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Abstract
The information explosion propelled by the advent of personal computers, the Internet,

and the global-scale communications has rendered statistical learning from data increas-

ingly important for analysis and processing. The ability to mine valuable information from

unprecedented volumes of data will facilitate preventing or limiting the spread of epidemics

and diseases, identifying trends in global financial markets, protecting critical infrastructure

including the smart grid, and understanding the social and behavioral dynamics of emergent

social-computational systems. Along with data that adhere to postulated models, present

in large volumes of data are also those that do not – the so-termed outliers. This thesis

contributes in several issues that pertain to resilience against outliers, a fundamental aspect

of statistical inference tasks such as estimation, model selection, prediction, classification,

tracking, and dimensionality reduction, to name a few.

The recent upsurge of research toward compressive sampling and parsimonious signal

representations hinges on signals being sparse, either naturally, or, after projecting them on

a proper basis. The present thesis introduces a neat link between sparsity and robustness

against outliers, even when the signals involved are not sparse. It is argued that controlling

sparsity of model residuals leads to statistical learning algorithms that are computationally

affordable and universally robust to outlier models. Even though focus is placed first on

robustifying linear regression, the universality of the developed framework is highlighted

through diverse generalizations that pertain to: i) the information used for selecting the

sparsity-controlling parameters; ii) the nominal data model; and iii) the criterion adopted

to fit the chosen model. Explored application domains include preference measurement for

consumer utility function estimation in marketing, and load curve cleansing – a critical task

in power systems engineering and management.

Finally, robust principal component analysis (PCA) algorithms are developed to extract

the most informative low-dimensional structure, from (grossly corrupted) high-dimensional

data. Beyond its ties to robust statistics, the developed outlier-aware PCA framework is

versatile to accommodate novel and scalable algorithms to: i) track the low-rank signal

subspace as new data are acquired in real time; and ii) determine principal components

robustly in (possibly) infinite-dimensional feature spaces. Synthetic and real data tests

corroborate the effectiveness of the proposed robust PCA schemes, when used to identify

aberrant responses in personality assessment surveys, as well as unveil communities in social

networks, and intruders from video surveillance data.
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at the sampling points xi, from the estimate f̂ obtained after solving (3.23).

Note how all green points are close to the surface fo. . . . . . . . . . . . . . 60

3.3 Robustification path with optimum smoothing parameter µ∗ = 3.53 × 10−1.

The data is corrupted with No = 20 outliers. The coefficients ôi correspond-
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1

Chapter 1

Robust Statistical Learning from

‘Big Data’

The information explosion propelled by the advent of personal computers, the Internet, and

the global-scale communications has rendered statistical learning from data increasingly

important for analysis and processing. At any given time instant and all around the globe,

large volumes of data are being generated by today’s ubiquitous communication and mobile

sensing devices such as cell-phones, surveillance cameras and microphones, e-commerce

sites, wireless sensor networks, medical devices, and social-networking sites; see e.g., Fig.

1.1. The term ‘Big Data’ has been coined to describe this data deluge phenomenon, and

as mentioned in a recent article published in The Economist ‘The effect (of Big Data) is

being felt everywhere, from business to science, from government to the arts’ [30]. The

ability to mine valuable information from unprecedented volumes of data will facilitate

preventing or limiting the spread of epidemics and diseases, identifying trends in global

financial markets, combating crime, protecting critical infrastructure including the smart

grid, understanding the social and behavioral dynamics of emergent social-computational

systems, and the advancement of science as a whole. But the great promise comes with

great as well as exciting research challenges; as Google’s chief economist explains in the

same article ‘Data are widely available, what is scarce is the ability to extract wisdom from

them’. While significant progress has been made in the last decade towards achieving the
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Figure 1.1: North America’s map of Flickr and Twitter locations obtained from [41]. The map

was generated by drawing: i) a red dot at the location where a picture was taken and uploaded to

Flickr (during an unspecified time horizon); ii) a blue dot at the location where a Twitter tweet was

generated; and iii) a white dot at the location that has been posted to both Flickr and Twitter.

ultimate goal of ‘making sense of it all’, the consensus is that we are still quite not there.

1.1 Motivation and Context

Along with data that adhere to postulated models, present in large volumes of data are also

those that do not – the so-termed outliers. Resilience to outliers is of paramount importance

in a plethora of statistical learning tasks such as estimation, model selection, prediction,

classification, tracking, and dimensionality reduction, to name a few. Due to its universal

applicability, the method of least-squares (LS) is the workhorse of statistical learning. Un-

fortunately, LS is known to be very sensitive to outliers, since a single outlying datum can
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be sufficient to negatively influence (bias) the fit [63,104]. Naturally, this undesirable prop-

erty extends to most learning methods that minimize a residual sum of squared errors as

part of their criterion. To illustrate this observation with the simplest of examples, consider

data {xn}Nn=1 and form the sample mean estimator x̂`2 = (x1 + . . . + xN )/N , obtained as

solution to the `2-norm minimization problem

x̂`2 := arg min
θ

N
∑

n=1

(xn − θ)2. (1.1)

It is apparent that a single arbitrarily large observation xn can result in an arbitrarily

large estimate x̂`2. In the robust statistics parlance, this means that the breakdown point

of the sample mean estimator is zero; see e.g. [63]. The higher the breakdown point of

an estimator, that is, the higher the fraction of large observations that the estimator can

tolerate without yielding an arbitrarily large result, the more robust it is. In particular, the

median estimator x̂`1 = med(x1, . . . , xN ) given by

x̂`1 := arg min
θ

N
∑

n=1

|xn − θ| (1.2)

attains the maximum possible breakdown point of 0.5. Relative to (1.1), `1-norm regression

in (1.2) downweighs the effect of large residuals rn := xn − θ.

Beyond `1 regression, robust alternatives to LS include the M-estimators, which are

maximum-likelihood (ML) optimal for a class of ε-contaminanted outlier models [63]. Other

options are least-trimmed squares (LTS) estimators, which remove outliers from the LS

fit [104]. LTS estimators have high breakdown point, but prohibitive complexity except for

small sample sizes [103]. Random sample consensus (RANSAC) provides a computationally

tractable, near-LTS alternative, especially popular in computer vision for coping with a

large number of outliers [42, 58]. From a high-level vantage point, RANSAC randomly

draws subsets of a given training set of data samples, fits a model, and evaluates whether

the number of samples consistent with the model is large enough to accept the fit.

In this dissertation, a universal sparsity-controlling outlier rejection framework is devel-

oped for robust learning from high-dimensional data. The novel framework is rooted at the

crossroads of robust statistics [63, 104], the least-absolute shrinkage and selection operator
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(Lasso) for sparse regression [59,110], and convex optimization [11,13]. Leveraging the at-

tribute of sparsity has made headways across science and engineering in recent years, with

well documented merits in terms of complexity control through variable selection (automat-

ically single out the most important variables in high-dimensional feature space). A main

contribution of this thesis is to show that controlling sparsity in model residuals, can be

tantamount to controlling the number of outliers rejected. In addition, neat connections are

established between the seemingly unrelated fields of robust statistics and sparsity-aware

regression using the Lasso.

1.1.1 The Lasso

Consider the classical setup for linear regression, in which an input vector x :=

[x1, . . . , xp]
′ ∈ R

p is given, and the goal is to predict the real-valued scalar response y,

where ′ stands for transposition. A linear approximation to the regression function E[y|x]

is adopted to this end, namely f(x) = θ0 +x′θ, where θ := [θ1, . . . , θp]
′ ∈ R

p is the vector of

model coefficients, and the intercept is θ0. Given a training data set {yn,xn}Nn=1, the model

parameters {θ0,θ} are to be estimated according to a suitable criterion. The long standing

and most popular criterion is LS, which: i) often times yields unsatisfactory prediction accu-

racy; and ii) fails to provide a parsimonious model estimate whereby only the most relevant

predictor variables are selected; see e.g. [59]. Parsimony is a particularly attractive feature

for interpretation purposes, especially in high-dimensional problems commonly arising with

‘Big Data’, where p is large.

The least-absolute shrinkage and selection operator [110], abbreviated as Lasso, is a

regularization technique capable of performing both estimation and variable selection. It

combines the features of ridge regression and subset selection, the two popular techniques

traditionally employed to improve the LS estimates by separately dealing with the afore-

mentioned limitations i) and ii). Upon defining y := [y1 . . . yN ]′ ∈ R
N and the regression

matrix X := [x1 . . . xN ]′ ∈ R
N×p, the Lasso estimator is the minimizer of the following

nonsmooth convex optimization problem

θ̂Lasso = arg min
{θ0,θ}

1

2
‖y − 1Nθ0 −Xθ‖22 + λ‖θ‖1 (1.3)
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where 1N denotes the N × 1 vector of all ones, and ‖θ‖1 :=
∑p

i=1 |[θ]i| is the sparsity-

encouraging `1-norm of vector θ. The nonnegative parameter λ controls the amount of

sparsity (number of nonzero entries in θ̂Lasso), and is typically chosen via model selection

techniques such as cross-validation (CV); see e.g., [59]. Problem (1.3) is also known as basis

pursuit denoising, a term coined by [26] in the context of finding the best sparse signal

expansion over an overcomplete basis.

Lasso is equivalent to a quadratic programming (QP) problem [110]; hence, an iterative

procedure is required to determine θ̂Lasso for a given value of λ. While standard QP solvers

can be certainly invoked to this end, an increasing amount of effort has been put recently

into developing fast algorithms that capitalize on the unique properties of the Lasso. The

LARS-Lasso algorithm [34] is an efficient scheme for computing the entire path of solutions

(corresponding to all values of λ), elsewhere referred to as homotopy paths [34, 48], or,

regularization paths [44]. LARS capitalizes on the piecewise linearity of the Lasso path of

solutions, while incurring the complexity of a single LS fit, i.e., when λ = 0. Homotopy

algorithms have been also developed to solve the Lasso online, when data pairs {yn,xn} are

collected sequentially in time [6, 48]; see also [77] and [5]. Coordinate descent algorithms

have been shown competitive, even outperforming LARS when p is large, as demonstrated

in [44]; see also [126], and the references therein. Coordinate descent solvers capitalize on

the fact that Lasso can afford a very simple solution in the scalar case, which is given in

closed form in terms of a soft-thresholding operator S(·, λ). Specifically, the scalar Lasso

problem gives the solution

θ̂Lasso = arg min
θ

1

2
(y − θ)2 + λ|θ|1

=



















y − λ, y > λ

0, |y| < λ

y + λ, y < −λ

:=S(y, λ)

where the operator S(y, λ) := sign(y)max(|y| − λ, 0) is shown in Fig. 1.2.

Other approaches based on variable decoupling have been proposed by [53] and [125],
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Figure 1.2: The soft-thresholding operator.

while Nesterov’s accelerated proximal gradient algorithms have also enjoyed increasing pop-

ularity recently [9]. Since ‖θ‖1 is nondifferentiable, iterative subgradient methods are also

applicable despite their generally slow convergence rate; see [105] for a survey.

1.1.2 A motivating application domain

The growing volume of consumer-generated media provides ample testament to the urgent

need for understanding the complex interactions between people and computers. Contempo-

rary examples include financial markets involving human and computer traders and regula-

tors; computer-mediated bidding and auction systems such as Priceline or e-bay; massively

multiplayer online role playing games (MMORPG); online retailing and recommendation

systems; collective works such as open source software development and Wikipedia; online

‘challenge’ competitions; and cloud computing among many others. Yet as diverse and fas-

cinating as these examples are, they can only allude to what will come next. Understanding

the dynamics of the emergent social computational systems (SoCS), is a critical task to social

and behavioral engineering towards desired collective objectives. SoCS involve human and

computer ‘actors’ whose individual capabilities, values, and preferences determine modes

of social engagement. Thus, a holistic approach to preference measurement, analysis, and
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management (PM for short) holds the keys to understanding and engineering SoCS.

PM has a long history in marketing, retailing, product design, healthcare, and also

psychology and behavioral sciences, where conjoint analysis (CA - the PM ‘workhorse’) is

commonly used [55,60,90]. In a nutshell, the goal of PM is to learn the utility function of an

individual or group of individuals from expressed preference data (buying patterns, surveys,

ratings, recommendations, etc). The pioneering idea behind CA is to decompose consumer

preferences, into weights (partworths) of judiciously selected product attributes [55]. This

not only allows one to understand the preferences of existing products, but also to predict

utilities generated by new products obtained as combinations of the studied attributes.

Beyond profit-maximizing firms, the beneficiaries of PM have progressively expanded to

include consumers (e.g., using e-recommender systems), policy makers, and academics from

diverse fields with possibly altruistic and social welfare objectives [90]. Although the benefits

of CA have been well appreciated in the marketing and healthcare sectors, only recently

researchers have started to explore its links with SoCS under the general umbrella of PM

– an area of markedly growing interest given the exponential increase of preference data

(choices, rankings, surveys, questionnaires) generated through the web, and the associated

challenges emerging with contemporary requirements for socially intelligent computing.

With few exceptions, PM has traditionally been an off-line task, assuming mostly ‘ra-

tional’ individuals, clean data collected via paper and pencil questionnaires, and linear util-

ities that depend on only a few product attributes. These are very restrictive for existing

and forthcoming SoCS, which may involve thousands of underlying variables and include

grossly inconsistent ‘social liars’ or even malicious actors. In addition, the desiderata of

web-collected data come with challenges. Data collected online often include invalid pro-

tocols due to a respondent’s linguistic incompetence, careless inattentiveness, or deliberate

misrepresentation [66]. Recent research suggests that aberrant or otherwise invalid response

data is higher when data are collected over the web rather than by more traditional means.

This has led a recent panel of experts on online data collection [71, p. 108] to suggest that

‘researchers should use exploratory data analysis and systematic data mining to identify

and eliminate records with anomalous data patterns or to determine the need for statistics
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robust to outliers.’

Towards overcoming the aforementioned challenges and limitations, research in this

thesis aims at contributing to build the next generation of socially-intelligent computing

systems.

1.2 Thesis Outline and Contributions

The research dealt with in this thesis contributes to the advancement of robust statistical

learning theory and methods, by putting forth an universal sparsity-controlling outlier re-

jection (USPACOR) framework. It is shown that a sparsity tuning parameter (λ) in Lasso

controls the degree of sparsity in the sought estimator, and the number of outliers rejected.

Related approaches for robust linear regression can be found in [46, 64]. The major differ-

ence is that λ in these works is tied to a preselected outlier model, whereas here it is dictated

by the data. This promotes universality and a systematic approach leveraging solvers for all

robustifaction (a.k.a. homotopy) paths of Lasso; that is, for all values of λ1 [34,45,130]. In

this sense, USPACOR capitalizes on but is not limited to sparse settings (few outliers), since

one can examine the gamut of sparsity levels along the robustification path. Beyond linear

regression models, USPACOR’s universality is highlighted through diverse generalizations

pertaining to: i) the information used for selecting λ; ii) the nominal data model; and iii)

the criterion adopted to fit the chosen model. Accordingly, we can divide the contributions

of this thesis in three interrelated thrusts:

[T1] Robust learning for conjoint analysis. Driven by the explosion of web-collected

metric and choice-based preference data, the objective of this thrust is to develop util-

ity function (partworth) estimation algorithms under the linear regression and classi-

fication paradigms. Different from existing approaches, the robust algorithms sought

are implementable in a distributed fashion to facilitate coping with massive amounts

of choice data dispersed over the network, and account for consumer heterogeneity.

[T2] Robust nonparametric regression. In the dilemma of trusting a parametric

model versus trusting the data, nonparametric regression methods favor the latter.
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The goal in this thrust is to robustify nonparametric and kernel methods (such as

smoothing splines) against outliers. Also useful in the context of PM, the nonparamet-

ric models investigated in this thrust can capture interdependencies among product

attributes, an attractive feature lacking with linear utilities.

[T3] Robust principal component analysis. The goal here is to robustify principal

component analysis (PCA), thus enabling the possibility of extracting informative

low-dimensional structure from (grossly corrupted) high-dimensional data. Real-time

algorithms are developed to process data as it is acquired on-the-fly, and a novel robust

kernel PCA algorithm is shown effective in unveiling communities in social networks.

To gauge the effectiveness of the proposed robust methods, extensive experiments with

computer generated data are reported throughout the thesis. These are important since

they provide a ‘ground truth’, against which performance can be assessed by evaluating

suitable figures of merit. Nevertheless, no effort of this kind can have impact without

thorough testing, experimentation, and validation with real data. To this end, tests on real

video surveillance, social network, electric grid load curve, and personality assessment data

are included to compile a comprehensive validation package.

Elaborate discussion of [T1]-[T3] follows next along with a succinct literature review per

thrust. Moreover, contributions of this thesis in each case are pointed out.

1.2.1 Robust learning for conjoint analysis

To address the challenges outlined in Section 1.1.2, Chapter 2 develops novel noise and

outlier-robust partworth estimators for both metric and choice-based CA. For metric con-

joint data, questionnaire responses (product ratings) are assumed generated from a linear

regression model, which explicitly incorporates an unknown sparse vector of outliers. The

proposed partworth estimator minimizes a tradeoff between fidelity to the training data,

and sparsity of the outlier vector encouraged via a natural `0-(pseudo)norm regularization;

or its convex `1-norm surrogate leading to the Lasso [34, 102]. While regularization for

model complexity control in conjoint estimation has well-documented merits in terms of
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generalization capability [29,35,37], the major innovative claim here is that sparsity control

is tantamount to robustness control. This is indeed the case since a tunable parameter in

Lasso, controls the degree of sparsity in the estimated vector of model outliers. Selection

of tuning parameters could be at first thought as a mundane task. However, arguing on

the importance of such task as well as devising principled methods to effectively carry out

sparsity control, are at the heart of Chapter 2’s contribution to the field of CA.

For choice-based CA, a novel sparsity-controlling classifier is developed that is capable

of attaining desirable tradeoffs between model fit and complexity, while at the same time

controlling robustness and revealing the outliers present. Simulated tests demonstrate that:

i) USPACOR outperforms RANSAC in a linear regression setup, especially when the per-

centage of outliers is high; and ii) the proposed sparsity-controlling classifier for choice-based

data consistently outperforms the SVM alternative of [35].

1.2.2 Robust nonparametric regression

Consider again the prototypical supervised learning problem, in which an input vector

x := [x1, . . . , xp]
′ ∈ R

p is given, and the goal is to predict the real-valued scalar response

y = f(x). Function f is unknown, to be estimated from a training data set T := {yn,xn}Ni=1.

When f is assumed to be a member of a finitely-parameterized family of functions, standard

(non-) linear regression techniques can be adopted. If on the other hand, one is only willing

to assume that f belongs to a (possibly infinite dimensional) space of ‘smooth’ functions

H, then a nonparametric approach is in order, and this is the focus of Chapter 3.

