 0,DSl + Al + 55" DFLDs o

Di={[dy, .., dgleRMC A IR < 1, g =1, ... 0} (n

Here, the first term in (1.6) promotes fitness of the recon-
struction to the training datum in a least-squares (L.S) sense,
and the 1;-norm-based regularization term encourages spar-
sity in s with A >0 playing the role of a tuning parameter. The
third term in (1.6) can be re-written as

SDLDs=%,_ "5 . Ma,  (x,-m, ) (1.8)

indicating that it encourages the interference levels experi-
enced at neighboring nodes to be similar, with A,;>0 being a
tuning parameter.

To appreciate the role of this Laplacian matrix-based regu-
larization, suppose that a CR never reports an observation
during the entire training period. Then, without the last term,
the corresponding row in " cannot be estimated, making it
impossible to predict the interference level at this CR’s loca-
tion. The presence of the Laplacian term allows one to esti-
mate the missing entry relying on neighbors’ measurements.

Operational Phase:

Once D has been obtained as in (5), the operational phase
predicts the interference levels. First, a sparse coding step is
performed at each time t to estimate the sparse coefficient (t)
corresponding to the measurement y°2%(t); that is,

R L s a2 1. a7 A (1.9
$(2) := argmxmzny (n)— O(I)Ds”2 +A2(Islly + E/ILS D LDs

Then, the desired interference levels in 7i(t) that include the
missing entries can be recovered by mt(t):=(t):=Ds(t).

Implementation:

Problem (1.9) is convex and there are various specialized
algorithms available for solving the problems of this sort
extremely fast. On the other hand, (5) is nonconvex, and it is
difficult to obtain globally optimal solutions. However, the
problem is convex with respect to and {s,,} individually. Thus,
to find a locally optimal solution, a block-coordinate descent
(BCD) algorithm can be employed until convergence.

Specifically, at the k-th iteration, updates are done as:

e (1.10)

N
(R mgg?; Folsws D7)

(1.11)

N
D(k) - afgg’gglz fn(:VLk)s D)
=1

where D® and {3, ®} are the k-th iterates. Note that (1.10)
can be solved separately per n=1, 2, . . ., N using the same
solver as the one for (1.9). To solve (1.11), a BCD algorithm
can be once again employed over the columns of D. Define
f,:=0,70, +), L, and let $,,,, denote the g-th entry of vectors,,.
Then, the overall dictionary training algorithm is presented in
Table 1.
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TABLE 1

Input: training set {y,***},,.,", {O,}, initial dictionary Dg, A,, L and &y,

Output: D :=[d;, do, . . ., dg]

1: Set D =D,
2: Repeat
Perform sparse coding with fixed D.

3: Forn=1,2,...,N
4: §,=argmin, T, (s, D)
S. Nextn
Perform dictionary update with fixed {s,,}
6. Repeat
7. Forq=1,2,...,Q
8: d,=d + ](\;n _ INL¥sn7q§)’l- R
B V8, 0,1y, - 1,Ds,)]
o: d, =d,/ max{d, 1]
10: Next q
11 Until convergence

Until convergence

Example online techniques are now described. In order to
track time-varying statistics of the interference patterns, an
online algorithm can be derived, in which the dictionary
training and spatial interference prediction are performed
jointly at the same time. Compared to the batch training
discussed, the online algorithm can perform the computation
recursively, resulting in significant savings in complexity and
memory.

Specifically, the following formulation is adopted, which
weights recent observations more heavily.

D). (1.12)

A — : - o L1/ obs 2
01 =g, i, 35510 6) - ODSOIE + Ao+

%/ILST(T)DTLDS(T))

where e(0,1] is a forgetting factor. Instead of solving prob-
lem (1.12) in a batch fashion for the entire time horizon t=1,
2, ..., twhenever a new observation y°**s (t) arrives at each
time t, an online approach updates only the “current” coeffi-
cient vector §(t), while the past ones §(t-1), . . ., §(1) are held
fixed. Nevertheless, it can be shown under mild conditions
that D so obtained converges as t— to the same D as would
be obtained from a batch approach.