Without further constraints beyond f ∈ H, functional estimation from finite data is an

ill-posed problem. To bypass this challenge, the problem is typically solved by minimizing

appropriately regularized criteria, allowing one to control model complexity; see, e.g., [36,

111]. It is then further assumed that H has the structure of a reproducing kernel Hilbert

space (RKHS), with corresponding positive definite reproducing kernel function K(·, ·) :

R
p×R

p → R, and norm denoted by ‖ · ‖H. Under the formalism of regularization networks,
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one seeks f̂ as the solution to the variational problem

min
f∈H

[

N
∑

n=1

V (yn − f(xn)) + µ‖f‖2H

]

(1.4)

where V (·) is a convex loss function, and µ ≥ 0 controls complexity by weighting the effect

of the smoothness functional ‖f‖2H. Interestingly, the Representer Theorem asserts that the

unique solution of (1.4) is finitely parametrized and has the form f̂(x) =
∑N

n=1 θnK(x,xn),

where {θn}Nn=1 can be obtained from T ; see e.g., [92, 119]. Further details on RKHS, and

in particular on the evaluation of ‖f‖H, can be found in e.g., [119, Ch. 1]. A fundamen-

tal relationship between model complexity control and generalization capability, i.e., the

predictive ability of f̂ beyond the training set, was formalized in [118].

The generalization error performance of approaches that minimize the sum of squared

model residuals [that is V (u) = u2 in (1.4)] regularized by a term of the form ‖f‖2H,

is degraded in the presence of outliers. This is because the LS part of the cost is not

robust, and can result in severe overfitting of the (contaminanted) training data [63]. Recent

efforts have considered replacing the squared loss with a robust counterpart such as Huber’s

function, or its variants, but lack a data-driven means of selecting the proper threshold that

determines which datum is considered an outlier [132]; see also [78]. Other approaches

have instead relied on the so-termed ε-insensitive loss function, originally proposed to solve

function approximation problems using support vector machines (SVMs) [118]. These family

of estimators often referred to as support vector regression (SVR), have been shown to

enjoy robustness properties; see e.g., [73, 88, 107] and references therein. In [27], improved

performance in the presence of outliers is achieved by refining the SVR solution through a

subsequent robust learning phase.

The starting point in Chapter 3 is a variational least-trimmed squares (VLTS) estima-

tor, suitable for robust function approximation in H. It is established that VLTS is closely

related to an (NP-hard) `0-(pseudo)norm-regularized estimator, adopted to fit a regres-

sion model that explicitly incorporates an unknown sparse vector of outliers [46]. As in

compressive sampling (CS) [115], efficient (approximate) solvers are obtained by replacing

the outlier vector’s `0-norm with its closest convex approximant, the `1-norm. This leads
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naturally to a variational M-type estimator of f , also shown equivalent to a Lasso [110] on

the vector of outliers. A tunable parameter in Lasso controls the sparsity of the estimated

vector, and the number of outliers as a byproduct. Hence, effective methods to select this

parameter are of paramount importance.

The link between `1-norm regularization and robustness was also exploited for param-

eter (but not function) estimation in [46] and [64]; see also [124] for related ideas in the

context of face recognition, and error correction codes [21, 22]. In [46] however, the se-

lection of Lasso’s tuning parameter is only justified for Gaussian training data; whereas a

fixed value motivated by CS error bounds is adopted in the Bayesian formulation of [64].

Here instead, a more general and systematic approach is pursued, building on contempo-

rary algorithms that can efficiently compute all robustifaction paths of Lasso solutions (also

known as homotopy paths) obtained for all values of the tuning parameter [34,45,48,125].

An estimator with reduced bias and improved generalization capability is also obtained in

Chapter 3, after replacing the `0-norm with a nonconvex surrogate, instead of the `1-norm

that introduces bias [110, 133]. Simulated tests demonstrate the effectiveness of the novel

approaches in robustifying thin-plate smoothing splines [33], and in estimating the sinc

function – a paradigm typically adopted to assess performance of robust function approxi-

mation approaches [27,132]. The novel robust spline-based smoother is adopted to cleanse

real load curve data, a key task aiding operational decisions in the envisioned smart grid

system [1,25].

1.2.3 Robust principal component analysis

Principal component analysis (PCA) is the workhorse of high-dimensional data analysis

and dimensionality reduction, with numerous applications in statistics, engineering, and the

biobehavioral sciences; see, e.g., [67]. Nowadays ubiquitous e-commerce sites, the Web, and

urban traffic surveillance systems generate massive volumes of data. As a result, the problem

of extracting the most informative, yet low-dimensional structure from high-dimensional

datasets is of paramount importance [59]. To this end, PCA provides LS optimal linear

approximants in R
q to a data set in R

p, for q ≤ p. The desired linear subspace is obtained
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from the q dominant eigenvectors of the sample data covariance matrix [67].

Data obeying postulated low-rank models include also outliers, which are samples not

adhering to those nominal models. Unfortunately, LS is known to be very sensitive to

outliers [63, 104], and this undesirable property is inherited by PCA as well [67]. Early

efforts to robustify PCA have relied on robust estimates of the data covariance matrix; see,

e.g., [18]. Related approaches are driven from statistical physics [128], and also from M-

estimators [31]. Recently, polynomial-time algorithms with remarkable performance guar-

antees have emerged for low-rank matrix recovery in the presence of sparse – but otherwise

arbitrarily large – errors [20, 24]. This pertains to an ‘idealized robust’ PCA setup, since

those entries not affected by outliers are assumed error free. Stability in reconstructing the

low-rank and sparse matrix components in the presence of ‘dense’ noise have been reported

in [127, 131]. A hierarchical Bayesian model was proposed to tackle the aforementioned

low-rank plus sparse matrix decomposition problem in [32].

In Chapter 4, a robust PCA approach is pursued requiring minimal assumptions on

the outlier model. A natural least-trimmed squares (LTS) PCA estimator is first shown

closely related to an estimator obtained from an `0-(pseudo)norm-regularized criterion,

adopted to fit a low-rank bilinear factor analysis model that explicitly incorporates an

unknown sparse vector of outliers per datum. As in compressive sampling [115], efficient

(approximate) solvers are obtained by surrogating the `0-norm of the outlier matrix with

its closest convex approximant. This leads naturally to an M-type PCA estimator, which

subsumes Huber’s optimal choice as a special case [46]. Unlike Huber’s formulation though,

results here are not confined to an outlier contamination model. A tunable parameter

controls the sparsity of the estimated matrix, and the number of outliers as a byproduct.

Hence, effective data-driven methods to select this parameter are of paramount importance,

and systematic approaches are pursued by efficiently exploring the entire robustifaction

(a.k.a. homotopy) path of (group-) Lasso solutions [59,130]. In this sense, the method here

capitalizes on but is not limited to sparse settings where outliers are sporadic, since one can

examine all sparsity levels along the robustification path. The outlier-aware generative data

model and its sparsity-controlling estimator are quite general, since minor modifications
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discussed in Chapter 4 enable robustifiying linear regression [49], dictionary learning [77,

114], and K-means clustering as well [43, 59]. Further modifications for bias reduction

through nonconvex regularization, and automatic determination of the reduced dimension

q, are also investigated.

Beyond its neat ties to robust statistics, the developed outlier-aware PCA framework

is versatile to accommodate scalable robust algorithms to: i) track the low-rank signal

subspace, as new data are acquired in real time; and ii) determine principal components

in (possibly) infinite-dimensional feature spaces, thus robustifying kernel PCA [106], and

spectral clustering as well [59, p. 544]. The vast literature on non-robust subspace tracking

algorithms includes [77,129], and [7]; see also [62] for a first-order algorithm that is robust

to outliers and incomplete data. Relative to [62], the online robust (OR-) PCA algorithm

of Chapter 4 is a second-order method, which minimizes an outlier-aware exponentially-

weighted LS estimator of the low-rank factor analysis model. Since the outlier and subspace

estimation tasks decouple nicely in OR-PCA, one can readily devise a first-order counterpart

when minimal computational loads are at a premium. In terms of performance, online

algorithms are known to be markedly faster than their batch alternatives [7, 62], e.g., in

the timely context of low-rank matrix completion [95, 96]. While the focus here is not on

incomplete data records, extensions to account for missing data are immediate and left as

future work.

Numerical tests with synthetic and real data corroborate the effectiveness of the pro-

posed robust PCA schemes, when used to identify aberrant responses from a questionnaire

designed to measure the Big-Five dimensions of personality traits [65], as well as unveil

communities in a (social) network of college football teams [50], and intruders from video

surveillance data [31].

1.3 Published Results

The present Ph.D. work on sparsity-controlling outlier rejection algorithms has resulted in

the pub- lication of 4 journals papers in the Institute of Electrical and Electronic Engineers

(IEEE) Transactions on Signal Processing [81, 84, 85], and in the Institute for Operations
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Research and the Management Sciences (INFORMS) Marketing Science [87]. The work

has also been disseminated at pertinent conferences, where a total of 5 articles have been

accepted for presentation [8, 49,82,83,86].

1.4 Notational Conventions

The following notational conventions will be adopted throughout the subsequent chapters.

Bold uppercase letters will denote matrices, whereas bold lowercase letters will stand for

column vectors. Whenever the context makes it sufficiently clear, [.]ij will be used for a

matrix to denote block matrix partitioning. Operators ⊗, �, (.)′, (.)†, λmax(.), exp(.),

tr(.), E [.], vec [.], med(·) will denote Kronecker product, Hadamard product, transposition,

matrix pseudo-inverse, spectral radius, exponential function, matrix trace, expectation,

matrix vectorization, and median, respectively. Vector diag(M) collects the diagonal entries

of M, whereas the diagonal matrix diag(v) has the entries of v on its diagonal. The `q norm

of vector x ∈ R
p is ‖x‖q := (

∑p
i=1 |xi|q)1/q

for q ≥ 1; and ‖M‖F :=
√

tr (MM′) is the matrix

Frobenious norm. Positive-definite matrices will be denoted by M � 0. The p× p identity

matrix will be represented by Ip, while 0p will denote the p × 1 vector of all zeros, and

0p×q := 0p0
′
q. Similar notation will be adopted for vectors (matrices) of all ones. The i-th

vector of the canonical basis in R
n will be denoted by bn,i, i = 1, . . . , n.
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Chapter 2

Exploiting Sparsity in Model

Residuals for Robust Conjoint

Analysis

2.1 Introduction

Preference measurement (PM) has a long history in marketing, healthcare, and the biobe-

havioral sciences, where conjoint analysis (CA) is commonly used. In a nutshell, the goal of

PM is to learn the utility function of an individual or group of individuals from expressed

preference data (buying patterns, surveys, ratings, recommendations, etc). The pioneering

idea behind CA is to decompose consumer preferences, into weights (partworths) of judi-

ciously selected product attributes [55]. For metric conjoint data, an outlier-robust part-

worth estimator is developed in this chapter, on the basis of a neat connection between `0-

(pseudo)norm-regularized regression, and the least-trimmed squared estimator [104]. This

connection suggests efficient solvers based on convex relaxation, which lead naturally to

a family of robust estimators subsuming Huber’s optimal M-class. Outliers are identified

by tuning a regularization parameter, which amounts to controlling the sparsity of an out-

lier vector along the entire robustification path of least-absolute shrinkage and selection
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operator (Lasso) solutions.

For choice-based CA, a novel classifier is developed that is capable of attaining desirable

tradeoffs between model fit and complexity, while at the same time controlling robustness

and revealing the outliers present. Variants accounting for nonlinear utilities and consumer

heterogeneity are also investigated.

2.2 Preliminaries and Robustness

Consider I respondents (e.g., consumers) indexed by i ∈ {1, . . . , I}, each rating Ji profiles

represented by the p × 1 vectors xij , j ∈ {1, . . . , Ji}. Each xij comprises p attributes of

the profile (or question) j presented to respondent i. As an example consider the CA of

personal computers reported in [74]. With p = 13, the attributes considered are ‘Telephone

Service Hot Line’, ‘Amount of RAM’, ‘Screen Size’, ‘CPU Speed’, ‘Hard Disk Size’, ‘CD

ROM/Multimedia’, ‘Cache’, ‘Color of Unit’, ‘Availability’, ‘Warranty’, ‘Bundled Productiv-

ity Software’, ‘Money Back Guarantee’, and ‘Price’. All attributes are binary valued; for

‘Amount of RAM’, say, the corresponding entry in xij is coded as 1 to represent 16 Mb,

and -1 to represent 8 Mb. Observe that one could in principle generate up to 213 profiles

to describe different candidate computers, but typically a few dozens are of real interest.

In addition, fewer profiles naturally give rise to shorter questionnaires, which are attractive

for both practical and theoretical reasons [74].

Parametric and linear utility functions u(x) are typically adopted for modeling pref-

erence measurements [10, 108]. In these models responses {yij}Ji

j=1 adhere to the linear

regression yij = x′
ijwi + εij , wi is the unknown p× 1 vector of partworths for respondent i,

and εij captures random errors. Such a model describes the three most common types of

conjoint data collection formats, namely:

(M1) Full-profile ratings, where one question per profile is presented to the respondent.

(M2) Metric paired-comparison ratings, where xij is replaced by the difference x̃ij :=

x
(1)
ij − x

(2)
ij of a pair of profiles.
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(M3) Choice-based conjoint data, where in addition to taking pairwise differences of pro-

files, the measurement is the sign of yij [113].

In words, question j under (M3) asks respondent i to choose between profiles x
(1)
ij and

x
(2)
ij ; whereas under (M2), the surplus utility of the preferred profile over the other one

is also quantified. For simplicity of exposition, focus will be placed first on individual

partworth estimates; that is, each wi will be estimated separately without fusing information

from individual respondents. Subscript i can clearly be dropped in this case. Once the

homogeneous case is addressed, approaches to account for consumer heterogeneities are

possible along the lines of [37,74,113], as discussed in Section 2.4.3.

Given survey- or questionnaire-based training data T := {yj ,xj}Jj=1, modern statistical

learning techniques have been developed to obtain w. Under (M1) or (M2), the task

amounts to parameter (or generally function) estimation, whereas under (M3) it boils down

to a binary classification problem [29, 35, 37]. Following either deterministic or Bayesian

formulations, these state-of-the-art techniques rely on suitably regularized loss functions to

‘optimally’ tradeoff complexity for error in the resultant model fit – an approach effecting

the desirable generalization capability beyond T [113].

However, most existing partworth estimators have not accounted for outliers commonly

present in large volumes of conjoint data. Outliers can be attributed to multiple factors,

including: i) unintentional deviations from the adopted model of e.g., choice-based data; ii)

behavioral effects of human respondents, e.g., response errors due to impatient or inattentive

responders; and iii) intentional errors caused by malicious responders. Considering for

simplicity (M1)1, the starting point here is to develop a robust estimator of w that is

universal with respect to the outlier model. One such approach is the least-trimmed squares

(LTS) estimator given by [104]

ŵLTS := arg min
w

s
∑

j=1

r2
[j](w) (2.1)

where r2
[j](w) is the j-th order statistic among the squared residuals r2

1(w), . . . , r2
J(w),

1Upon replacing xij with profile pair differences x̃ij := x
(1)
ij − x

(2)
ij , the estimators for model (M1) apply

also to model (M2). A robust estimator for choice-based conjoint data (M3) is presented in Section 2.4.1.
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and rj(w) := yj − x′
jw. The so-termed coverage s determines the breakdown point of

LTS [63,104], since J − s profile ratings resulting in the largest residuals are not present in

(2.1). Beyond this universal outlier-rejection property, the LTS estimator is an attractive

option due to its high breakdown point and desirable theoretical properties, namely
√

J-

consistency and asymptotic normality under mild assumptions [104].

Even though (2.1) is nonconvex, existence of a minimizer ŵLTS can be established as

follows: i) for each subset of {yj ,xj}Jj=1 with cardinality s (there are
(

J
s

)

such subsets), solve

the corresponding ordinary least-squares (LS) problem to obtain a candidate estimator per

subset; and ii) pick ŵLTS as the one among all
(J

s

)

candidates with the least cost. This

solution procedure is combinatorially complex, and thus intractable except for small number

of profiles J . Algorithms to obtain (approximate) LTS estimates are available [103].

2.3 Robust Linear Regression via Outlier Sparsity

Instead of discarding large residuals, the proposed approach is to model outliers explicitly

and estimate them jointly with w. To this end, consider introducing scalar auxiliary vari-

ables {oj}Jj=1 one per question (rated profile), which take values oj 6= 0 whenever rating j

is outlier contaminated, and oj = 0 otherwise. This leads to the preference model

yj = x′
jw + oj + εj (2.2)

where oj can be deterministic or random with possibly unknown distribution. A similar

model was advocated under different assumptions in [46] and [64]; see also [21] and [124].

In this under-determined linear regression model, both w as well as the J × 1 vector o :=

[o1, . . . , oJ ]′ are unknown. The percentage of outliers dictates the degree of sparsity (number

of zero entries) in o. Sparsity control will prove instrumental in efficiently estimating o,

rejecting outliers as a byproduct, and consequently arriving at a robust estimate ŵ. A

natural criterion for controlling outlier sparsity is to seek the estimator

{ŵ, ô} = arg min
w,o

J
∑

j=1

(yj − x′
jw − oj)

2 + λ0‖o‖0 (2.3)
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where ‖o‖0 denotes the nonconvex `0-norm (equal to the number of nonzero entries of o).

Tuning λ0 ≥ 0 controls sparsity in ô.

As with compressive sampling and sparse modeling schemes that rely on the `0-norm,

e.g., [115], (2.3) is also NP-hard [89]. In addition, the sparsity-controlling estimator (2.3) is

intimately related to LTS, as asserted next (see Appendix 2.7.1 for a proof).

Proposition 2.1 If {ŵ, ô} solves (2.3) with λ0 chosen such that ‖ô‖0 = J−s, then ŵLTS =

ŵ in (2.1).

Whenever (2.3) deems J−s ratings as outliers, the obtained partworth estimate ŵ coincides

with the LTS solution of (2.1). (Recall that LTS with trimming constant s, effectively

discards the J − s largest residuals.) The importance of Proposition 2.1 is threefold: i) it

formally justifies the additive contamination model and its estimator for robust metric CA;

ii) it provides a neat link between the seemingly unrelated fields of sparse linear regression

and robust estimation; and iii) it lends itself naturally to efficient (approximate) LTS solvers

based on convex relaxation.

Recalling that the `1-norm ‖o‖1 is the closest convex approximation of ‖o‖0 [115],

motivates relaxing (2.3) to

min
w,o

J
∑

j=1

(yj − x′
jw − oj)

2 + λ1‖o‖1. (2.4)

This estimator is universally robust, and subsumes Huber’s M-estimator for a specific choice

of λ1; details are given in Appendix 2.7.2. M-type estimators (including Huber’s) adopt a

fortiori an ε-contaminated probability distribution for the outliers, and rely on minimizing

the asymptotic variance of the resultant estimator for the least favorable distribution of

the ε-contaminated class (asymptotic min-max approach) [63]. The assumed degree of

contamination specifies the tuning parameter λ1 in Huber’s robust loss function

ρ(r) :=







r2, |r| ≤ λ1/2

λ1|r| − λ2
1/4, |r| > λ1/2

(2.5)

and thus the threshold for deciding the outliers in M-estimators. In contrast, the present

approach is universal in the sense that it is not confined to any assumed class of outlier
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distributions, and can afford a data-driven selection of the tuning parameter [cf. Section

2.3.1]. Before dwelling into algorithmic alternatives to solve (2.4), a remark is in order.

Remark 2.1 (Partworth regularization) In addition to o it is possible to also promote

sparsity and/or smoothness of the partworth vector w by augmenting the cost in (2.4)

with additional regularization terms entailing its `1-norm ‖w‖1 and/or its `2-norm ‖w‖22.
The former promotes sparsifying the partworth vectors and retaining only the most critical

attributes explaining the respondent’s preferences. When the number of attributes p is

large, parsimonious u(x) can ease managerial decision-making. Ridge-type regularization

allows to further control the (model) complexity of the solution, which is important when

the responses J are few and p is considerably larger [37].

Albeit non-differentiable, (2.4) can be solved efficiently via e.g., alternating minimization

(block-coordinate descent) iterations with guaranteed convergence to the global optimum.

Iterations comprise a sequence of LS fits for w, and coordinatewise soft-thresholded updates

for o; detailed iterations are tabulated under Algorithm 1. Alternatively, it is possible to

show that the solutions {ŵ, ô} of (2.4) are respectively given by ŵ := X†(y − ôLasso) and

ô := ôLasso, where y := [y1, . . . , yJ ]′, X† := (X′X)−1X′ with X := [x1, . . . ,xJ ]′; and ôLasso

is given by the Lasso esimator

ôLasso := arg min
o
‖(IJ −XX†)(y − o)‖22 + λ1‖o‖1. (2.6)

Selecting λ1 along the robustification (a.k.a. homotpy) path of Lasso solutions controls the

number of outliers rejected. But this choice is challenging because existing techniques such

as cross-validation (CV) are not effective when outliers are present [104]. Interestingly, it is

possible to devise a general and systematic approach to selecting λ1, by leveraging recent

convex optimization solvers that yield the entire path of Lasso solutions, i.e., ôLasso for all

values of λ1 in (2.6) [34,44,102]. Based on these robustification paths and prior knowledge

possibly available on the model (2.2), one can effectively select λ1 – the subject dealt with

in the next section.
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Algorithm 1 : Alternating-minimization solver

Initialize o(−1) = 0J .

Form y := [y1, . . . , yJ ]′ and X := [x1, . . . ,xJ ]′

for k = 0, 1,. . . do

Update w(k) = (X′X)−1X′[y − o(k − 1)].

Update the residuals r(k) = y −Xw(k).

Update o(k) via oj(k) = sign[rj(k)] max (|rj(k)| − λ1/2, 0) , j = 1, . . . , J .

end for

2.3.1 Selection of outlier sparsity

The ensuing methods for choosing λ1 depend on prior information available about the

outliers (number or statistics), and safely assume that the robustification path of (2.6) is

efficiently obtained.

Number of outliers is known. By direct inspection of the robustification paths one can

determine the range of values for λ1, so that the degree of sparsity in ô equals the number

of outliers. Specializing to the interval of interest, and after discarding the identified outliers,

K-fold CV methods can be applied to determine the ‘best’ λ∗
1. Note that the number of

outliers is also assumed known by RANSAC, in order to determine the number of random

draws needed to attain a prescribed probability of success [42,58].

Variance of the nominal noise is known. If the variance σ2
ε of the inlier noise εi in (2.2) is

known, one can proceed as follows. Consider the estimates ŵg obtained using (2.4) or (2.6)

after sampling the robustification path for each point {λg}Gg=1 on a prescribed grid of size

G. Based on {ŵg}Gg=1 and the data T , find the sample variances {σ̂2
g}Gg=1 after neglecting

those training data {yj,xj} identified as outliers. The winner λ∗
1 := λg∗ corresponds to the

grid point

g∗ := arg min
g
|σ̂2

g − σ2
ε | . (2.7)

This is an absolute variance deviation (AVD) criterion for selecting λ∗
1. Knowledge of σ2

ε is

also required by RANSAC; see also Sec. 2.5.

Variance of the nominal noise is unknown. If σ2
ε is unknown, one can still compute a robust

estimate of the variance σ̂2
ε , and repeat the previous procedure after replacing σ2

ε with σ̂2
ε in
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(2.7). One simple option is based on the median absolute deviation (MAD) estimator, where

σ̂ε := 1.48 × medi (|r̂i −medj (|r̂j |) |). The residuals r̂i are formed based on a nonrobust

estimate of w, e.g., obtained via an LS fit using a small subset of the training data T .

The factor 1.48 provides an approximately unbiased estimate of σε, when the nominal noise

is Gaussian. In general, MAD requires knowledge of εj’s symmetric pdf to determine the

leading factor in σ̂ε [104].

Contamination model. One may know a priori that the disturbances {oj +εj} in (2.2) adhere

to Huber’s contamination model [63]. Here εj can be thought of as nominal noise, and oj

as the contamination. If in this case λ1 equals the threshold value in Huber’s function, then

ŵ enjoys asymptotic optimality in a well defined minimax sense [46].

Bayesian framework. Adopting a Bayesian perspective, one could model w as having i.i.d.

entries obeying a non-informative (i.e., uniform) prior, independent of o, which is assumed

to have i.i.d. entries adhering to a common Laplacian distribution with parameter 2/λ∗
1.

Using λ1 = λ∗
1 in (2.4), yields estimates ŵ (and ô) which are optimal in the maximum a

posteriori (MAP) sense; see also [64].

2.3.2 Estimator refinements

Nonconvex regularization. Instead of substituting ‖o‖0 in (2.3) by its closest convex

approximation, namely ‖o‖1, letting the surrogate function to be nonconvex can yield tighter

approximations. To this end, consider approximating (2.3) by the nonconvex formulation

min
w,o

J
∑

j=1

(yj − x′
jw − oj)

2 + λ0

J
∑

j=1

log(|oj |+ δ) (2.8)

where δ ≈ 0 is introduced to avoid numerical instability.

Local methods based on iterative linearization of log(|oj |+ δ) around the current iterate

oj(k), can be adopted to minimize (2.8). Skipping details that can be found in [69], this

procedure leads to the following iteration for k = 0, 1, 2, . . .

{w(k),o(k)} = arg min
w,o

J
∑

j=1

[

(yj − x′
jw − oj)

2 + ωj(k − 1)|oj |
]

ωj(k) =λ0/ (|oj(k)| + δ) , j = 1, . . . , J
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which altogether amounts to an iteratively reweighted version of (2.4). To avoid getting

trapped in local minima, a good initialization for the iteration is the solution of (2.4).

Numerical tests have shown that a couple iterations of this second-stage refinement suffices

to yield improved partworth estimates ŵ, in comparison to those obtained from (2.4). The

improvements can be leveraged to bias reduction, also achieved by similar weighted norm

regularizers [133].

Outlier rejection. From the equivalence between (2.4) and Huber’s M-estimator, it follows

that data {yj,xj : j s.t. ôj 6= 0} deemed as outliers are not completely discarded as with

LTS. Instead, their effect is downweighted as per Huber’s loss function (2.5); see also [63].

Nevertheless, explicitly accounting for the outliers in ô provides the means of identifying

and removing the contaminated data altogether, and thus possibly re-estimating partworths

using the ‘clean’ data.

2.4 Robust Conjoint Analysis Variants

2.4.1 Choice-based robust conjoint analysis

Over the last decade, choice-based CA has become a very popular alternative to metric

analysis [60]. For the choice-based data model (M3) however, the approach to retrieve

outliers and robustify the binary classifier for CA must be modified. Similar to [35] and

for notational simplicity, assume without loss of generality that x
(1)
j is the preferred profile

for all questions – otherwise profiles can be renamed accordingly. With this convention

consumer responses become yj = 1, j = 1, . . . , J , and the proposed classifier is given by

min
w,o

J
∑

j=1

[

(

1− x̃′
jw

)

+
− oj

]2
+ λo‖o‖1 + λw‖w‖22 (2.9)

where (·)+ := max(·, 0). To gain further intuition as to why (2.9) is a suitable robust

estimator for stated-preference data, introduce slack variables ξj ≥ 0 collected in the vector
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Figure 2.1: Huberized square hinge loss function for λo = 2.

ξ := [ξ1, . . . , ξJ ]′, and note that (2.9) is equivalent to the linearly constrained formulation

min
w,o,ξ

J
∑

j=1

(ξj − oj)
2 + λo‖o‖1 + λw‖w‖22 (2.10)

s.t. x̃′
jw ≥ 1− ξj, ξ ≥ 0, j = 1, . . . , J.

Because preference data can be contradictory (preferences change over time due to external

factors, and unmodeled dynamics), it is often times impossible to find ŵ such that all

inequalities x̃′
jŵ ≥ 0 are satisfied. It is thus prudent to allow for some ‘slack’, and try to

minimize the inconsistencies ξj in the LS sense. This is exactly what (2.10) achieves in the

absence of outliers. When outliers are present though, nonzero estimates ôj will ideally take

values ôj ≈ ξ̂j , thus effectively removing the effect of the invalid responses in the estimation

process. Note that 1 in the right-hand side of the first set of inequality constraints accounts

for classifier margin; any other positive constant is equally good.

Problem (2.10) is a linearly-constrained quadratic program (QP), and is efficiently solved

using general-purpose convex optimization software. In particular, it can be solved in the
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primal domain (advisable when p is small but J is large), or, in the dual domain (preferable

when p is large and J is small). A result with ramifications to the robustness properties

and computational advantages of (2.9), is asserted in the following proposition.

Proposition 2.2 The robust CA classifier (2.9) is equivalent to

min
w

J
∑

j=1

h
(

x̃′
jw

)

+ λw‖w‖22 (2.11)

where h : R→ R is the ‘Huberized’ square hinge loss function [102]

h(z) :=







λo(1− z)− λ2
o/4, z < 1− λo/2,

(1− z)2+, otherwise
. (2.12)

Problem (2.11) is obtained after eliminating from (2.9), the optimized outlier variables ô(w).

The derivation is based on similar arguments to those in Appendix 2.7.2. Examination of

(2.12) (see also Fig. 2.1) reveals that (2.9) gives rise to three classification regions: r1)

containing ‘consistent’ data for which x̃′
jw ≥ 1; r2) comprising support vectors for which

1 − λo/2 ≤ x̃′
jw ≤ 1; and r3) over which data satisfy −∞ < x̃′

jw ≤ 1 − λo/2, and are

deemed as contaminated with outliers. For λ0 = ∞, ô = 0 and h becomes the squared

hinge loss function used in SVM variants.

When compared to the SVM used for CA [35,37,113], the key advantage of the classifier

obtained via (2.9) is its ability to attain desirable tradeoffs between model fit and com-

plexity, while at the same time controlling robustness and revealing the outliers present.

Furthermore, convexity of the cost in (2.9) is not affected even when one chooses a different

regularizer such as, e.g., λw‖w‖1 to encourage sparse partworth vectors and effect model

complexity control. In fact, this could also be a wise choice from a computational stand-

point, since the `1-norm regularized counterpart of (2.11) attains piecewise-linear solution

paths as λw varies [102]. By capitalizing on this property, [102] shows that the entire path

of solutions is efficiently obtained, using an algorithm that generalizes the LARS solver

developed for Lasso [34]. An elastic net penalty was used in conjunction with a ‘Huberized’

square hinge loss in [122], for microarray selection and classification.



2.4 Robust Conjoint Analysis Variants 27

2.4.2 Nonparametric utility function estimation

The linear utility function u(x) = x′w considered so far falls short in capturing interdepen-

dencies among the attributes of each profile (entries of vector xj) – customers preferring

cell-phones with mp3 players, will also value highly those models with memory capacity

above 4Gb, say. As these interdependencies are driven by complex mechanisms that are

typically hard to model a priori, it is prudent to let the data dictate the form of the u(x)

sought. This motivates the nonparametric regression methods for PM modeling briefly

outlined in this section, and which are the main focus of Chapter 3.

To ensure versatility, u is only assumed to belong to a (possibly infinite dimensional)

space of e.g., ‘smooth’ functions H [119]. As estimating u ∈ H from finite data is inherently

ill-posed, one typically invokes properly regularized criteria [111]. Accordingly, u is robustly

estimated from data adhering to (M1) by solving

{û, ô} := arg min
u∈H,o

J
∑

j=1

(yj − u(xj)− oj)
2 + µR(u) + λo‖o‖1 (2.13)

where R : H → R is a convex smoothing regularization functional, and µ ≥ 0 is chosen to

tradeoff fidelity to the (outlier compensated) data for the degree of smoothness measured

by R(u). Problem (2.13) is variational in nature, and in principle requires searching over

the infinite-dimensional space H.

There is a neat workaround however, if one lets R(u) := ‖u‖2H in (2.13), and endows H
with the structure of a reproducing kernel Hilbert space [119]; with corresponding positive

definite reproducing kernel function K(·, ·) : R
p×R

p → R. The following proposition asserts

that in this case, the unique solution of (2.13) is finitely parametrized, and it suffices to

solve a single instance of Lasso to determine û along with the outliers ô. Before stating the

result, recall the conjoint data model (M1), the definition y := [y1, . . . , yJ ]′, and introduce

the kernel matrix K ∈ R
J×J with ij-th entry [K]ij := K(xi,xj). The proof relies on the

Representer Theorem; see e.g., [119], and can be found in Section 3.3.1.

Proposition 2.3 Consider ôLasso defined as

ôLasso := arg min
o
‖Xµy −Xµo‖22 + λo‖o‖1 (2.14)
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where

Xµ :=





IJ −K (K + µIJ)−1

(µK)1/2 (K + µIJ)−1



 . (2.15)

Then the minimizers {û, ô} of (2.13) with R(u) := ‖u‖2H are fully determined given ôLasso,

as ô := ôLasso and û(x) =
∑J

j=1 β̂jK(x,xj), with β̂ = (K + µIJ)−1 (y − ôLasso).

Joint outlier sparsity and function complexity control mechanisms identify the best

(µ∗, λ∗
o) in (2.14), trading-off optimally the number of outliers rejected and the predictive

capability of û. These methods extend naturally those outlined in Section 2.3.1 [cf. the

similarity between (2.14) and (2.6)], and require searching over a collection of robustifaction

paths – one per µ value in a prescribed µ-grid. The end result yields estimates û with

enhanced ecological rationality, yielding preference models better adapted to the shopping

environment in which customers operate.

2.4.3 Distributed conjoint analysis

So far a single w was estimated, but multiple {wi}s are often needed to capture consumer

heterogeneity, while improving estimation performance by fusing data from multiple respon-

dents [37, 60, 113]. Traditional approaches have relied on hierarchical Bayes (HB) [4, 74],

and share with convex optimization based ones [37] the idea of shrinking the individual

estimates {ŵi}Ii=1 towards the population mean w̄. Specifically for (M1), [37] suggests

min
{wi,D,w̄}

I
∑

i=1

J
∑

j=1

(yij − x′
ijwi)

2 + µ

I
∑

i=1

‖wi − w̄‖2D (2.16)

which is jointly convex in {wi,D, w̄}, while D � O is normalized to have tr(D) = 1;

and ‖v‖2
M

= v′M−1v. Matrix D is related to the covariance matrix of the partworth

estimators, so that pronounced shrinkage is effected to those wi’s far away from the mean

w̄. MAP optimality is also apparent under a Gaussian nominal noise assumption, and

identical Gaussian priors on the wi; see [37] for a detailed comparison between (2.16) and

HB in [4]. Extension to choice-based data (M3) is possible by replacing the `2-error loss in

(2.16) with e.g., the logistic error [37].



2.4 Robust Conjoint Analysis Variants 29

Algorithm 2 : DRCA

Agents i ∈ I initialize {wi(0), w̄i(0),pi(0)),Pi(0)} to zero, {Di(0)} to random unit-trace positive-

definite matrices , and locally run

for k = 0, 1,. . . do

Exchange {w̄i(k),Di(k)} with neighbors in Ni.

Update {wi(k + 1), w̄i(k + 1)} using (2.18).

Update Di(k + 1) using (2.19).

oij(k + 1) = S
(

yij − x′
ijwi(k + 1), λo/2

)

, j = 1, . . . , J.

pi(k + 1) = pi(k) + c
∑

i′∈Ni
[w̄i(k + 1)− w̄i′(k + 1)].

Pi(k + 1) = Pi(k) + c
∑

i′∈Ni
[Di(k + 1)−Di′ (k + 1)].

end for

All existing works assume that the data {yij,xij}I,J
i,j=1 are available centrally to deter-

mine the estimates {ŵi, D̂, ˆ̄w}. However, collecting all data in a central location may be

prohibitive in certain studies, simply because respondents are not collocated, or due to finite

storage, limited complexity, or even privacy constraints. In CA-based healthcare studies

carried out by pharmaceutical companies, physicians provide private patient information

for the purpose of estimating partworth vectors. They may not be willing to share train-

ing (questionnaire) data but only the learning results ŵi. These reasons motivate well the

distributed partworth estimator developed in this section, which is implementable through

a cooperating network of processing units (agents) I := {1, . . . , I}, that exchange messages

with directly connected neighbors. In the sequel, the network of agents will be modeled as

a connected graph, and Ni ⊆ I will denote the set of neighbors of agent i.

Towards distributing the centralized problem (2.16), introduce local auxiliary copies

{Di, w̄i}Ii=1 of the global variables {D, w̄} per agent, along with constraints w̄i = w̄i′ , Di =

Di′ , i ∈ I, i′ ∈ Ni to ensure consensus of these variables per neighborhood. Introducing the

local quantities yi := [yi1, . . . , yiJ ]′, Xi := [xi1, . . . ,xiJ ]′, and likewise for oi; the proposed
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approach to distributed and robust (DR) CA solves

min
{wi,w̄i,
Di,oi}

I
∑

i=1

[

‖yi −Xiwi − oi‖22 + λo‖oi‖1 + µ‖wi − w̄i‖2Di

]

s. t. w̄i = w̄i′ , Di = Di′ , i ∈ I, i′ ∈ Ni (2.17)

with constraints tr(Di) = 1, i ∈ I, left implicit. Leaving aside robustness (cf. λo = ∞),

problems (2.17) and (2.16) are equivalent since the network is connected. This property

is instrumental because it ensures that the optimal local estimates coincide with the global

minimizer of (2.16). Interestingly, the structure of (2.17) lends itself naturally to distributed

implementation via the alternating-direction method of multipliers (AD-MoM), an iterative

augmented Lagrangian method especially well-suited for parallel processing [12, 81]. AD-

MoM iterations for k = 0, 1, 2, . . . entail: i) local optimization tasks to be run per agent; and

ii) exchanges of local estimates {w̄i(k),Di(k)} only within Ni, i ∈ I. The latter are critical

to percolate the spatially distributed data in T throughout the network, thus enabling

agents to attain consensus on {ŵ, D̂} – the optimal solution of the centralized problem

(2.16).