Although the dictionary update depends on the entire
observation history, a recursive computation can avoid stor-
ing the past observations and calculations. For this, it is useful
to maintain the following quantities:

' (1.13)
A(D) = Z B0 (1) = PAG - D+ 505 (1)
r=1
' (1.14)
An(0):= 3 B e ot o 30870
=1
=PAnt =D+l be(r)}:v(z)sf(z), meM
(1.15)

B := ) O @y (5 ()

=1

= BB(1— 1)+ O"(y"* (0" (1)

where 11, is an indicator function equal to 1 if the condition
inside the braces are satisfied, and 0 otherwise.
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Similar to the batch case described above, the dictionary
update amounts to solving (12) for D(t) with {§(z)}_,* fixed.
Let §(v) denote the j-th entry of §(t), and A, (1) and A (1)
the (j,q)-th entry of matrices A, (t) and A(t), respectively.
Also, let b(t) represent the j-th column of B(t). Then, upon
defining

T (1.16)
;1) 1= ) BT8O0 (DO@) + AL L)

=1

= diag([ALjg (), Az g (D), -, Aug O] + 224 (DL (1.17)

the column-wise BCD leads to the following update for the
j-th column of D(t)

0 . (1.18)
dj=0,07 b - > @;,(0d,m
g=Llq*j
d; (1.19)

(0

~ max{lidl,, 1}

An example method for online spectrum prediction is given in
Table II.

TABLE II
Input: online observations {y°**(t)}, {O ()},
initial dictionary Dy, A, L, Azand p € (0, 1]
Output: {n(t)}
L: Set D(0) = Do, A(0) =0, A,,,(0) = 0 Ym €M,
and B(0) =0.
2: fort=1,2,...
Perform sparse coding
3:

o1 " A 2
3 = a.rgmmSEHy"b ®-0mDit—1 )s||2 +
1 - R
Alislly + 524, 7 D = DLD(t = Ds

Perform prediction
4: Output 7i(t) = D(t - 1)s(t)
Perform dictionary update

3 AD=pAC- D+ 5057
& Ap(D) = PA, (= 1)+ {mEME 10T )
for Vm € M
7: Bt)=pBt-1)+ o7 (G 0] T
8: Set [d, (1), . . . ,do(®)] = Dt - 1)
9: Repeat
10: Forq=1,g,...,Q
11: Update d(t) as (18)-(19)
12: Next q
13: Unti 1 comvergence
14: Set D(t) = [d; (1), . . . , dp(D)]
15: Nextt

Techniques for spatio-temporal spectrum prediction are
now described. The algorithms developed so far provide
imputations for missing measurements of spatial interference
distributions, given the (incomplete) measurements of the
current and the past time instants. However, in order to predict
the future interference status, for which not even partial mea-
surements can be available, one has to incorporate temporal
correlation structures into the model, or learn such structures
from the data. In this disclosure, we leverage the data-driven
dictionary learning framework to learn temporal dynamics
from the data even in an online fashion.
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The observations over T consecutive intervals are concat-
enated into a super-vector, and apply the algorithms described
above. That is, define

YO, .,y TR (1.20)

0W=[0%®), . .., O(t-T+D)T* (1.21)

L=1;9L (1.22)

where ® denotes the Kronecker product, which are used in
place of y°*(t), O(t), and L, respectively, in the method of
Table II.

To perform prediction for m(t+1), after executing line 14 in
Table II, compute sparse coefficient §/(t+1) for a fictitious
observation yObS’f(t+l)::[y°bst(t), cens yObST(t—T+2)]‘, assum-
ing that the entire y°“’(t+1) is missing; i.e., O/(t+1):=
[O%(1), . . . O%(t=T+2)[". Then, 7t(t+1) can be obtained as

A+ D=DO[1:M,:J8(+1)

where ﬁ(t)[l:M,:] denotes the first M rows of lﬁ(t).

The performance of the proposed techniques was evaluated
via numerical tests. A CR network consisting of M=20 nodes
with the topology depicted in FIG. 11 is considered, where the
circles denote the CR nodes and the lines represent the con-
nections established among neighbors. The interference
power distribution due to K=3 PU transmitters is also
depicted in FIG. 1, where the emitter locations are clearly
revealed. The pathloss was computed as

(@)

where d was the distance, d,=0.01 and ¢.=2.5. The number of
atoms of the dictionary was set to Q=50.

First, the two-phase algorithm was tested. Each of the PUs
turned on with a 30% chance, and transmitted at a power level
px(t) chosen from a uniform distribution with support. Each
CR made a measurement with a 70% chance. The measure-
ments were corrupted by additive noise generated from a
zero-mean Gaussian distribution with variance 107>, which
was then clipped to ensure non-negativity. The measurements
were also normalized by the maximum amplitude observed in
the training set. No shadowing or small-scale fading was
considered, signifying a quasi-static scenario. N=300
samples were used to train the dictionary, and then another
300 samples were supplied for the operational phase. The
values of A, and A; were set to 0.1 and 0.005, respectively. To
compensate for the bias inherent in Lasso-type estimators,
de-biasing was performed in the operational phase; that is,
after performing sparse coding in (1.9) to obtain §(t), (1.9)
was re-solved without the 1, regularization term only for the
non-zero entries in §(t). FIG. 12 shows the true interference
level and the reconstructed one at CR m=12 in the thick blue
and the thin red curves, respectively. The missing (true) levels
are denoted by the circles, whose interpolations are marked
by the crosses. It can be seen that the missing entries are
accurately recovered through the proposed method.

To test the online algorithm, the Rayleigh fading coeffi-
cient h,,(t) for the channel from PU k to CR m at time t was
generated using a first-order autoregressive model

(1.23)

By (B0t 1= 1)V 1=, 1 0) (1.24)

where 0=0.9995 was used, and w,,,(t) was circularly sym-
metric zZero-mean complex Gaussian noise with variance 1.
The overall channel gain g, .(t) was formed by multiplying
the pathloss with Ih,,,(t)1>. The forgetting factor was $=0.95,
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and A,=0.25 and A,=0.005 were used. The transmit-power of
all PUs was fixed to 150 so that the tracking performance
could be clearly visible. FIG. 13 shows the interference level
for CR 7, where it is evident that the online algorithm tracks
the slow variation of interference levels due to channel fading.
Also, it is noted that the initial transient for the online learning
is quite short.

The normalized root mean square error (RMSE) for the
missing observations, averaged over 20 CRs, is depicted in
FIG. 14 for various values of A and A; . The online algorithm
was again used. Two sets of curves are presented, correspond-
ing to the chance of missing observations P, equal to 0.3
and 0.5. It can be deduced that the Laplacian-based regular-
ization becomes more important when a larger fraction of
observations are unavailable.

In order to test the temporal prediction, certain traffic pat-
terns were assumed. That is, at each time interval t, PU 1
tossed a coin and transmitted with probability 0.1. If PU 1 did
transmit, PU 2 transmitted in the next time slot, followed by
PU 3’s transmission in the third time slot. Likewise, at each
time t, PU 3 started transmission with probability 0.15, fol-
lowed by PU 2 in the second time slot, and PU 1 in the third.
FIG. 15 shows the result of the one-time slot-ahead prediction
of the interference power at CR 6 using the online algorithm
with T=4. No missing measurements were assumed. It can be
seen that the traffic patterns are successtully acquired by
dictionary learning to predict future interference levels.