A detailed derivation of the DRCA algorithm (tabulated under Algorithm 2) can be

found in Appendix 2.7.3; see also [81]. At the beginning of iteration k + 1, agent i collects

its neighbors most up to date estimates {w̄i′(k),Di′(k)}i′∈Ni
, and updates its own ones by

solving the following strictly convex optimization problems

{wi(k + 1), w̄i(k + 1)} = arg min
{w,w̄}



‖yi −Xiw − oi(k)‖22 + µ‖w − w̄‖2
Di(k)

+p′
i(k)w̄ + c

∑

i′∈Ni

∥

∥

∥

∥

w̄ − w̄i(k) + w̄i′(k)

2

∥

∥

∥

∥

2

2



 (2.18)

Di(k + 1) = arg min
D



µ‖wi(k + 1)− w̄i(k + 1)‖2D + tr(Pi(k)D)

+c
∑

i′∈Ni

∥

∥

∥

∥

D− Di(k) + Di′(k)

2

∥

∥

∥

∥

2

F



 . (2.19)
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While (2.18) is an unconstrained QP with solution given in closed form, solving (2.19)

requires an extra iterative procedure. Outliers are updated by parallel soft-thresholding

of local residuals, where S(z, u) := sign(z)(|z| − u)+ in Algorithm 2. Iteration k + 1 is

concluded after obtaining dual prices p(k + 1) and P(k + 1) through dual ascent updates

(see Algorithm 2), where c > 0 is a stepsize which affects the convergence rate of the DRCA

algorithm.

To close this section, it is useful to mention that convergence of the DRCA algorithm

to the minimizer of (2.16) is ensured – for any c > 0 – by virtue of AD-MoM’s convergence

theory [12, Prop. 4.2].

2.5 Numerical Tests

2.5.1 Robustifying linear regression

A numerical experiment is carried out here, to compare the performance of the sparsity-

controlling estimator of this chapter against RANSAC, in a linear regression setting. For

J = 100 and p = 10, nominal data adhere to the linear Gaussian model yj = x′
jw0 + εj ,

where the ‘true’ vector of partworths is generated as w0 ∼ N (10 × 1p, Ip). The i.i.d.

product profiles and nominal disturbances are xj ∼ N (0p, Ip) and εj ∼ N (0, 1), respectively.

Outliers are Laplacian distributed with zero-mean and standard deviation
√

2 × 103, i.e.,

yj ∼ L(0, 103) and i.i.d.. Contamination levels ranging from 0% to 80% are examined. The

nominal noise variance σ2
ε = 1 is assumed known.

When solving (2.6), the optimum tuning parameter λ∗
1 is obtained using the AVD crite-

rion in (2.7). Ten samples (G = 10) of the robustification path are employed, equispaced on

a logarithmic λ1 scale. To further enhance the estimation performance, a single iteration

is carried out to minimize the concave sum-of-logs surrogate of (2.3). The refinement step

is initialized with the solution to (2.4), for λ1 = λ∗
1. The number of RANSAC iterations is

fixed to either 1000 or 10000; and the threshold used to decide whether a data point is an

outlier is set to 3 × σε. RANSAC is enhanced with a follow-up Huber M-estimation step

using the RANSAC-generated inlier set. The Huber function parameter is set to 1.345×σε
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Figure 2.2: Sparsity-controlling outlier rejection vs. RANSAC: RMSE comparison.

as suggested in [46].

Fig. 2.2 compares RANSAC with the refined sparsity-controlling estimator (2.4) in

terms of root mean square error (RMSE). The RMSE is defined as RMSE := E[‖ŵ−w0‖2],
and approximated by sample averaging over 100 Monte Carlo runs. It is apparent that both

methods generate very accurate results for small percentages of contamination. However,

as the fraction of outliers increases, RANSAC breaks down resulting in large RMSEs with

high variability. The proposed algorithm provides accurate results up to 40% contamination,

and degrades gracefully beyond this level. In terms of complexity, (2.4) falls in between

RANSAC 1000 and RANSAC 10000. These results corroborate that the novel methods

of this chapter offer a competitive alternative for robust linear regression, and outperform

state of the art RANSAC algorithms.
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2.5.2 Choice-based conjoint analysis

The following simulated test case is used to corroborate the effectiveness of the proposed

sparsity-controlling estimator for choice-based CA (cf. Section 2.4.1), and compare it with

the SVM approach in [35].

The adopted simulation setup is standard for choice-based CA simulation studies under

different (low-high) response-error levels, and (low-high) number of questions; see e.g. [35,

37]. Stated-preference questionnaires are simulated with p = 10 binary attributes per

product profile, while the x
(1)
j were generated according to an orthogonal fractional-factorial

design with J = 16. As per (M3), each of the questions comprises a pair of profiles to choose

from, and given x
(1)
j , the x

(2)
j were obtained through the shifting method of [16]. In the high

number of questions setting, all J = 16 profiles pairs were presented to each respondent.

For the reduced-size questionnaire condition, 8 profile pairs where randomly drawn from the

complete set of 16. Each of the I = 50 respondents in a homogeneous population were given

the same questionnaire, and ‘true’ partworths were drawn from a Gaussian distribution, i.e.,

wi ∼ N (µ1p, σ
2
wi

Ip), where 1p is the p× 1 vector of all ones. The mean parameter µ takes

the values 1.2 and 0.2, respectively in the low and high response error conditions. Since

consumer heterogeneity is not considered here, values σ2
wi

= µ are adopted for i = 1, . . . , I.

Finally, logistic probabilities were used for the simulated nominal responses yij, i.e.,

Pr(yij = 1) =
exp

(

w′
ix

(1)
j

)

exp
(

w′
ix

(1)
j

)

+ exp
(

w′
ix

(2)
j

) , Pr(yij = −1) = 1− Pr(yij = 1)

whereas outliers were generated by simulating yi3, i = 1, . . . , I, as the outcome of an unbi-

ased coin toss.

The results are summarized under Table 2.1, the figure of merit being the average part-

worth estimation error across respondents
∑I

i=1 ‖ŵi−wi‖2/I, after normalizing partworths

to have unit `1 norm. Results for the method of [35] are shown under the column labeled

SVM. Interestingly, the proposed sparsity-controlling estimator (2.9) consistently outper-

forms the SVM alternative of [35]. Regardless of the number of questions, the performance

edge is more significant under the high response error condition. This is a manifestation of

the robustness properties of the novel estimator, not only against outliers but also against
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Table 2.1: Average partworth estimation errors.

Response error Questions SVM [35] Proposed (2.9)

Low 8 0.3791 0.3730

Low 16 0.2472 0.2445

High 8 0.4023 0.3901

High 16 0.2922 0.2831

noisy (erroneous) responses. For all practical purposes, both schemes attain comparable

estimation errors under the low response error regime.

2.6 Summary

Conjoint analysis has been a central problem in the marketing community, but recently

researchers have started to explore its links with social computational systems under the

general umbrella or preference measurement and modeling – an area of markedly growing

interest given the explosion of preference data generated trough the Web. However, existing

approaches have for the most part neglected that – online data collection cannot be con-

trolled, and hence is prone to (un)intentional errors and inconsistencies, meaning outliers.

These considerations motivate well the outlier-robust preference models developed in this

chapter, for partworth estimation based on metric and choice-based conjoint data. Robust

counterparts of estimators as fundamental as LS for linear regression, and the SVM for

(binary) classification were developed under the proposed framework.

For the case of metric ratings, training samples from the (unknown) utility function

were assumed generated from a linear regression model, which explicitly incorporates an

unknown sparse vector of outliers. To fit such a model, the proposed regularized LS esti-

mator minimizes a tradeoff between fidelity to the training data, and the sparsity level of

the vector of outliers. The major innovative claim here is that sparsity control translates

into outlier-robustness control. The LS partworth estimator was shown equivalent to Lasso,
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and sparsity control can be carried out at affordable complexity by capitalizing on state-

of-the-art algorithms, that return the whole path of Lasso solutions (i.e., for all values of

the sparsity-controlling parameter). In this sense, the method here capitalizes on but is not

limited to sparse settings where few outliers are present, since one can efficiently examine

the gamut of sparsity levels along the robustification path. Computer simulations have

shown that the novel sparsity-controlling algorithm of this chapter outperforms RANSAC,

especially when the number of outliers is above 40% of the sample.

For choice-based CA, a novel classifier was developed that is capable of attaining desir-

able tradeoffs between model fit and complexity, while at the same time controlling robust-

ness and revealing the outliers present. Numerical tests with synthetic stated-preference

data show that the proposed sparsity-controlling partworth estimator consistently outper-

forms existing SVM alternatives. We also explored CA variants: i) entailing nonlinear utili-

ties to capture interdependencies between the different product attributes (see also Chapter

3); and ii) accounting for consumer heterogeneity. In the context of ii), a distributed part-

worth estimator was developed, which is implementable through a cooperating network of

processing units, that exchange messages with directly connected neighbors. Problem (2.16)

is reformulated into an equivalent constrained form, whose structure lends itself naturally

to distributed implementation via the AD-MoM. Interestingly, the distributed iterations are

provably convergent to the centralized heterogeneity-aware estimator (2.16).
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2.7 Appendices

2.7.1 Proof of Proposition 2.1

Given λ0 such that ‖ô‖0 = J − s, the goal is to characterize ŵ as well as the positions

and values of the nonzero entries of the vector of outliers ô. Upon defining the optimum

residuals r̂j := yj − x′
jŵ, the optimization with respect to o (given ŵ) decouples into J

scalar subproblems

ôj := arg min
o

(r̂j − o)2 + λoI{o6=0}, j = 1, . . . , J (2.20)

where I{o6=0} denotes an indicator function taking the value 1 whenever o 6= 0, and 0

otherwise. It thus follows that the entries of ô are obtained by (hard-) thresholding residuals

ôj =







0, |r̂j | ≤
√

λ0

r̂j , |r̂j | >
√

λ0

, j = 1, . . . , J. (2.21)

This is intuitive, since for those nonzero ôj the best thing to do in terms of minimizing

the overall cost is to set ôj = r̂j, and thus null the corresponding squared-residual terms

in (2.20). In conclusion, for the chosen value of λ0 it holds that J − s squared residuals

effectively do not contribute to the cost in (2.3).

To determine ŵ and the support of ô, one can in theory test all
( J
J−s

)

=
(J

s

)

admissible

support combinations. For each one of these combinations (indexed by i), let Si ⊂ {1, . . . , J}
be the index set describing the support of ô(i), i.e., ô

(i)
j 6= 0 if and only if j ∈ Si; and |Si| =

J−s. By virtue of (2.21), the corresponding candidate ŵ(i) solves minw

∑

j∈Si
r2
j (w), while

ŵ is the one among all {ŵ(i)} that yields the least cost. Recognizing the aforementioned

solution procedure as the one described to solve LTS at the end of Section 2.2, it follows

that ŵLTS = ŵ. �

2.7.2 Equivalence between (2.4) and Huberized regression

It is established here that the outlier-aware estimator (2.4) is equivalent to

min
w

J
∑

j=1

ρ(yj − x′
jw) (2.22)
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where ρ(r) is Huber’s loss function defined in (2.5). As discussed in Section 2.3.1, if the

disturbances {oj + εj} adhere to an ε-contaminated model, then there are optimal ways to

select the tuning parameter λ1 and (2.22) boils down to an M-estimator [46,63].

Towards establishing the equivalence between both problem formulations, consider the

pair {ŵ, ô} that solves (2.4). Assume that ŵ is given, and the goal is to determine ô. Upon

defining the (optimum) residuals r̂j := yj − x′
jŵ and because ‖o‖1 =

∑J
j=1 |oj |, the entries

of ô are separately given by

ôj = arg min
o

[

(r̂j − o)2 + λ1|o|
]

, j = 1, . . . , J. (2.23)

For each j = 1, . . . , J , because (2.23) is nondifferentiable at the origin one should consider

three cases: i) if ôj = 0, it follows that the minimum cost in (2.23) is r̂2
j ; ii) if ôj > 0,

the first-order condition for optimality gives ôj = r̂j − λ1/2 provided r̂j > λ1/2, and the

minimum cost is λ1r̂j−λ2
1/4; otherwise, iii) if ôj < 0, it follows that ôj = r̂j +λ1/2 provided

r̂j < −λ1/2, and the minimum cost is −λ1r̂j − λ2
1/4. In other words,

ôj = sign(r̂j)max(|r̂j | − λ1/2, 0) =



















r̂j − λ1/2, r̂j > λ1/2

0, |r̂j | ≤ λ1/2

r̂j + λ1/2, r̂j < −λ1/2

, j = 1, . . . , J. (2.24)

Upon plugging (2.24) into (2.23), the minimum cost in (2.23) after minimizing with respect

to oj is ρ(r̂j) [cf. (2.5) and the argument preceding (2.24)]. All in all, the conclusion is that

ŵ is the minimizer of (2.22) – in addition to being the solution of (2.4) by definition.

2.7.3 Derivation of the DRCA algorithm

To tackle (2.17) using the alternating-direction method of multipliers (AD-MoM) [47, 51],

consider adding to problem (2.17) the auxiliary local variables γ := {{γ̆i′
i }i′∈Ni

, {γ̄i′
i }i′∈Ni

}i∈I
and Γ := {{Γ̆i′

i }i′∈Ni
, {Γ̄i′

i }i′∈Ni
}i∈I , two pairs per neighbor. Introducing these new vari-
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ables (2.17) is rewritten as

min
α,β

I
∑

i=1

[

‖yi −Xiwi − oi‖22 + λo‖oi‖1 + µ‖wi − w̄i‖2Di

]

(2.25)

s. to w̄i = γ̆i′
i , w̄i′ = γ̄i′

i , γ̆i′
i = γ̄i′

i , i ∈ I, i′ ∈ Ni

Di = Γ̆i′
i , Di′ = Γ̄i′

i , Γ̆i′
i = Γ̄i′

i , i ∈ I, i′ ∈ Ni

where α := {{wi}i∈I , {w̄i}i∈I ,Γ}, β := {{Di}i∈I , {oi}i∈I ,γ}, and the constraints tr(Di) =

1, i ∈ I were left implicit. The equivalence of (2.16) and (2.25) is immediate because the

latter only introduces the auxiliary variables in {γ,Γ} to yield an alternative representation

of the constraint set in (2.17).

Different from (2.16) however, (2.25) has a separable structure that facilitates distributed

implementation. To capitalize on this favorable structure, associate Lagrange multipliers

v := {{v̆i′
i }i′∈Ni

, {v̄i′
i }i′∈Ni

}i∈I and V := {{V̆i′
i }i′∈Ni

, {V̄i′
i }i′∈Ni

}i∈I with the constraints

in (2.25), and form the quadratically augmented Lagrangian function

La [α,β, v ,V ] =

I
∑

i=1

[

‖yi −Xiwi − oi‖22 + λo‖oi‖1 + µ‖wi − w̄i‖2Di

]

+
I

∑

i=1

∑

i′∈Ni

[

(v̆i′

i )′(w̄i − γ̆i′

i ) + (v̄i′

i )′(w̄i′ − γ̄i′

i )
]

+
c

2

I
∑

i=1

∑

i′∈Ni

[

‖w̄i − γ̆i′
i ‖22 + ‖w̄i′ − γ̄i′

i ‖22
]

+

I
∑

i=1

∑

i′∈Ni

[

tr(V̆i′
i (Di − Γ̆i′

i )) + tr(V̄i′
i (Di′ − Γ̄i′

i ))
]

+
c

2

I
∑

i=1

∑

i′∈Ni

[

‖Di − Γ̆i′

i ‖2F + ‖Di′ − Γ̄i′

i ‖2F
]

. (2.26)

where c > 0 is a preselected penalty coefficient. The constraints α ∈ Cα := {Γ : Γ̆i′
i =

Γ̄i′
i , i ∈ I, i′ ∈ Ni} and β ∈ Cβ := {γ, Di : Γ̆i′

i = Γ̄i′
i , tr(Di) = 1, i ∈ I, i′ ∈ Ni} have not

been dualized. The AD-MoM entails three steps per iteration k of the algorithm:

[S1] Local estimate updates:

α(k + 1) = arg min
α∈Cα

La [α,β(k), v (k),V (k)] . (2.27)
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[S2] Local estimate updates:

β(k + 1) = arg min
β∈Cβ

La [α(k + 1),β, v (k),V (k)] (2.28)

[S3] Lagrange multiplier updates:

v̆i′

i (k + 1) = v̆i′

i (k) + c[w̄i(k + 1)− γ̆i′

i (k + 1)] (2.29)

v̄i′
i (k + 1) = v̄i′

i (k) + c[w̄i′(k + 1)− γ̄i′
i (k + 1)] (2.30)

V̆i′
i (k + 1) = V̆i′

i (k) + c[Di(k + 1)− Γ̆i′
i (k + 1)] (2.31)

V̄i′

i (k + 1) = V̄i′

i (k) + c[Di′(k + 1)− Γ̄i′

i (k + 1)]. (2.32)

The goal is to show that [S1]-[S3] can be simplified to the recursions tabulated under Al-

gorithm 2. Focusing on [S2], in particular minimizing first with respect to γ, from the

decomposable structure of the augmented Lagrangian [cf. (2.26)] (2.28) decouples into
∑I

i=1 |Ni| quadratic sub-problems

γ̆i′
i (k + 1) = γ̄i′

i (k + 1) = arg min
γ̆i′

i

{

−[v̆i′
i (k) + v̄i′

i (k)]′γ̆i′
i

+
c

2

[

‖w̄i(k + 1)− γ̆i′

i ‖22 + ‖w̄i′(k + 1) − γ̆i′

i ‖22
]}

(2.33)

which admit the closed-form solutions

γ̆i′
i (k + 1) = γ̄i′

i (k + 1) =
1

2c
[v̆i′

i (k) + v̄i′
i (k)] +

1

2
[w̄i(k + 1) + w̄i′(k + 1)] . (2.34)

Note that in formulating (2.33), γ̄i′
i was eliminated using the constraint γ̆i′

i = γ̄i′
i . Us-

ing (2.34) to eliminate γ̆i′
i (k + 1) and γ̄i′

i (k + 1) from (2.29) and (2.30) respectively,

a simple induction argument establishes that if the initial Lagrange multipliers obey

v̆i′
i (0) = −v̄i′

i (0) = 0, then v̆i′
i (k) = −v̄i′

i (k) for all k ≥ 0 where i ∈ I and i′ ∈ Ni.

The set {v̄i′
i } of multipliers has been shown redundant, and (2.34) readily simplifies to

γ̆i′
i (k + 1) = γ̄i′

i (k + 1) =
1

2
[w̄i(k + 1) + w̄i′(k + 1)] , i ∈ I, i′ ∈ Ni. (2.35)

It then follows that γ̆i′
i (k) = γ̆i

i′(k) for all k ≥ 0, an identity that will be used later on. By

plugging (2.35) in (2.29), the multiplier update becomes

v̆i′

i (k + 1) = v̆i′

i (k) +
c

2
[w̄i(k + 1)− w̄i′(k + 1)], i ∈ I, i′ ∈ Ni. (2.36)
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If v̆i′
i (0) = −v̆i

i′(0) = 0, then the structure of (2.36) reveals that v̆i′
i (k) = −v̆i

i′(k) for all

k ≥ 0, where i ∈ I and i′ ∈ Ni.