Spectrum prediction algorithms for CR networks have
been described. Using a dictionary learning framework, the
techniques can predict the interference power experienced at
each CR node based on the current and the past measurements
collected from a subset of nodes in the network. Exploiting
the fact that the spatial variation of interference is smooth, a
regularization term based on the CR network topology was
also incorporated. Batch and online algorithms were derived,
where the online alternative possessed a tracking capability at
lower complexity and memory requirements. Temporal pre-
diction was also discussed. Numerical tests verified the effi-
cacy of the techniques.

FIG. 16 shows a detailed example of various devices that
may be configured to execute program code to practice some
embodiments in accordance with the current disclosure. For
example, device 500 may be a CR 12, a FC 16, a workstation,
a computing center, a cluster of servers or other example
embodiments of a computing environment, centrally located
or distributed, capable of executing the techniques described
herein.

In this example, a computer 500 includes a processor 510
that is operable to execute program instructions or software,
causing the computer to perform various methods or tasks.
Processor 510 is coupled via bus 520 to a memory 530, which
is used to store information such as program instructions and
other data while the computer is in operation. A storage
device 540, such as a hard disk drive, nonvolatile memory, or
other non-transient storage device stores information such as
program instructions, data files of the multidimensional data
and the reduced data set, and other information. The computer
also includes various input-output elements 550, including
parallel or serial ports, USB, Firewire or IEEE 1394, Ether-
net, and other such ports to connect the computer to external
device such a printer, video camera, surveillance equipment
or the like. Other input-output elements include wireless
communication interfaces such as Bluetooth, Wi-Fi, and cel-
lular data networks.

The computer itself may be a traditional personal com-
puter, a rack-mount or business computer or server as shown
in FIG. 16, or any other type of computerized system. The
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computer in a further example may include fewer than all
elements listed above, such as a thin client or mobile device
having only some of the shown elements. In another example,
the computer is distributed among multiple computer sys-
tems, such as a distributed server that has many computers
working together to provide various functions.

The techniques described herein may be implemented in
hardware, software, firmware, or any combination thereof.
Various features described as modules, units or components
may be implemented together in an integrated logic device or
separately as discrete but interoperable logic devices or other
hardware devices. In some cases, various features of elec-
tronic circuitry may be implemented as one or more inte-
grated circuit devices, such as an integrated circuit chip or
chipset.

If implemented in hardware, this disclosure may be
directed to an apparatus such a processor or an integrated
circuit device, such as an integrated circuit chip or chipset.
Alternatively or additionally, if implemented in software or
firmware, the techniques may be realized at least in part by a
computer readable data storage medium comprising instruc-
tions that, when executed, cause one or more processors to
perform one or more of the methods described above. For
example, the computer-readable data storage medium may
store such instructions for execution by a processor. Any
combination of one or more computer-readable medium(s)
may be utilized.

A computer-readable medium may form part of a computer
program product, which may include packaging materials. A
computer-readable medium may comprise a computer data
storage medium such as random access memory (RAM),
read-only memory (ROM), non-volatile random access
memory (NVRAM), electrically erasable programmable
read-only memory (EEPROM), flash memory, magnetic or
optical data storage media, and the like. In general, a com-
puter-readable storage medium may be any tangible medium
that can contain or store a program for use by or in connection
with an instruction execution system, apparatus, or device.
Additional examples of computer readable medium include
computer-readable storage devices, computer-readable
memory, and tangible computer-readable medium. In some
examples, an article of manufacture may comprise one or
more computer-readable storage media.

In some examples, the computer-readable storage media
may comprise non-transitory media. The term “non-transi-
tory” may indicate that the storage medium is not embodied in
a carrier wave or a propagated signal. In certain examples, a
non-transitory storage medium may store data that can, over
time, change (e.g., in RAM or cache).

The code or instructions may be software and/or firmware
executed by processing circuitry including one or more pro-
cessors, such as one or more digital signal processors (DSPs),
general purpose microprocessors, application-specific inte-
grated circuits (ASICs), field-programmable gate arrays (FP-
GAs), or other equivalent integrated or discrete logic cir-
cuitry. Accordingly, the term “processor,” as used herein may
refer to any of the foregoing structure or any other processing
circuitry suitable for implementation of the techniques
described herein. In addition, in some aspects, functionality
described in this disclosure may be provided within software
modules or hardware modules.

As described herein, spatio-temporal and dynamic re-use
of the licensed bands calls for collaborative CR network
sensing algorithms able to portray the ambient power spectral
density at arbitrary locations in space, frequency, and time.
The present paper addressed this ambitious task through a
parsimonious model of the PSD in frequency and space,
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which reduces the sensing task to estimating a sparse vector
of unknown parameters. An estimator of the model param-
eters was developed based on the GS-Lasso, and a low-com-
plexity solver based on the ADMoM was presented. The
location and transmit-PSD information conveyed by the esti-
mated model parameters, complemented with either a path
loss-based or more elaborated propagation models was
shown to allow CRs to accurately reconstruct the PSD atlas of
the primary system. To cope with uncertainty in the regres-
sion matrix, a provably convergent sensing algorithm was
introduced which combines the merits of the TLS framework
with the hierarchical sparsity inherent to the network-level
sensing problem. To account for outliers, a robust algorithm
able to discern and reject unreliable PSD data was also devel-
oped. The novel robust GS-TLS approach capitalizes on the
sparsity of the unknown parameters and the outliers, and
offers systematic estimation of the spectrum holes jointly in
space, frequency, and time while taking into account channel
uncertainties and unmodeled errors.

Further exemplary details are described in: Dall’ Anese,
“Group sparse Lasso for cognitive network sensing robust to
model uncertainties and outliers,” Physical Communication,
November, 2011; Dall’ Anese, “Group sparse Lasso for cog-
nitive network sensing robust to model uncertainties and out-
liers,” IEEE 12 International Workshop on Signal Process-
ing Advances in Wireless Communications, Jun. 26, 2011;
Dall’ Anese, “Distributed Cognitive Spectrum Sensing via
Group Sparse Total Least-Squares,” 4” IEEE International
Workshop on Computational Advances in Multi-sensor
Adaptive Processing,” Dec. 13, 2011; and Kim, “Joint Link
Learning and Cognitive Radio Sensing,” in Proc. of the 45th
Asilomar Conf. on Signals, Systems, and Computers, Pacific
Grove, Calif., Nov. 6-9, 2011, contents of all of which are
incorporated herein by reference.

The following clauses illustrate additional examples:

Clause 1. A method comprising: sensing local radio-fre-
quency (RF) interference spectrum at each of a plurality of
sensors positioned at a plurality of locations within a geo-
graphic region; and computing a basis expansion model from
the sensed RF interference spectrum at each of the sensors to
construct a power spectral density (PSD) map representative
of the distribution of RF power throughout the geographic
region as a function of frequency and location, wherein the
basis expansion model is computed as a plurality of functions
having a corresponding coefficient, each of the functions
representing a power emitted by an RF-enabled device on a
corresponding frequency band, and wherein computing the
basis expansion model comprises applying group sparse (GS)
total least-squares (TLS) method to compute the coefficients.

Clause 2. The method of clause 1, wherein computing
estimates for coefficients of the basis expansion model com-
prises applying an alternating direction method of multipliers
(ADMoM) to compute the coefficients.

Clause 3. The method of clause 1, wherein computing a
basis expansion model comprises computing the coefficients
of the basis expansion model using a group sparse least-
absolute-shrinkage-and-selection operator (GS-Lasso).

Clause 4. A system comprising: a plurality of sensors to
sense a local radio-frequency (RF) interference spectrum at
each of a plurality of locations within a geographic region;
and a processor that computes a basis expansion model from
the sensed RF interference spectrum at each of the sensors to
construct a power spectral density (PSD) map representative
of the distribution of RF power throughout the geographic
region as a function of frequency and location, wherein the
processor computes the basis expansion model is computed
as a plurality of functions having a corresponding coefficient,
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each of the functions representing a power emitted by an
RF-enabled device on a corresponding frequency band, and
wherein the processor applies group sparse (GS) total least-
squares (TLS) method to compute the coefficients.