Observe that when minimizing the augmented Lagrangian with respect to Γ in [S1], the

role of {Γ̆i′
i , Γ̄i′

i , V̆i′
i , V̄i′

i } is identical to the one of {γ̆i′
i , γ̄i′

i , v̆i′
i , v̄i′

i } in the minimization just

described. Thus, it follows immediately that

Γ̆i′
i (k + 1) = Γ̄i′

i (k + 1) =
1

2
[Di(k + 1) + Di′(k + 1)] , i ∈ I, i′ ∈ Ni (2.37)

V̆i′
i (k + 1) =V̆i′

i (k) +
c

2
[Di(k + 1)−Di′(k + 1)], i ∈ I, i′ ∈ Ni. (2.38)

while the multipliers V̄i′
i (k) are redundant since they can be expressed in terms of V̆i′

i (k).

Moving on to the minimization with respect to oi in [S2], observe that the augmented

Lagrangian is separable with respect to the scalar entries of each oi, yielding the following

I × J simpler subtasks

oij(k + 1) = arg min
o

(yij − x′
ijwi(k + 1))2 + λo|o|

= sign(yij − x′
ijwi(k + 1))max(|yij − x′

ijwi(k + 1)| − λo/2, 0)

= S
(

yij − x′
ijwi(k + 1), λo/2

)

, j = 1, . . . , J, i ∈ I. (2.39)

The minimization with respect to {Di} also decouples in I simpler sub-problems, namely

Di(k + 1) = arg min
D







µ‖wi(k + 1)− w̄i(k + 1)‖2D +
∑

i′∈Ni

tr((V̆i′

i (k)− V̄i
i′(k))D)

+
c

2

∑

i′∈Ni

[

‖D− Γ̆i′
i (k)‖2F + ‖D− Γ̄i

i′(k)‖2F
]







= arg min
D







µ‖wi(k + 1)− w̄i(k + 1)‖2D + tr(Pi(k)D)

+c
∑

i′∈Ni

∥

∥

∥

∥

D− Di(k) + Di′(k)

2

∥

∥

∥

∥

2

F







where in deriving the second equality we used that: i) V̆i′
i (k) = V̄i

i′(k) which follows from

the identities V̆i′
i (k) = −V̄i′

i (k) and V̆i′
i (k) = −V̆i

i′(k) established earlier; ii) the definition

Pi(k) := 2
∑

i′∈Ni
V̆i′

i (k); and iii) the identity Γ̆i′
i (k) = Γ̄i

i′(k) which allows to merge the



2.7 Appendices 41

identical quadratic penalty terms and eliminate both Γ̆i′
i (k) and Γ̄i

i′(k) using (2.37). This

establishes (2.19), after recalling that the normalization constraint tr(Di) = 1 has to be

enforced for all i ∈ I.
Finally, consider minimizing La [α,β(k), v (k),V (k)] with respect to {wi, w̄i} ⊂ α. The

separable structure of the Lagrangian yields

{wi(k + 1), w̄i(k + 1)} = arg min
{w,w̄}







‖yi −Xiwi − oi(k)‖22 + µ‖wi − w̄i‖2Di(k)

+
∑

i′∈Ni

(v̆i′
i (k)− v̄i

i′(k))′w̄

+
c

2

∑

i′∈Ni

[

‖w̄ − γ̆i′

i (k)‖2F + ‖w̄ − γ̄i
i′(k)‖22

]







= arg min
{w,w̄}







‖yi −Xiwi − oi(k)‖22 + µ‖wi − w̄i‖2Di(k) + p′
i(k)w̄

+c
∑

i′∈Ni

∥

∥

∥

∥

w̄ − w̄i(k) + w̄i′(k)

2

∥

∥

∥

∥

2

2







which is identical to (2.18), and in obtaining the second equality we have defined pi(k) :=

2
∑

i′∈Ni
v̆i′

i (k).
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Chapter 3

Robust Nonparametric Regression

via Sparsity Control

3.1 Introduction

Nonparametric methods are widely applicable to statistical inference problems, since they

rely on a few modeling assumptions. In this context, the fresh look advocated in this chapter

permeates benefits from variable selection and compressive sampling, to robustify nonpara-

metric regression against outliers – that is, data markedly deviating from the postulated

models. A variational counterpart to least-trimmed squares regression is proposed, and

shown closely related to an `0-(pseudo)norm-regularized estimator, that encourages spar-

sity in a vector explicitly modeling the outliers. This connection suggests efficient solvers

based on convex relaxation, which lead naturally to a variational M-type estimator equiv-

alent to the least-absolute shrinkage and selection operator (Lasso). Outliers are identified

by judiciously tuning regularization parameters, which amounts to controlling the sparsity

of the outlier vector along the whole robustification path of Lasso solutions. Reduced bias

and enhanced generalization capability are attractive features of an improved estimator

obtained after replacing the `0-(pseudo)norm with a nonconvex surrogate.

The motivating application behind the robust nonparametric methods of this chapter is

load curve cleansing [25] – a critical task in power systems engineering and management.
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Figure 3.1: Example of load curve data with outliers.

Load curve data (also known as load profiles) refers to the electric energy consumption

periodically recorded by meters at specific points across the power grid, e.g., end user-points

and substations. Accurate load profiles are critical assets aiding operational decisions in the

envisioned smart grid system [61]; see also [1, 2, 25]. However, in the process of acquiring

and transmitting such massive volumes of information to a central processing unit, data is

often noisy, corrupted, or lost altogether. This could be due to several reasons including

meter misscalibration or outright failure, as well as communication errors due to noise,

network congestion, and connectivity outages; see Fig. 3.1 for an example. In addition,

data significantly deviating from nominal load models (outliers) are not uncommon, and

could be attributed to unscheduled maintenance leading to shutdown of heavy industrial

loads, weather constraints, holidays, strikes, and major sporting events, just to name a few.

In this context, it is critical to effectively reject outliers, and replace the contaminated

data with ‘healthy’ load predictions, i.e., to cleanse the load data. While most utilities carry

out this task manually based on their own personnel’s know-how, a first scalable and prin-
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cipled approach to load profile cleansing which is based on statistical learning methods was

recently proposed in [25]; which also includes an extensive literature review on the related

problem of outlier identification in time-series. After estimating the regression function

f via either B-spline or Kernel smoothing, pointwise confidence intervals are constructed

based on f̂ . A datum is deemed as an outlier whenever it falls outside its associated confi-

dence interval. To control the degree of smoothing effected by the estimator, [25] requires

the user to label the outliers present in a training subset of data, and in this sense the

approach therein is not fully automatic. Here instead, a novel alternative to load curve

cleansing is developed after specializing the robust estimators of Sections 3.3 and 3.4, to

the case of cubic smoothing splines (Section 3.5.3). The smoothness-and outlier sparsity-

controlling parameters are selected according to the guidelines in Section 3.3.2; hence, no

input is required from the data analyst. The proposed spline-based method is tested on

real load curve data from a government building.

3.2 Robust Estimation Problem

Consider the classical problem of function estimation, in which an input vector x :=

[x1, . . . , xp]
′ ∈ R

p is given, and the goal is to predict the real-valued scalar response y = f(x).

Function f is unknown, to be estimated from a training data set comprising N noisy sam-

ples of f taken at the input points {xi}Ni=1 (also known as knots in the splines parlance),

and in the present context they can be possibly contaminated with outliers. Building on

the parametric least-trimmed squares (LTS) approach [104], the desired robust estimate f̂

can be obtained as the solution of the following variational (V)LTS minimization problem

min
f∈H

[

s
∑

i=1

r2
[i](f) + µ‖f‖2H

]

(3.1)

where r2
[i](f) is the i-th order statistic among the squared residuals r2

1(f), . . . , r2
N (f), and

ri(f) := yi − f(xi). In words, given a feasible f ∈ H, to evaluate the sum of the cost

in (3.1) one: i) computes all N squared residuals {r2
i (f)}Ni=1, ii) orders them to form the

nondecreasing sequence r2
[1](f) ≤ . . . ≤ r2

[N ](f); and iii) sums up the smallest s terms. As

in the parametric LTS [104], the so-termed trimming constant s (also known as coverage)
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determines the breakdown point of the VLTS estimator, since the largest N − s residuals

do not participate in (3.1). Ideally, one would like to make N − s equal to the (typically

unknown) number of outliers No in the training data. For most pragmatic scenaria where No

is unknown, the LTS estimator is an attractive option due to its high breakdown point and

desirable theoretical properties, namely
√

N -consistency and asymptotic normality [104].

The tuning parameter µ ≥ 0 in (3.1) controls the tradeoff between fidelity to the

(trimmed) data, and the degree of ‘smoothness’ measured by ‖f‖2H. In particular, ‖f‖2H can

be interpreted as a generalized ridge regularization term penalizing more those functions

with large coefficients in a basis expansion involving the eigenfunctions of the kernel K.

Given that the sum in (3.1) is a nonconvex functional, a nontrivial issue pertains to the

existence of the proposed VLTS estimator, i.e., whether or not (3.1) attains a minimum in

H. Fortunately, a (conceptually) simple solution procedure suffices to show that a minimizer

does indeed exist. Consider specifically a given subsample of s training data points, say

{yi,xi}si=1, and solve

min
f∈H

[

s
∑

i=1

r2
i (f) + µ‖f‖2H

]

.

A unique minimizer of the form f̂ (j)(x) =
∑s

i=1 β
(j)
i K(x,xi) is guaranteed to exist, where j

is used here to denote the chosen subsample, and the coefficients {β(j)
i }si=1 can be obtained

by solving a particular linear system of equations [119, p. 11]. This procedure can be

repeated for each subsample (there are J :=
(N

s

)

of these), to obtain a collection {f̂ (j)(x)}Jj=1

of candidate solutions of (3.1). The winner(s) f̂ := f̂ (j∗) yielding the minimum cost, is the

desired VLTS estimator.

Even though conceptually simple, the solution procedure just described guarantees ex-

istence of (at least) one solution, but entails a combinatorial search over all J subsamples

which is intractable for moderate to large sample sizes N . In the context of linear regression,

algorithms to obtain approximate LTS solutions are available; see e.g., [103].
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3.2.1 Robust function approximation via `0-norm regularization

Instead of discarding large residuals, the alternative approach proposed here explicitly ac-

counts for outliers in the regression model. To this end, consider the scalar variables {oi}Ni=1

one per training datum, taking the value oi = 0 whenever datum i adheres to the postu-

lated nominal model, and oi 6= 0 otherwise. A regression model naturally accounting for

the presence of outliers is

yi = f(xi) + oi + εi, i = 1, . . . , N (3.2)

where {εi}Ni=1 are zero-mean independent and identically distributed (i.i.d.) random vari-

ables modeling the observation errors. A similar model was advocated under different

assumptions in [46] and [64], in the context of robust parametric regression; see also [21]

and [124]. For an outlier-free datum i, (3.2) reduces to yi = f(xi) + εi; hence, εi will

be often referred to as the nominal noise. Note that in (3.2), both f ∈ H as well as the

N × 1 vector o := [o1, . . . , oN ]′ are unknown; thus, (3.2) is underdetermined. On the other

hand, as outliers are expected to often comprise a small fraction of the training sample

say, not exceeding 20% – vector o is typically sparse, i.e., most of its entries are zero; see

also Remark 3.2. Sparsity compensates for underdeterminacy and provides valuable side-

information when it comes to efficiently estimating o, identifying outliers as a byproduct,

and consequently performing robust estimation of the unknown function f .

A natural criterion for controlling outlier sparsity is to seek the desired estimate f̂ as

the solution of

min
f∈H
o∈R

N

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H + λ0‖o‖0

]

(3.3)

where λ0 ≥ 0 is a preselected sparsity controlling parameter, and ‖o‖0 denotes the `0-norm

of o, which equals the number of nonzero entries of its vector argument. Unfortunately,

analogously to related `0-norm regularized formulations in compressive sampling and sparse

signal representations, problem (3.3) is NP-hard [89].

To further motivate model (3.2) and the proposed criterion (3.3) for robust nonparamet-

ric regression, it is worth checking the structure of the minimizers {f̂ , ô} of the cost in (3.3).

Consider for the sake of argument that λ0 is given, and its value is such that ‖ô‖0 = ν, for
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some 0 ≤ ν ≤ N . The goal is to characterize f̂ , as well as the positions and values of the

nonzero entries of ô. Note that because ‖ô‖0 = ν, the last term in (3.3) is constant, hence

inconsequential to the minimization. Upon defining r̂i := yi − f̂(xi), it is not hard to see

that the entries of ô satisfy

ôi =







0, |r̂i| ≤
√

λ0

r̂i, |r̂i| >
√

λ0

, i = 1, . . . , N (3.4)

at the optimum. This is intuitive, since for those ôi 6= 0 the best thing to do in terms

of minimizing the overall cost is to set ôi = r̂i, and thus null the corresponding squared-

residual terms in (3.3). In conclusion, for the chosen value of λ0 it holds that ν squared

residuals effectively do not contribute to the cost in (3.3).

To determine the support of ô and f̂ , one alternative is to exhaustively test all
(N

ν

)

admissible support combinations. For each one of these combinations (indexed by j), let

Sj ⊂ {1, . . . , N} be the index set describing the support of ô(j), i.e., ô
(j)
i 6= 0 if and only if

i ∈ Sj ; and |Sj | = ν. By virtue of (3.4), the corresponding candidate f̂ (j) minimizes

min
f∈H





∑

i∈Sj

r2
i (f) + µ‖f‖2H





while f̂ is the one among all {f̂ (j)} that yields the least cost. The previous discussion,

in conjunction with the one preceding Section 3.2.1 completes the argument required to

establish the following result.

Proposition 3.1 If {f̂ , ô} minimizes (3.3) with λ0 chosen such that ‖ô‖0 = N − s, then

f̂ also solves the VLTS problem (3.1).

The importance of Proposition 3.1 is threefold. First, it formally justifies model (3.2)

and its estimator (3.3) for robust function approximation, in light of the well documented

merits of LTS regression [103]. Second, it further solidifies the connection between sparse

linear regression and robust estimation. Third, the `0-norm regularized formulation in (3.3)

lends itself naturally to efficient solvers based on convex relaxation, the subject dealt with

next.
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3.3 Sparsity Controlling Outlier Rejection

To overcome the complexity hurdle in solving the robust regression problem in (3.3), one

can resort to a suitable relaxation of the objective function. The goal is to formulate an

optimization problem which is tractable, and whose solution yields a satisfactory approxi-

mation to the minimizer of the original hard problem. To this end, it is useful to recall that

the `1-norm ‖x‖1 of vector x is the closest convex approximation of ‖x‖0. This property

also utilized in the context of compressive sampling [115], provides the motivation to relax

the NP-hard problem (3.3) to

min
f∈H
o∈R

N

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H + λ1‖o‖1

]

. (3.5)

Being a convex optimization problem, (3.5) can be solved efficiently. The nondifferentiable

`1-norm regularization term controls sparsity on the estimator of o, a property that has

been recently exploited in diverse problems in engineering, statistics and machine learn-

ing. A noteworthy representative is the least-absolute shrinkage and selection operator

(Lasso) [110], a popular tool in statistics for joint estimation and continuous variable se-

lection in linear regression problems. In its Lagrangian form, Lasso is also known as basis

pursuit denoising in the signal processing literature, a term coined by [26] in the context of

finding the best sparse signal expansion using an overcomplete basis.

It is pertinent to ponder on whether problem (3.5) has built-in ability to provide robust

estimates f̂ in the presence of outliers. The answer is in the affirmative, since a straight-

forward argument (details are deferred to the Appendix) shows that (3.5) is equivalent to

a variational M-type estimator found by

min
f∈H

[

N
∑

i=1

ρ(yi − f(xi)) + µ‖f‖2H

]

(3.6)

where ρ : R→ R is a scaled version of Huber’s convex loss function [63]

ρ(u) :=







u2, |u| ≤ λ1/2

λ1|u| − λ2
1/4, |u| > λ1/2

. (3.7)
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Remark 3.1 (Regularized regression and robustness) Existing works on linear re-

gression have pointed out the equivalence between `1-norm regularized regression and

M-type estimators, under specific assumptions on the distribution of the outliers (ε-

contamination) [46, 69]. However, they have not recognized the link with LTS through

the convex relaxation of (3.3), and the connection asserted by Proposition 3.1. Here, the

treatment goes beyond linear regression by considering nonparametric functional approxi-

mation in RKHS. Linear regression is subsumed as a special case, when the linear kernel

K(x,y) := x′y is adopted. In addition, no assumption is imposed on the outlier vector.

It is interesting to compare the `0- and `1-norm formulations [cf. (3.3) and (3.5), respec-

tively] in terms of their equivalent purely variational counterparts in (3.1) and (3.6), that

entail robust loss functions. While the VLTS estimator completely discards large residuals,

ρ still retains them, but downweighs their effect through a linear penalty. Moreover, while

(3.6) is convex, (3.1) is not and this has a direct impact on the complexity to obtain either

estimator. Regarding the trimming constant s in (3.1), it controls the number of residuals

retained and hence the breakdown point of VLTS. Considering instead the threshold λ1/2 in

Huber’s function ρ, when the outliers’ distribution is known a-priori, its value is available in

closed form so that the robust estimator is optimal in a well-defined sense [63]. Convergence

in probability of M-type cubic smoothing splines estimators – a special problem subsumed

by (3.6) – was studied in [28].

3.3.1 Solving the convex relaxation

Because (3.5) is jointly convex in f and o, an alternating minimization (AM) algorithm can

be adopted to solve (3.5), for fixed values of µ and λ1. Selection of these parameters is a

critical issue that will be discussed in Section 3.3.2. AM solvers are iterative procedures

that fix one of the variables to its most up to date value, and minimize the resulting cost

with respect to the other one. Then the roles are reversed to complete one cycle, and the

overall two-step minimization procedure is repeated for a prescribed number of iterations,

or, until a convergence criterion is met. Letting k = 0, 1, . . . denote iterations, consider that
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o := o(k−1) is fixed in (3.5). The update for f (k) at the k-th iteration is given by

f (k) := arg min
f∈H

[

N
∑

i=1

(

(yi − o
(k−1)
i )− f(xi)

)2
+ µ‖f‖2H

]

(3.8)

which corresponds to a standard regularization problem for functional approximation in

H [36], but with outlier-compensated data
{

yi − o
(k−1)
i ,xi

}N

i=1
. It is well known that the

minimizer of the variational problem (3.8) is finitely parameterized, and given by the kernel

expansion f (k)(x) =
∑N

i=1 β
(k)
i K(x,xi) [119]. The vector β := [β1, . . . , βN ]′ is found by

solving the linear system of equations

[K + µIN ]β(k) = y − o(k−1) (3.9)

where y := [y1, . . . , yN ]′, and the N ×N matrix K � 0 has entries [K]ij := K(xi,xj).

In a nutshell, updating f (k) is equivalent to updating vector β(k) as per (3.9), where

only the independent vector variable y − o(k−1) changes across iterations. Because the

system matrix is positive definite, the per iteration systems of linear equations (3.9) can be

efficiently solved after computing once, the Cholesky factorization of K + µIN .

For fixed f := f (k) in (3.5), the outlier vector update o(k) at iteration k is obtained as

o(k) := arg min
o∈RN

[

N
∑

i=1

(

r
(k)
i − oi

)2
+ λ1‖o‖1

]

(3.10)

where r
(k)
i := yi −

∑N
j=1 β

(k)
j K(xi,xj). Problem (3.10) can be recognized as an instance of

Lasso for the so-termed orthonormal case, in particular for an identity regression matrix.

The solution of such Lasso problems is readily obtained via soft-thresholding [44], in the

form of

o
(k)
i := S

(

r
(k)
i , λ1/2

)

, i = 1, . . . , N (3.11)

where S(z, γ) := sign(z)(|z| − γ)+ is the soft-thresholding operator, and (·)+ := max(0, ·)
denotes the projection onto the nonnegative reals. The coordinatewise updates in (3.11) are

in par with the sparsifying property of the `1 norm, since for ‘small’ residuals, i.e., r
(k)
i ≤

λ1/2, it follows that o
(k)
i = 0, and the i-th training datum is deemed outlier free. Updates

(3.9) and (3.11) comprise the iterative AM solver of the `1-norm regularized problem (3.5),
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Algorithm 3 : AM solver

Initialize o(−1) = 0, and run till convergence

for k = 0, 1,. . . do

Update β(k) solving [K + µIN ] β(k) = y − o(k−1).

Update o(k) via o
(k)
i = S

(

yi −
∑N

j=1 β
(k)
j K(xi,xj), λ1/2

)

, i = 1, . . . , N .

end for

return f(x) =
∑N

i=1 β
(∞)
i K(x,xi)

which is tabulated as Algorithm 4. Convexity ensures convergence to the global optimum

solution regardless of the initial condition; see e.g., [11].

Algorithm 4 is also conceptually interesting, since it explicitly reveals the intertwining

between the outlier identification process, and the estimation of the regression function with

the appropriate outlier-compensated data. An additional point is worth mentioning after

inspection of (3.11) in the limit as k → ∞. From the definition of the soft-thresholding

operator S, for those ‘large’ residuals r̂i := limk→∞ r
(k)
i exceeding λ1/2 in magnitude,

ôi = r̂i − λ1/2 when r̂i > 0, and ôi = r̂i + λ1/2 otherwise. In other words, larger residuals

that the method identifies as corresponding to outlier-contaminated data are shrunk, but

not completely discarded. By plugging ô back into (3.5), these ‘large’ residuals cancel out in

the squared error term, but still contribute linearly through the `1-norm regularizer. This is

exactly what one would expect, in light of the equivalence established with the variational

M -type estimator in (3.6).

Next, it is established that an alternative to solving a sequence of linear systems and

scalar Lasso problems, is to solve a single instance of the Lasso with specific response vector

and (non-orthonormal) regression matrix.

Proposition 3.2 Consider ôLasso defined as

ôLasso := arg min
o∈RN

‖Xµy −Xµo‖22 + λ1‖o‖1 (3.12)

where

Xµ :=





IN −K (K + µIN )−1

(µK)1/2 (K + µIN)−1



 . (3.13)
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Then the minimizers {f̂ , ô} of (3.5) are fully determined given ôLasso, as ô := ôLasso and

f̂(x) =
∑N

i=1 β̂iK(x,xi), with β̂ = (K + µIN )−1 (y − ôLasso).

Proof: For notational convenience introduce the N×1 vectors f := [f(x1), . . . , f(xN )]′ and

f̂ := [f̂(x1), . . . , f̂(xN )]′, where f̂ ∈ H is the minimizer of (3.5). Next, consider rewriting

(3.5) as

min
o∈RN

[

min
f∈H
‖(y − o)− f‖22 + µ‖f‖2H

]

+ λ1‖o‖1. (3.14)

The quantity inside the square brackets is a function of o, and can be written explicitly

after carrying out the minimization with respect to f ∈ H. From the results in [119],

it follows that the vector of optimum predicted values at the points {xi}Ni=1 is given by

f̂ = Kβ̂ = K (K + µIN )−1 (y − o); see also the discussion after (3.8). Similarly, one finds

that ‖f̂‖2H = β̂′Kβ̂ = (y − o)′ (K + µIN)−1 K (K + µIN)−1 (y − o). Having minimized

(3.14) with respect to f , the quantity inside the square brackets is (Γµ := (K + µIN )−1)

min
f∈H

[

‖(y − o)− f‖22 + µ‖f‖2H
]

=
∥

∥

∥
(y − o)− f̂

∥

∥

∥

2

2
+ µ‖f̂‖2H

= ‖(y − o)−KΓµ(y − o)‖22 + µ(y − o)′ΓµKΓµ(y − o)

= ‖(IN −KΓµ)y − (IN −KΓµ)o‖22 + µ(y − o)′ΓµKΓµ(y − o).

(3.15)

After expanding the quadratic form in the right-hand side of (3.15), and eliminating the

term that does not depend on o, problem (3.14) becomes

min
o∈RN

[

‖(IN −KΓµ)y − (IN −KΓµ)o‖22 − 2µy′ΓµKΓµo + µo′ΓµKΓµo + λ1‖o‖1
]

.

Completing the square one arrives at

min
o∈RN







∥

∥

∥

∥

∥

∥





IN −KΓµ

(µK)1/2Γµ



y −





IN −KΓµ

(µK)1/2Γµ



o

∥

∥

∥

∥

∥

∥

2

2

+ λ1‖o‖1







which completes the proof. �

The result in Proposition 3.2 opens the possibility for effective methods to select λ1.

These methods to be described in detail in the ensuing section, capitalize on recent algorith-

mic advances on Lasso solvers, which allow one to efficiently compute ôLasso for all values
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of the tuning parameter λ1. This is crucial for obtaining satisfactory robust estimates f̂ ,

since controlling the sparsity in o by tuning λ1 is tantamount to controlling the number of

outliers in model (3.2).

3.3.2 Selection of the tuning parameters: robustification paths

As argued before, the tuning parameters µ and λ1 in (3.5) control the degree of smoothness

in f̂ and the number of outliers (nonzero entries in ôLasso), respectively. From a statistical

learning theory standpoint, µ and λ1 control the amount of regularization and model com-

plexity, thus capturing the so-termed effective degrees of freedom [59]. Complex models tend

to have worse generalization capability, even though the prediction error over the training

set T may be small (overfitting). In the contexts of regularization networks [36] and Lasso

estimation for regression [110], corresponding tuning parameters are typically selected via

model selection techniques such as cross-validation, or, by minimizing the prediction error

over an independent test set, if available [59]. However, these simple methods are severely

challenged in the presence of multiple outliers. For example, the swamping effect refers to

a very large value of the residual ri corresponding to a left out clean datum {yi,xi}, be-

cause of an unsatisfactory model estimation based on all data except i; data which contain

outliers.

The idea here offers an alternative method to overcome the aforementioned challenges,

and the possibility to efficiently compute ôLasso for all values of λ1, given µ. A brief overview

of the state-of-the-art in Lasso solvers is given first. Several methods for selecting µ and λ1

are then described, which differ on the assumptions of what is known regarding the outlier

model (3.2).

Lasso amounts to solving a quadratic programming (QP) problem [110]; hence, an

iterative procedure is required to determine ôLasso in (3.12) for a given value of λ1. While

standard QP solvers can be certainly invoked to this end, an increasing amount of effort has

been put recently toward developing fast algorithms that capitalize on the unique properties

of Lasso. The Lasso variation of the LARS algorithm [34, Sec. 3.1] is an efficient scheme

for computing the entire path of solutions (corresponding to all values of λ1), elsewhere
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referred to as homotopy paths [34, 48], or, regularization paths [44]. LARS capitalizes on

piecewise linearity of the Lasso path of solutions, while incurring the complexity of a single

LS fit, i.e., when λ1 = 0. Homotopy algorithms have been also developed to solve the

Lasso online, when data pairs {yi,xi} are collected sequentially in time [6,48]. Coordinate

descent algorithms have been shown competitive, even outperforming LARS when p is large,

as demonstrated in [45]; see also [44, 126], and the references therein. Coordinate descent

solvers capitalize on the fact that Lasso can afford a very simple solution in the scalar case,

which is given in closed form in terms of a soft-thresholding operation [cf. (3.11)]. Further

computational savings are attained through the use of warm starts [44], when computing the

Lasso path of solutions over a grid of decreasing values of λ1. An efficient solver capitalizing

on variable separability has been proposed in [125], while a semismooth Newton method

was put forth in [56].

Consider then a grid of Gµ values of µ in the interval [µmin, µmax], evenly spaced in a

logarithmic scale. Likewise, for each µ consider a similar type of grid consisting of Gλ values

of λ1, where λmax := 2mini |y′X′
µxµ,i| is the minimum λ1 value such that ôLasso 6= 0N [45],

and Xµ := [xµ,1 . . .xµ,N ] in (3.12). Typically, λmin = ελmax with ε = 10−4, say. Note that

each of the Gµ values of µ gives rise to a different λ grid, since λmax depends on µ through

Xµ. Given the previously surveyed algorithmic alternatives to tackle the Lasso, it is safe to

assume that (3.12) can be efficiently solved over the (nonuniform) Gµ×Gλ grid of values of

the tuning parameters. This way, for each value of µ one obtains Gλ samples of the Lasso

homotopy paths, henceforth referred to as robustification paths as a means of highlighting

the connection between robustness and sparsity in the nonparametric context of the present

work. As λ1 decreases, more variables ôLasso,i enter the model signifying that more of the

training data are deemed to contain outliers. An example of the robustification path is

given in Fig. 3.3.

Based on the robustification paths and the prior knowledge available on the outlier

model (3.2), several alternatives are given next to select the ‘best’ pair {µ, λ1} in the grid

Gµ ×Gλ.

Number of outliers is known: For each value of µ in the grid Gµ, by direct inspection of
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the robustification paths one can determine the range of values for λ1, such that ôLasso

has exactly No nonzero entries. This procedure yields a reduced grid Gµ × G̃λ of candidate

tuning parameter pairs, which is again nonuniform since the obtained λ1-intervals may differ

per µ. Focusing on the reduced grid, and after discarding outliers which are now fixed and

known, K-fold cross-validation can be applied to determine {µ∗, λ∗
1}; see e.g., [59, Ch. 7].

Variance of the nominal noise is known: Supposing that the variance σ2
ε of the i.i.d. nominal

noise variables εi in (3.2) is known, one can proceed as follows. Using the solution f̂ obtained

for each pair {µi, λj} on the grid, form the Gµ ×Gλ sample variance matrix Σ̄ with ij-th

entry

[Σ̄]ij :=
∑

u|ôLasso,u=0

r̂2
u/N̂o =

∑

u|ôLasso,u=0

(yu − f̂(xu))2/N̂o (3.16)

where N̂o stands for the number of nonzero entries in ôLasso. Although not made explicit,

the right-hand side of (3.16) depends on {µi, λj} through the estimate f̂ , ôLasso and N̂o. The

entries [Σ̄]ij correspond to a sample estimate of σ2
ε , without considering those training data

{yi,xi} that the method determined to be contaminated with outliers, i.e., those indices i

for which ôLasso,i 6= 0. The ‘winner’ tuning parameters {µ∗, λ∗
1} := {µi∗ , λj∗} are such that

[i∗, j∗] := arg min
i,j
|[Σ̄]ij − σ2

ε | (3.17)

which is an absolute variance deviation (AVD) criterion.

Variance of the nominal noise is unknown: If σ2
ε is unknown, one can still compute a robust

estimate of the variance σ̂2
ε , and repeat the previous procedure (with known nominal noise

variance) after replacing σ2
ε with σ̂2

ε in (3.17). One option is based on the median absolute

deviation (MAD) estimator, namely

σ̂ε := 1.4826 ×mediani (|r̂i −medianj (r̂j) |) (3.18)

where the residuals r̂i = yi− f̂(xi) are formed based on a nonrobust estimate of f , obtained

e.g., after solving (3.5) with λ1 = 0 and using a small subset of the training dataset T . The

factor 1.4826 provides an approximately unbiased estimate of the standard deviation when

the nominal noise is Gaussian. Typically, σ̂ε in (3.18) is used as an estimate for the scale

of the errors in general M-type robust estimators; see e.g., [28] and [78].
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Remark 3.2 (How sparse is sparse) Even though the very nature of outliers dictates

that No is typically a small fraction of N – and thus o in (3.2) is sparse – the method here

capitalizes on, but is not limited to sparse settings. For instance, choosing λ1 ∈ [λmin ≈
0, λmax] along the robustification paths allows one to continuously control the sparsity level,

and potentially select the right value of λ1 for any given No ∈ {1, . . . , N}. Admittedly, if

No is large relative to N , then even if it is possible to identify and discard the outliers, the

estimate f̂ may not be accurate due to the lack of outlier-free data. Interestingly, simulation

results in [49] demonstrate that the performance of this chapter’s sparsity-controlling outlier

rejection methods degrade gracefully, as No → N .

3.4 Refinement via Nonconvex Regularization

Instead of substituting ‖o‖0 in (3.3) by its closest convex approximation, namely ‖o‖1,
letting the surrogate function to be non-convex can yield tighter approximations. For

example, the `0-norm of a vector x ∈ R
n was surrogated in [23] by the logarithm of the

geometric mean of its elements, or by
∑n

i=1 log |xi|. In rank minimization problems, apart

from the nuclear norm relaxation, minimizing the logarithm of the determinant of the

unknown matrix has been proposed as an alternative surrogate [39]. Adopting related ideas

in the present nonparametric context, consider approximating (3.3) by

min
f∈H
o∈R

N

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H + λ0

N
∑

i=1

log(|oi|+ δ)

]

(3.19)

where δ is a sufficiently small positive offset introduced to avoid numerical instability.

Since the surrogate term in (3.19) is concave, the overall problem is nonconvex. Still,

local methods based on iterative linearization of log(|oi| + δ), around the current iterate

o
(k)
i , can be adopted to minimize (3.19). From the concavity of the logarithm, its local

linear approximation serves as a global overestimator. Standard majorization-minimization

algorithms motivate minimizing the global linear overestimator instead. This leads to the
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following iteration for k = 0, 1, . . . (see e.g., [72] for further details)

[f (k),o(k)] := arg min
f∈H
o∈R

N

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ‖f‖2H + λ0

N
∑

i=1

w
(k)
i |oi|

]

(3.20)

w
(k)
i :=

(

|o(k−1)
i |+ δ

)−1
, i = 1, . . . , N. (3.21)

It is possible to eliminate the optimization variable f ∈ H from (3.20), by direct application

of the result in Proposition 3.2. The equivalent update for o at iteration k is then given by

o(k) := arg min
o∈RN

[

‖Xµy−Xµo‖22 + λ0

N
∑

i=1

w
(k)
i |oi|

]

(3.22)

which amounts to an iteratively reweighted version of (3.12). If the value of |o(k−1)
i | is

small, then in the next iteration the corresponding regularization term λ0w
(k)
i |oi| has a

large weight, thus promoting shrinkage of that coordinate to zero. On the other hand when

|o(k−1)
i | is significant, the cost in the next iteration downweighs the regularization, and

places more importance to the LS component of the fit. For small δ, analysis of the limiting

point o∗ of (3.22) reveals that

λ0w
∗
i |o∗i | ≈







λ0, |o∗i | 6= 0

0, |o∗i | = 0

and hence, λ0
∑N

i=1 w∗
i |o∗i | ≈ λ0‖o∗‖0.

A good initialization for the iteration in (3.22) and (3.21) is ôLasso, which corresponds

to the solution of (3.12) [and (3.5)] for λ0 = λ∗
1 and µ = µ∗. This is equivalent to a single

iteration of (3.22) with all weights equal to unity. The numerical tests in Section 3.5 will

indicate that even a single iteration of (3.22) suffices to obtain improved estimates f̂ , in

comparison to those obtained from (3.12). The following remark sheds further light towards

understanding why this should be expected.

Remark 3.3 (Refinement through bias reduction) Uniformly weighted `1-norm reg-

ularized estimators such as (3.5) are biased [133], due to the shrinkage effected on the

estimated coefficients. It will be argued next that the improvements due to (3.22) can be

leveraged to bias reduction. Several workarounds have been proposed to correct the bias in
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sparse regression, that could as well be applied here. A first possibility is to retain only the

support of (3.12) and re-estimate the amplitudes via, e.g., the unbiased LS estimator [34].

An alternative approach to reducing bias is through nonconvex regularization using e.g.,

the smoothly clipped absolute deviation (SCAD) scheme [38]. The SCAD penalty could

replace the sum of logarithms in (3.19), still leading to a nonconvex problem. To retain

the efficiency of convex optimization solvers while simultaneously limiting the bias, suit-

ably weighted `1-norm regularizers have been proposed instead [133]. The constant weights

in [133] play a role similar to those in (3.21); hence, bias reduction is expected.

3.5 Numerical Experiments

3.5.1 Robust thin-plate smoothing splines

To validate the proposed approach to robust nonparametric regression, a simulated test

is carried out here in the context of thin-plate smoothing spline approximation [33, 120].

Specializing (3.5) to this setup, the robust thin-plate splines estimator can be formulated

as

min
f∈S

o∈R
N

[

N
∑

i=1

(yi − f(xi)− oi)
2 + µ

∫

R2

‖∇2f‖2F dx + λ1‖o‖1
]

(3.23)

where ||∇2f ||F denotes the Frobenius norm of the Hessian of f : R
2 → R. The penalty

functional

J [f ] :=

∫

R2

‖∇2f‖2F dx =

∫

R2

[

(

∂2f

∂x2
1

)2

+ 2

(

∂2f

∂x1∂x2

)2

+

(

∂2f

∂x2
2

)2
]

dx (3.24)

extends to R
2 the one-dimensional roughness regularization used in smoothing spline mod-

els. For µ = 0, the (non-unique) estimate in (3.23) corresponds to a rough function

interpolating the outlier compensated data; while as µ → ∞ the estimate is linear (cf.

∇2f̂(x) ≡ 02×2). The optimization is over S, the space of Sobolev functions, for which J [f ]

is well defined [33, p. 85]. Reproducing kernel Hilbert spaces such as S, with inner-products

(and norms) involving derivatives are studied in detail in [119].

Different from the cases considered so far, the smoothing penalty in (3.24) is only a

seminorm, since first-order polynomials vanish under J [·]. Omitting details than can be
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found in [119, p. 30], a unique minimizer of (3.23) exists provided the input vectors {xi ∈
R

2}Ni=1 do not fall on a straight line. The solution admits the finitely parametrized form

f̂(x) =
∑N

i=1 βiK(x,xi) + α′
1x + α0, where in this case K(x,y) := ‖x− y‖2 log ‖x − y‖ is

a radial basis function. In simple terms, the solution as a kernel expansion is augmented

with a member of the null space of J [·]. The unknown parameters {β,α1, α0} are obtained

in closed form, as solutions to a constrained, regularized LS problem; see [119, p. 33]. As

a result, Proposition 3.2 still holds with minor modifications on the structure of Xµ.