Clause 5. The system of clause 4, wherein the processor
applies an alternating direction method of multipliers (AD-
MoM) to compute the coefficients.

Clause 6. The system of claim 4, wherein the processor
computes the coefficients of the basis expansion model using
a group sparse least-absolute-shrinkage-and-selection opera-
tor (GS-Lasso) to identify the coefficients for computation.

Clause 7. A method comprising: sensing, over a period of
time, local radio-frequency (RF) interference spectrum at a
subset of a plurality of sensors positioned at a plurality of
locations within a geographic region; and applying dictionary
learning to compute predicted interference power levels at the
plurality of sensors for a current time based on current and
past measurements collected from the subset of sensor in the
network.

Clause 8. The method of clause 7, further comprising con-
structing a power spectral density (PSD) map representative
of the distribution of RF power throughout the geographic
region as a function of frequency and location based on the
predicted interference power at each of the sensors.

Various embodiments of the invention have been
described. These and other embodiments are within the scope
of the following claims.

What is claimed is:

1. A method comprising:

sensing local radio-frequency (RF) interference spectrum

at each of a plurality of sensors positioned at a plurality
of locations within a geographic region;

computing a basis expansion model from the sensed RF

interference spectrum, wherein the basis expansion
model comprises a set of reference basis functions that
represent a distribution of RF power emitted by RF-
enabled devices throughout the geographic region as a
function of frequency and location;

computing coefficients for the reference basis functions of

the basis expansion model using a group sparse least-
absolute-shrinkage-and-selection operator (GS-Lasso);
and

constructing, in accordance with the basis expansion

model, a power spectral density (PSD) map representa-
tive of the distribution of RF power throughout the geo-
graphic region.

2. The method of claim 1, wherein computing the coeffi-
cients for the reference basis functions of the basis expansion
model using a GS-Lasso comprises applying a GS-Lasso
operator to select which coefficients of the basis expansion
model are required for computation.

3. The method of claim 1, wherein computing the coeffi-
cients for the reference basis functions of the basis expansion
model using a GS-Lasso comprises applying an alternating
direction method of multipliers (ADMoM) to compute the
coefficients.

4. The method of claim 1, wherein computing the coeffi-
cients for the reference basis functions of the basis expansion
model using a GS-Lasso comprises applying a group sparse
(GS) total least-squares (TLS) method to identify and remove
outlier measurements from the sensed interference spectrum
when computing the coefficients.

5. The method of claim 1, wherein computing the basis
expansion model comprises computing the basis expansion
model as a parametric model in which each of the coefficients
for the reference basis functions is a scalar.
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6. The method of claim 1, further comprising computing
the reference basis functions to represent the aggregate dis-
tribution of RF power across the geographic region corre-
sponding to frequencies spanned by the reference basis func-
tions.

7. The method of claim 1, wherein computing the basis
expansion model comprises computing a parsimonious
model that accounts for scarce presence of transmitting RF-
enabled devices by using only a small subset of the coeffi-
cients for the model as non-zero as identified by the GS-
Lasso.

8. The method of claim 1, wherein computing the basis
expansion model comprises performing a most parsimonious
sparse signal expansion using an overcomplete basis to con-
struct the PSD maps.

9. The method of claim 1, further comprising:

communicating observation data indicative of the sensed

RF interference spectrum from each of the sensors to a
centralized computer; and

computing the PSD map with the centralized computer

based on the observation data.

10. The method of claim 1, further comprising:

exchanging, between the sensors, observation data indica-

tive of the sensed RF interference spectrum; and
computing the PSD map with the sensors based on the
observation data.

11. The method of claim 1, further comprising:

processing the PSD map to identify a location within the

geographic region where at least one frequency is unoc-
cupied.
12. The method of claim 1, wherein computing the coeffi-
cients for the reference basis functions of the basis expansion
model using a GS-Lasso comprises:
applying GS-Lasso to individual coefficients within the
model to enforce sparsity in the frequency domain for
individual ones of the RF-enabled devices, and

applying GS-Lasso to groups of coefficients in the model to
enforce geographic sparsity in the spatial distribution of
the RF-enabled devices.

13. The method of claim 12, wherein computing the coet-
ficients for the reference basis functions of the basis expan-
sion model using a GS-Lasso comprises specifying a first
sparsity-promoting parameter A, to enforce sparsity of indi-
vidual coefficients in the model and specifying a second
sparsity-promoting parameter A, to enforce sparsity for
groups of coefficients in the model.

14. A system comprising:

aplurality of sensors to sense a local radio-frequency (RF)

interference spectrum at each of a plurality of locations
within a geographic region; and

a processor that computes a basis expansion model from

the sensed RF interference spectrum at each of the sen-
sors to construct a power spectral density (PSD) map
representative of the distribution of RF power through-
out the geographic region as a function of frequency and
location,

wherein the processor computes the basis expansion model

as a plurality of reference basis functions each having a
corresponding coefficient, the reference basis functions
representing a power emitted by an RF-enabled device
on a corresponding frequency band, and

wherein the processor computes the coefficients of the

basis expansion model using a group sparse least-abso-
lute-shrinkage-and-selection operator (GS-Lasso).

15. The system of claim 14, wherein the processor applies
an alternating direction method of multipliers (ADMoM) to
compute the coefficients.
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16. The system of claim 14, wherein the processor applies
a group sparse (GS) total least-squares (TLS) method to iden-
tify and remove outlier measurements from the sensed inter-
ference spectrum when computing the coefficients.

17. The system of claim 14, wherein the processor com-
putes the reference basis functions to represent RF signals
transmitted by RF-enabled devices within the geographic
region.

18. The system of claim 14, wherein the processor com-
putes the basis expansion model as a parametric model in
which each of the coefficients for the reference basis func-
tions are scalars.

19. The system of claim 14, wherein the processor com-
putes the reference basis functions to represent the aggregate
distribution of RF power across the geographic region corre-
sponding to frequencies spanned by the basis functions.

20. The system of claim 14, wherein the processor com-
putes the basis expansion model by computing a parsimoni-
ous model that accounts for scarce presence of transmitting
RF-enabled devices by using only a small subset of the coet-
ficients for the model as non-zero.

21. The system of claim 14, wherein the processor com-
putes the basis expansion model by performing a most parsi-
monious sparse signal expansion using an overcomplete basis
to construct the PSD maps.

22. The system of claim 14, wherein the processor receives
observation data indicative of the sensed RF interference
spectrum from each of the sensors, and computes the PSD
map with the processor based on the observation data.
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23. The system of claim 14,

wherein the sensors exchange observation data indicative
of the sensed RF interference spectrum, and

wherein the processor comprises one of a plurality of pro-
cessors located at the sensors to compute the basis
expansion model and construct the PSD map based on
the observation data.

24. A mobile device comprising:

a sensor to sense a local radio-frequency (RF) interference
spectrum at a locations within a geographic region; and

a processor that computes a basis expansion model from
the sensed RF interference spectrum at each of the sen-
sors to construct a power spectral density (PSD) map
representative of the distribution of RF power through-
out the geographic region as a function of frequency and
location,

wherein the processor computes the basis expansion model
to include a plurality of functions having a correspond-
ing coefficient, each of the functions representing a
power emitted by an RF-enabled device on a corre-
sponding frequency band, and

wherein the processor applies a group sparse least-abso-
lute-shrinkage-and-selection operator (GS-Lasso) to
coefficients of the basis expansion model only for fre-
quencies an locations within the geographic region hav-
ing an active transmitter.
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