Remark 3.4 (Bayesian framework) Adopting a Bayesian perspective, one could model

f(x) in (3.2) as a sample function of a zero mean Gaussian stationary process, with covari-

ance function K(x,y) = ‖x− y‖2 log ‖x− y‖ [70]. Consider as well that {f(x), {oi, εi}Ni=1}
are mutually independent, while εi ∼ N (0, µ∗/2) and oi ∼ L(0, µ∗/λ∗

1) in (3.2) are i.i.d.

Gaussian and Laplace distributed, respectively. From the results in [70] and a straightfor-

ward calculation, it follows that setting λ1 = λ∗
1 and µ = µ∗ in (3.23) yields estimates f̂

(and ô) which are optimal in a maximum a posteriori sense. This provides yet another

means of selecting the parameters µ and λ1, further expanding the options presented in

Section 3.3.2.

The simulation setup is as follows. Noisy samples of the true function fo : R
2 → R

comprise the training set T . Function fo is generated as a Gaussian mixture with two

components, with respective mean vectors and covariance matrices given by

µ1 =





0.2295

0.4996



 , Σ1 =





2.2431 0.4577

0.4577 1.0037



 ,

µ2 =





2.4566

2.9461



 , Σ2 =





2.9069 0.5236

0.5236 1.7299



 .

Function fo(x) is depicted in Fig. 3.4 (a). The training data set comprises N = 200

examples, with inputs {xi}Ni=1 drawn from a uniform distribution in the square [0, 3]× [0, 3].

Several values ranging from 5% to 25% of the data are generated contaminated with outliers.

Without loss of generality, the corrupted data correspond to the first No training samples

with No = {10, 20, 30, 40, 50}, for which the response values {yi}No

i=1 are independently
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Figure 3.2: True Gaussian mixture function fo(x), and its 180 noisy samples taken over [0, 3]× [0, 3]

shown as black dots. The red dots indicate the No = 20 outliers in the training data set T . The

green points indicate the predicted responses ŷi at the sampling points xi, from the estimate f̂

obtained after solving (3.23). Note how all green points are close to the surface fo.

drawn from a uniform distribution over [−3, 3]. Outlier-free data are generated according

to the model yi = fo(xi) + εi, where the independent additive noise terms εi ∼ N (0, 10−1)

are Gaussian distributed, for i = No + 1, . . . , 200. For the case where No = 20, the data

used in the experiment is shown in Fig. 3.2. Superimposed to the true function fo are 180

black points corresponding to data drawn from the nominal model, as well as 20 red outlier

points.

For this experiment, the nominal noise variance σ2
ε = 10−1 is assumed known. A nonuni-

form grid of µ and λ1 values is constructed, as described in Section 3.3.2. The relevant

parameters are Gµ = Gλ = 200, µmin = 10−9 and µmax = 1. For each value of µ, the

λ1 grid spans the interval defined by λmax := 2mini |y′X′
µxµ,i| and λmin = ελmax, where

ε = 10−4. Each of the Gµ robustification paths corresponding to the solution of (3.12) is

obtained using the SpaRSA toolbox in [125], exploiting warm starts for faster convergence.
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Figure 3.3: Robustification path with optimum smoothing parameter µ∗ = 3.53 × 10−1. The data

is corrupted with No = 20 outliers. The coefficients ôi corresponding to the outliers are shown in

red, while the rest are shown in blue. The vertical line indicates the selection of λ∗
1 = 2.90× 10−1,

and shows that the outliers were correctly identified.

Fig. 3.3 depicts an example with No = 20 and µ∗ = 3.53 × 10−1. With the robustification

paths at hand, it is possible to form the sample variance matrix Σ̄ [cf. (3.16)], and select

the optimum tuning parameters {µ∗, λ∗
1} based on the criterion (3.17). Finally, the robust

estimates are refined by running a single iteration of (3.22) as described in Section 3.4. The

value δ = 10−5 was utilized, and several experiments indicated that the results are quite

insensitive to the selection of this parameter.

The same experiment was conducted for a variable number of outliers No, and the results

are listed in Table 3.1. In all cases, a 100% outlier identification success rate was obtained,

for the chosen value of the tuning parameters. This even happened at the first stage of the

method, i.e., ôLasso in (3.12) had the correct support in all cases. It has been observed in

some other setups that (3.12) may select a larger support than [1, No], but after running a
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Table 3.1: Results for the thin-plate splines simulated test.

No λ∗

1 µ∗ ¯err (3.5) ¯err (3.19) ErrT (3.5) ErrT (3.19)

10 2.72 × 10−1 9.72 × 10−2 1.00 × 10−2 9.92 × 10−3 1.92 × 10−2 1.47 × 10−2

20 2.90 × 10−1 3.53 × 10−1 1.02 × 10−2 1.03 × 10−2 5.79 × 10−2 4.86 × 10−2

30 2.75 × 10−1 4.33 × 10−2 1.00 × 10−2 9.80 × 10−3 1.60 × 10−2 1.32 × 10−2

40 2.58 × 10−1 9.90 × 10−1 9.90 × 10−3 1.07 × 10−2 5.13 × 10−2 2.90 × 10−2

50 2.36 × 10−1 5.34 × 10−1 1.04 × 10−2 1.03 × 10−2 6.89 × 10−2 4.53 × 10−2

few iterations of (3.22) the true support was typically identified. To assess quality of the

estimated function f̂ , two figures of merit were considered. First, the training error ērr was

evaluated as

ērr =
1

N −No

N
∑

i=No

(

yi − f̂(xi)
)2

i.e., the average loss over the training sample T after excluding outliers. Second, to assess

the generalization capability of f̂ , an approximation to the generalization error ErrT was

computed as

ErrT = E

[

(

y − f̂(x)
)2
|T

]

≈ 1

Ñ

Ñ
∑

i=1

(

ỹi − f̂(x̃i)
)2

(3.25)

where {ỹi, x̃i}Ñi=1 is an independent test set generated from the model ỹi = fo(x̃i) + εi. For

the results in Table 3.1, Ñ = 961 was adopted corresponding to a uniform rectangular grid

of 31× 31 points x̃i in [0, 3]× [0, 3]. Inspection of Table 3.1 reveals that the training errors

ērr are comparable for the function estimates obtained after solving (3.5) or its nonconvex

refinement (3.19). Interestingly, when it comes to the more pragmatic generalization error

ErrT , the refined estimator (3.19) has an edge for all values of No. As expected, the

bias reduction effected by the iteratively reweighting procedure of Section 3.4 improves

considerably the generalization capability of the method; see also Remark 3.3.

A pictorial summary of the results is given in Fig. 3.4, for No = 20 outliers. Fig. 3.4

(a) depicts the true Gaussian mixture fo(x), whereas Fig. 3.4 (b) shows the nonrobust
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thin-plate splines estimate obtained after solving

min
f∈S

[

N
∑

i=1

(yi − f(xi))
2 + µ

∫

R2

‖∇2f‖2F dx

]

. (3.26)

Even though the thin-plate penalty enforces some degree of smoothness, the estimate is

severely disrupted by the presence of outliers [cf. the difference on the z-axis ranges].

On the other hand, Figs. 3.4 (c) and (d), respectively, show the robust estimate f̂ with

λ∗
1 = 2.90× 10−1, and its bias reducing refinement for which the improvement is apparent.
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Figure 3.4: Robust estimation of a Gaussian mixture using thin-plate splines. The data is corrupted

with No = 20 outliers. (a) True function fo(x); (b) nonrobust predicted function obtained after

solving (3.26); (c) predicted function after solving (3.23) with the optimum tuning parameters; (d)

refined predicted function using the nonconvex regularization in (3.19).
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3.5.2 Sinc function estimation

The univariate function sinc(x) := sin(πx)/(πx) is commonly adopted to evaluate the per-

formance of nonparametric regression methods [27, 132]. Given noisy training examples

with a small fraction of outliers, approximating sinc(x) over the interval [−5, 5] is consid-

ered in the present simulated test. The sparsity-controlling robust nonparametric regression

methods of this chapter are compared with the SVR [118] and robust SVR in [27], for the

case of the ε-insensitve loss function with values ε = 0.1 and ε = 0.01. In order to imple-

ment (R)SVR, routines from a publicly available SVM Matlab toolbox were utilized [57].

Results for the nonrobust regularization network approach in (1.4) (with V (u) = u2) are

reported as well, to assess the performance degradation incurred when compared to the

aforementioned robust alternatives. Because the fraction of outliers (No/N) in the training

data is assumed known to the method of [27], the same will be assumed towards selecting

the tuning parameters λ1 and µ in (3.5), as described in Section 3.3.2. The {µ, λ1}-grid
parameters selected for the experiment in Section 3.5.1 were used here as well, except for

µmin = 10−5. Space H is chosen to be the RKHS induced by the positive definite Gaussian

kernel function K(u, v) = exp
[

−(u− v)2/(2η2)
]

, with parameter η = 0.1 for all cases.

The training set comprises N = 50 examples, with scalar inputs {xi}Ni=1 drawn from

a uniform distribution over [−5, 5]. Uniformly distributed outliers {yi}No

i=1 ∼ U [−5, 5] are

artificially added in T , with No = 3 resulting in 6% contamination. Nominal data in T
adheres to the model yi = sinc(xi)+εi for i = No+1, . . . , N , where the independent additive

noise terms εi are zero-mean Gaussian distributed. Three different values are considered

for the nominal noise variance, namely σ2
ε = 1 × 10−l for l = 2, 3, 4. For the case where

σ2
ε = 1 × 10−4, the data used in the experiment are shown in Fig. 3.5 (a). Superimposed

to the true function sinc(x) (shown in blue) are 47 black points corresponding to the noisy

data obeying the nominal model, as well as 3 outliers depicted as red points.

The results are summarized in Table 3.2, which lists the generalization errors ErrT

attained by the different methods tested, and for varying σ2
ε . The independent test set

{ỹi, x̃i}Ñi=1 used to evaluate (3.25) was generated from the model ỹi = sinc(x̃i) + εi, where

the x̃i define a Ñ = 101-element uniform grid over [−5, 5]. A first (expected) observation
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Table 3.2: Generalization error (ErrT ) results for the sinc function estimation experiment.

Method σ2
ε = 1 × 10−4 σ2

ε = 1 × 10−3 σ2
ε = 1 × 10−2

Nonrobust [(1.4) with V (u) = u2] 5.67 × 10−2 8.28 × 10−2 1.13 × 10−1

SVR with ε = 0.1 5.00 × 10−3 6.42 × 10−4 6.15 × 10−3

RSVR with ε = 0.1 1.10 × 10−3 5.10 × 10−4 4.47 × 10−3

SVR with ε = 0.01 8.24 × 10−5 4.79 × 10−4 5.60 × 10−3

RSVR with ε = 0.01 7.75 × 10−5 3.90 × 10−4 3.32 × 10−3

Sparsity-controlling in (3.5) 1.47 × 10−4 6.56 × 10−4 4.60 × 10−3

Refinement in (3.19) 7.46 × 10−5 3.59 × 10−4 3.21 × 10−3

is that all robust alternatives markedly outperform the nonrobust regularization network

approach in (1.4), by an order of magnitude or even more, regardless of the value of σ2
ε .

As reported in [27], RSVR uniformly outperforms SVR. For the case ε = 0.01, RSVR also

uniformly outperforms the sparsity-controlling method in (3.5). Interestingly, after refining

the estimate obtained via (3.5) through a couple iterations of (3.22) (cf. Section 3.4),

the lowest generalization errors are obtained, uniformly across all simulated values of the

nominal noise variance. Results for the RSVR with ε = 0.01 come sufficiently close, and

are equally satisfactory for all practical purposes; see also Fig. 3.5 for a pictorial summary

of the results when σ2
ε = 1× 10−4.

While specific error values or method rankings are arguably anecdotal, two conclusions

stand out: (i) model (3.2) and its sparsity-controlling estimators (3.5) and (3.19) are effective

approaches to nonparametric regression in the presence of outliers; and (ii) when initialized

with ôLasso the refined estimator (3.19) can considerably improve the performance of (3.5),

at the price of a modest increase in computational complexity. While (3.5) endowed with

the sparsity-controlling mechanisms of Section 3.3.2 tends to overestimate the ‘true’ support

of o, numerical results have consistently shown that the refinement in Section 3.4 is more

effective when it comes to support recovery.
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Figure 3.5: Robust estimation of the sinc function. (a) Noisy training data and outliers; (b) predicted

values obtained after solving (1.4) with V (u) = u2; (c) SVR predictions for ε = 0.1; (d) RSVR

predictions for ε = 0.1; (e) SVR predictions for ε = 0.01; (f) RSVR predictions for ε = 0.01; (g)

predicted values obtained after solving (3.5); (h) refined predictions using the (3.19).
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3.5.3 Load curve data cleansing

In this section, the robust nonparametric methods described so far are applied to the prob-

lem of load curve cleansing outlined in Section 3.1. Given load data T := {yi, ti}Ni=1 corre-

sponding to a building’s power consumption measurements yi, acquired at time instants ti,

i = 1, . . . , N , the proposed approach to load curve cleansing minimizes

min
f∈S

o∈R
N

[

N
∑

i=1

(yi − f(ti)− oi)
2 + µ

∫

R

f ′′(t)dt + λ1‖o‖1
]

(3.27)

where f ′′(t) denotes the second-order derivative of f : R → R. This way, the solution f̂

provides a cleansed estimate of the load profile, and the support of ô indicates the instants

where significant load deviations, or, meter failures occurred. Estimator (3.27) specializes

(3.5) to the so-termed cubic smoothing splines; see e.g., [59, 119]. It is also subsumed as

a special case of the robust thin-plate splines estimator (3.23), when the target function f

has domain in R [cf. how the smoothing penalty (3.24) simplifies to the one in (3.27) in the

one-dimensional case].

In light of the aforementioned connection, it should not be surprising that f̂ admits

a unique, finite-dimensional minimizer, which corresponds to a natural spline with knots

at {ti}Ni=1; see e.g., [59, p. 151]. Specifically, it follows that f̂(t) =
∑N

i=1 θ̂ibi(t), where

{bi(t)}Ni=1 is the basis set of natural spline functions, and the vector of expansion coefficients

θ̂ := [θ̂1, . . . , θ̂N ]′ is given by

θ̂ =
(

B′B + µΨ
)−1

B′(y − ô)

where matrix B ∈ R
N×N has ij-th entry [B]ij = bj(ti); while Ψ ∈ R

N×N has ij-th entry

[Ψ]ij =
∫

b′′i (t)b
′′
j (t)dt. Spline coefficients can be computed more efficiently if the basis of

B-splines is adopted instead; details can be found in [59, p. 189] and [117].

Without considering the outlier variables in (3.27), a B-spline estimator for load curve

cleansing was put forth in [25]. An alternative Nadaraya-Watson estimator from the Kernel

smoothing family was considered as well. In any case, outliers are identified during a

post-processing stage, after the load curve has been estimated nonrobustly. Supposing for

instance that the approach in [25] correctly identifies outliers most of the time, it still does
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not yield a cleansed estimate f̂ . This should be contrasted with the estimator (3.27), which

accounts for the outlier compensated data to yield a cleansed estimate at once. Moreover,

to select the ‘optimum’ smoothing parameter µ, the approach of [25] requires the user to

manually label the outliers present in a training subset of data, during a pre-processing

stage. This subjective component makes it challenging to reproduce the results of [25], and

for this reason comparisons with the aforementioned scheme are not included in the sequel.

Next, estimator (3.27) is tested on real load curve data provided by the NorthWrite

Energy Group. The dataset consists of power consumption measurements (in kWh) for a

government building, collected every fifteen minutes during a period of more than five years,

ranging from July 2005 to October 2010. Data is downsampled by a factor of four, to yield

one measurement per hour. For the present experiment, only a subset of the whole data is

utilized for concreteness, where N = 501 was chosen corresponding to a 501 hour period.

A snapshot of this training load curve data in T , spanning a particular three-week period

is shown in Fig. 3.6 (a). Weekday activity patterns can be clearly discerned from those

corresponding to weekends, as expected for most government buildings; but different, e.g.,

for the load profile of a grocery store. Fig. 3.6 (b) shows the nonrobust smoothing spline

fit to the training data in T (also shown for comparison purposes), obtained after solving

min
f∈S

[

N
∑

i=1

(yi − f(ti))
2 + µ

∫

R

f ′′(t)dt

]

(3.28)

using Matlab’s built-in spline toolbox. Parameter µ was chosen based on leave-one-out

cross-validation, and it is apparent that no cleansing of the load profile takes place. Indeed,

the resulting fitted function follows very closely the training data, even during the abnormal

energy peaks observed on the so-termed ‘building operational transition shoulder periods.’
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Figure 3.6: Load curve data cleansing. (a) Noisy training data and outliers; (b) fitted load profile

obtained after solving (3.28).
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Because with real load curve data the nominal noise variance σ2
ε in (3.2) is unknown,

selection of the tuning parameters {µ, λ1} in (3.27) requires a robust estimate of the variance

σ̂2
ε such as the MAD [cf. Section 3.3.2]. Similar to [25], it is assumed that the nominal

errors are zero mean Gaussian distributed, so that (3.18) can be applied yielding the value

σ̂2
ε = 0.6964. To form the residuals in (3.18), (3.28) is solved first using a small subset of

T that comprises 126 measurements. A nonuniform grid of µ and λ1 values is constructed,

as described in Section 3.3.2. Relevant parameters are Gµ = 100, Gλ = 200, µmin = 10−3,

µmax = 10, and ε = 10−4. The robustification paths (one per µ value in the grid) were

obtained using the SpaRSA toolbox in [125], with the sample variance matrix Σ̄ formed

as in (3.16). The optimum tuning parameters µ∗ = 1.637 and λ∗
1 = 3.6841 are finally

determined based on the criterion (3.17), where the unknown σ2
ε is replaced with σ̂2

ε . Finally,

the cleansed load curve is refined by running four iterations of (3.22) as described in Section

3.4, with a value of δ = 10−5. Results are depicted in Fig. 3.7, where the cleansed load

curves are superimposed to the training data in T . Red circles indicate those data points

deemed as outliers, information that is readily obtained from the support of ô. By inspection

of Fig. 3.7, it is apparent that the proposed sparsity-controlling estimator has the desired

cleansing capability. The cleansed load curves closely follow the training data, but are

smooth enough to avoid overfitting the abnormal energy peaks on the ‘shoulders.’ Indeed,

these peaks are in most cases identified as outliers. As seen from Fig. 3.7 (a), the solution

of (3.27) tends to overestimate the support of o, since one could argue that some of the red

circles in Fig. 3.7 (a) do not correspond to outliers. Again, the nonconvex regularization

in Section 3.4 prunes the outlier support obtained via (3.27), resulting in a more accurate

result in terms of the residual fit to the data and reducing the number of outliers identified

from 77 to 41.
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Figure 3.7: Load curve data cleansing. (a) Cleansed load profile obtained after solving (3.27); (b)

refined load profile obtained after using the nonconvex regularization in (3.19).
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3.6 Summary

Outlier-robust nonparametric regression methods were developed in this chapter for function

approximation in RKHS. Building on a neat link between the seemingly unrelated fields

of robust statistics and sparse regression, the novel estimators were found rooted at the

crossroads of outlier-resilient estimation, the Lasso, and convex optimization. Estimators as

fundamental as LS for linear regression, regularization networks, and (thin-plate) smoothing

splines, can be robustified under the proposed framework.

Training samples from the (unknown) target function were assumed generated from a

regression model, which explicitly incorporates an unknown sparse vector of outliers. To

fit such a model, the proposed variational estimator minimizes a tradeoff between fidelity

to the training data, the degree of ‘smoothness’ of the regression function, and the sparsity

level of the vector of outliers. While model complexity control effected through a smoothing

penalty has quite well understood ramifications in terms of generalization capability, the

major innovative claim here is that sparsity control is tantamount to robustness control.

This is indeed the case since a tunable parameter in a Lasso reformulation of the variational

estimator, controls the degree of sparsity in the estimated vector of model outliers. Selection

of tuning parameters could be at first thought as a mundane task. However, arguing on

the importance of such task in the context of robust nonparametric regression, as well as

devising principled methods to effectively carry out smoothness and sparsity control, are

at the heart of this chapters novelty. Sparsity control can be carried out at affordable

complexity, by capitalizing on state-of-the-art algorithms that can efficiently compute the

whole path of Lasso solutions. In this sense, the method here capitalizes on but is not

limited to sparse settings where few outliers are present, since one can efficiently examine

the gamut of sparsity levels along the robustification path. Computer simulations have

shown that the novel methods of this chapter outperform existing alternatives including

SVR, and one if its robust variants.

As an application domain relevant to robust nonparametric regression, the problem of

load curve cleansing for power systems engineering was also considered along with a solution

proposed based on robust cubic spline smoothing. Numerical tests on real load curve data
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demonstrated that the smoothness and sparsity controlling methods of this chapter are

effective in cleansing load profiles, without user intervention to aid the learning process.
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3.7 Appendices

3.7.1 Proof of equivalence of (3.5) and (3.6)

Towards establishing the equivalence between problems (3.5) and (3.6), consider the pair

{f̂ , ô} that solves (3.5). Assume that f̂ is given, and the goal is to determine ô. Upon

defining the residuals r̂i := yi − f̂(xi) and because ‖o‖1 =
∑N

i=1 |oi|, the entries of ô are

separately given by

ôi := arg min
oi∈R

[

(r̂i − oi)
2 + λ1|oi|

]

, i = 1, . . . , N, (3.29)

where the term µ‖f̂‖2H in (3.5) has been omitted, since it is inconsequential for the min-

imization with respect to o. For each i = 1, . . . , N , because (3.29) is nondifferentiable at

the origin one should consider three cases: i) if ôi = 0, it follows that the minimum cost

in (3.29) is r̂2
i ; ii) if ôi > 0, the first-order condition for optimality gives ôi = r̂i − λ1/2

provided r̂i > λ1/2, and the minimum cost is λ1r̂i−λ2
1/4; otherwise, iii) if ôi < 0, it follows

that ôi = r̂i + λ1/2 provided r̂i < −λ1/2, and the minimum cost is −λ1r̂i − λ2
1/4. In other

words,

ôi =



















r̂i − λ1/2, r̂i > λ1/2

0, |r̂i| ≤ λ1/2

r̂i + λ1/2, r̂i < −λ1/2

, i = 1, . . . , N. (3.30)

Upon plugging (3.30) into (3.29), the minimum cost in (3.29) after minimizing with respect

to oi is ρ(r̂i) [cf. (3.7) and the argument preceding (3.30)]. All in all, the conclusion is

that f̂ is the minimizer of (3.6) – in addition to being the solution of (3.5) by definition –

completing the proof. �
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Chapter 4

Robust PCA as Bilinear

Decomposition with

Outlier-Sparsity Regularization

4.1 Introduction

Principal component analysis (PCA) is widely used for dimensionality reduction, with well-

documented merits in various applications involving high-dimensional data, including com-

puter vision, preference measurement, and bioinformatics. A least-trimmed squares esti-

mator of a low-rank bilinear factor analysis model is shown closely related to that obtained

from an `0-(pseudo)norm-regularized criterion encouraging sparsity in a matrix explicitly

modeling the outliers. This connection suggests robust PCA schemes based on convex relax-

ation, which lead naturally to a family of robust estimators encompassing Huber’s optimal

M-class as a special case. Outliers are identified by tuning a regularization parameter, which

amounts to controlling sparsity of the outlier matrix along the whole robustification path

of (group) least-absolute shrinkage and selection operator (Lasso) solutions. Beyond its

neat ties to robust statistics, the outlier-aware PCA framework of this chapter is versatile

to accommodate novel and scalable algorithms to: i) track the low-rank signal subspace
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robustly, as new data are acquired in real time; and ii) determine principal components

robustly in (possibly) infinite-dimensional feature spaces. Synthetic and real data tests

corroborate the effectiveness of the proposed robust PCA schemes, when used to identify

aberrant responses in personality assessment surveys, as well as unveil communities in social

networks, and intruders from video surveillance data.

4.2 Robustifying PCA

Consider the standard PCA formulation, in which a set of data Ty := {yn}Nn=1 in the p-

dimensional Euclidean input space is given, and the goal is to find the best q-rank (q ≤ p)

linear approximation to the data in Ty; see e.g., [67]. Unless otherwise stated, it is assumed

throughout that the value of q is given. One approach to solving this problem, is to adopt

a low-rank bilinear (factor analysis) model

yn = m + Usn + en, n = 1, . . . , N (4.1)

where m ∈ R
p is a location (mean) vector; matrix U ∈ R

p×q has orthonormal columns

spanning the signal subspace; {sn}Nn=1 are the so-termed principal components, and {en}Nn=1

are zero-mean i.i.d. random errors. The unknown variables in (4.1) can be collected in

V := {m,U, {sn}Nn=1}, and they are estimated using the LS criterion as

min
V

N
∑

n=1

‖yn −m−Usn‖22, s. to U′U = Iq. (4.2)

PCA in (4.2) is a nonconvex optimization problem due to the bilinear terms Usn, yet

a global optimum V̂ can be shown to exist; see e.g., [129]. The resulting estimates are

m̂ =
∑N

n=1 yn/N and ŝn = Û′(yn−m̂), n = 1, . . . , N ; while Û is formed with columns equal

to the q-dominant right singular vectors of the N × p data matrix Y := [y1, . . . ,yN ]′ [59, p.

535]. The principal components (entries of) sn are the projections of the centered data

points {yn − m̂}Nn=1 onto the signal subspace. Equivalently, PCA can be formulated based

on maximum variance, or, minimum reconstruction error criteria; see e.g., [67].
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4.2.1 Least-trimmed squares PCA

Given training data Tx := {xn}Nn=1 possibly contaminated with outliers, the goal here is to

develop a robust estimator of V that requires minimal assumptions on the outlier model.

Note that there is an explicit notational differentiation between: i) the data in Ty which

adhere to the nominal model (4.1); and ii) the given data in Tx that may also contain

outliers, i.e., those xn not adhering to (4.1). Building on LTS regression [104], the desired

robust estimate V̂LTS := {m̂, Û, {ŝn}Nn=1} for a prescribed ν < N can be obtained via the

following LTS PCA estimator [cf. (4.2)]

V̂LTS := arg min
V

ν
∑

n=1

r2
[n](V), s. to U′U = Iq (4.3)

where r2
[n](V) is the n-th order statistic among the squared residual norms r2

1(V), . . . , r2
N (V),

and rn(V) := ‖xn−m−Usn‖2. The so-termed coverage ν determines the breakdown point

of the LTS PCA estimator [104], since the N − ν largest residuals are absent from the es-

timation criterion in (4.3). Beyond this universal outlier-rejection property, the LTS-based

estimation offers an attractive alternative to robust linear regression due to its high break-

down point and desirable analytical properties, namely
√

N -consistency and asymptotic

normality under mild assumptions [104].

Remark 4.1 (Robust estimation of the mean) In most applications of PCA, data in

Ty are typically assumed zero mean. This is without loss of generality, since nonzero-

mean training data can always be rendered zero mean, by subtracting the sample mean
∑N

n=1 yn/N from each yn. In modeling zero-mean data, the known vector m in (4.1) can

obviously be neglected. When outliers are present however, data in Tx are not necessarily

zero mean, and it is unwise to center them using the non-robust sample mean estimator

which has a breakdown point equal to zero [104]. Towards robustifying PCA, a more sensible

approach is to estimate m robustly, and jointly with U and the principal components

{sn}Nn=1.

Because (4.3) is a nonconvex optimization problem, a nontrivial issue pertains to the

existence of the proposed LTS PCA estimator, i.e., whether or not (4.3) attains a minimum.
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Fortunately, the answer is in the affirmative as asserted next.

Property 4.1 The LTS PCA estimator is well defined, since (4.3) has (at least) one solu-

tion.

Existence of V̂LTS can be readily established as follows: i) for each subset of T with cardinal-

ity ν (there are
(N

ν

)

such subsets), solve the corresponding PCA problem to obtain a unique

candidate estimator per subset; and ii) pick V̂LTS as the one among all
(N

ν

)

candidates with

the minimum cost.

Albeit conceptually simple, the solution procedure outlined under Property 4.1 is com-

binatorially complex, and thus intractable except for small sample sizes N . Algorithms to

obtain approximate LTS solutions in large-scale linear regression problems are available; see

e.g., [103].

4.2.2 `0-norm regularization for robustness

Instead of discarding large residuals, the alternative approach here explicitly accounts for

outliers in the low-rank data model (4.1). This becomes possible through the vector variables

{on}Nn=1 one per training datum xn, which take the value on 6= 0p whenever datum n is an

outlier, and on = 0p otherwise. Thus, the novel outlier-aware factor analysis model is

xn = yn + on = m + Usn + en + on, n = 1, . . . , N (4.4)

where on can be deterministic or random with unspecified distribution. In the under-

determined linear system of equations (4.4), both V as well as the N × p matrix O :=

[o1, . . . ,oN ]′ are unknown. The percentage of outliers dictates the degree of sparsity (num-

ber of zero rows) in O. Sparsity control will prove instrumental in efficiently estimating

O, rejecting outliers as a byproduct, and consequently arriving at a robust estimator of V.

To this end, a natural criterion for controlling outlier sparsity is to seek the estimator [cf.

(4.2)]

{V̂, Ô} = arg min
V ,O
‖X− 1Nm′ − SU′ −O‖2F + λ0‖O‖0, s. to U′U = Iq (4.5)
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where X := [x1, . . . ,xN ]′ ∈ R
N×p, S := [s1, . . . , sN ]′ ∈ R

N×q, and ‖O‖0 denotes the

nonconvex `0-norm that is equal to the number of nonzero rows of O. Vector (group)

sparsity in the rows ôn of Ô can be directly controlled by tuning the parameter λ0 ≥ 0.

As with compressive sampling and sparse modeling schemes that rely on the `0-

norm [115], the robust PCA problem (4.5) is NP-hard [89]. In addition, the sparsity-

controlling estimator (4.5) is intimately related to LTS PCA, as asserted next.

Proposition 4.1 If {V̂ , Ô} minimizes (4.5) with λ0 chosen such that ‖Ô‖0 = N − ν, then

V̂LTS = V̂.

Proof: Given λ0 such that ‖Ô‖0 = N − ν, the goal is to characterize V̂ as well as the

positions and values of the nonzero rows of Ô. Note that because ‖Ô‖0 = N − ν, the

last term in the cost of (4.5) is constant, hence inconsequential to the minimization. Upon

defining r̂n := xn − m̂− Ûŝn, it is not hard to see from the optimality conditions that the

rows of Ô satisfy

ôn =







0p, ‖r̂n‖2 ≤
√

λ0

r̂n, ‖r̂n‖2 >
√

λ0

, n = 1, . . . , N. (4.6)

This is intuitive, since for those nonzero ôn the best thing to do in terms of minimizing

the overall cost is to set ôn = r̂n, and thus null the corresponding squared-residual terms

in (4.5). In conclusion, for the chosen value of λ0 it holds that N − ν squared residuals

effectively do not contribute to the cost in (4.5).

To determine V̂ and the row support of Ô, one alternative is to exhaustively test all
( N
N−ν

)

=
(N

ν

)

admissible row-support combinations. For each one of these combinations

(indexed by j), let Sj ⊂ {1, . . . , N} be the index set describing the row support of Ô(j),

i.e., ô
(j)
n 6= 0p if and only if n ∈ Sj ; and |Sj | = N − ν. By virtue of (4.6), the corresponding

candidate V̂(j) solves minV
∑

n∈Sj
r2
n(V) subject to U′U = Iq, while V̂ is the one among all

{V̂(j)} that yields the least cost. Recognizing the aforementioned solution procedure as the

one for LTS PCA outlined under Property 4.1, it follows that V̂LTS = V̂. �

The importance of Proposition 4.1 is threefold. First, it formally justifies model (4.4)

and its estimator (4.5) for robust PCA, in light of the well documented merits of LTS [104].
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Second, it further solidifies the connection between sparsity-aware learning and robust esti-

mation. Third, problem (4.5) lends itself naturally to efficient (approximate) solvers based

on convex relaxation, the subject dealt with next.

4.3 Sparsity-Controlling Outlier Rejection

Recall that the row-wise `2-norm sum ‖B‖2,r :=
∑N

n=1 ‖bn‖2 of matrix B := [b1, . . . ,bN ]′ ∈
R

N×p is the closest convex approximation of ‖B‖0. This property motivates relaxing prob-

lem (4.5) to

min
V ,O
‖X− 1Nm′ − SU′ −O‖2F + λ2‖O‖2,r, s. to U′U = Iq. (4.7)

The nondifferentiable `2-norm regularization term encourages row-wise (vector) sparsity on

the estimator of O, a property that has been exploited in diverse problems in engineering,

statistics, and machine learning [59]. A noteworthy representative is the group Lasso [130],

a popular tool for joint estimation and selection of grouped variables in linear regression.

It is pertinent to ponder on whether problem (4.7) still has the potential of providing

robust estimates V̂ in the presence of outliers. The answer is positive, since it is shown in

the Appendix that (4.7) is equivalent to an M-type estimator

min
V

N
∑

n=1

ρv(xn −m−Usn), s. to U′U = Iq (4.8)

where ρv : R
p → R is a vector extension to Huber’s convex loss function [63]; see also [69],

and

ρv(r) :=







‖r‖22, ‖r |2 ≤ λ2/2

λ2‖r‖2 − λ2
2/4, ‖r‖2 > λ2/2

. (4.9)

M-type estimators (including Huber’s) adopt a fortiori an ε-contaminated probability

distribution for the outliers, and rely on minimizing the asymptotic variance of the resultant

estimator for the least favorable distribution of the ε-contaminated class (asymptotic min-

max approach) [63]. The assumed degree of contamination specifies the tuning parameter

λ2 in (4.9) (and thus the threshold for deciding the outliers in M-estimators). In contrast,

the present approach is universal in the sense that it is not confined to any assumed class
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of outlier distributions, and can afford a data-driven selection of the tuning parameter. In

a nutshell, M-estimators can be viewed as a special case of the present formulation only

for a specific choice of λ2, which is not obtained via a data-driven approach, but from

distributional assumptions instead.

All in all, the sparsity-controlling role of the tuning parameter λ2 ≥ 0 in (4.7) is central,

since model (4.4) and the equivalence of (4.7) with (4.8) suggest that λ2 is a robustness-

controlling constant. Data-driven approaches to select λ2 are described in detail under

Section 4.3.2. Before dwelling into algorithmic issues to solve (4.7), a couple of remarks are

in order.

Remark 4.2 (`1-norm regularization for entry-wise outliers) In computer vision ap-

plications where robust PCA schemes are particularly attractive, one may not wish to dis-

card the entire (vectorized) images xn, but only specific pixels deemed as outliers [31]. This

can be accomplished by replacing ‖O‖2,r in (4.7) with ‖O‖1 :=
∑N

n=1 ‖on‖1, a Lasso-type

regularization that encourages entry-wise sparsity in Ô.

Remark 4.3 (Outlier rejection) From the equivalence between problems (4.7) and

(4.8), it follows that those data points xn deemed as containing outliers (ôn 6= 0p) are

not completely discarded from the estimation process. Instead, their effect is downweighted

as per Huber’s loss function [cf. (4.9)]. Nevertheless, explicitly accounting for the outliers

in Ô provides the means of identifying and removing the contaminated data altogether, and

thus possibly re-running PCA on the outlier-free data.

4.3.1 Solving the relaxed problem

To optimize (4.7) iteratively for a given value of λ2, an alternating minimization (AM)

algorithm is adopted which cyclically updates m(k)→ S(k) → U(k)→ O(k) per iteration

k = 1, 2, . . .. AM algorithms are also known as block-coordinate-descent methods in the

optimization parlance; see e.g., [11, 116]. To update each of the variable groups, (4.7) is

minimized while fixing the rest of the variables to their most up-to-date values. While the

overall problem (4.7) is not jointly convex with respect to (w.r.t.) {S,U,O,m}, fixing all
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but one of the variable groups yields subproblems that are efficiently solved, and attain a

unique solution.

Towards deriving the updates at iteration k and arriving at the desired algorithm, note

first that the mean update is m(k) = (X−O(k))′1N/N . Next, form the centered and outlier-

compensated data matrix Xo(k) := X − 1Nm(k)′ −O(k − 1). The principal components

are readily given by

S(k) = arg min
S

‖Xo(k)− SU(k − 1)′‖2F = Xo(k)U(k − 1).

Continuing the cycle, U(k) solves

min
U

‖Xo(k)− S(k)U′‖2F , s. to U′U = Iq

a constrained LS problem also known as reduced-rank Procrustes rotation [134]. The

minimizer is given in analytical form in terms of the left and right singular vectors of

X′
o(k)S(k) [134, Thm. 4]. In detail, one computes the SVD of X′

o(k)S(k) = L(k)D(k)R′(k)

and updates U(k) = L(k)R′(k). Next, the minimization of (4.7) w.r.t. O is an orthonor-

mal group Lasso problem. As such, it decouples across rows on giving rise to N `2-norm

regularized subproblems, namely

on(k) = arg min
o
‖rn(k)− o‖22 + λ2‖o‖2, n = 1, . . . , N

where rn(k) := xn−m(k)−U(k)sn(k). The respective solutions are given by (see e.g., [93])

on(k) =
rn(k)(‖rn(k)‖2 − λ2/2)+

‖rn(k)‖2
, n = 1, . . . , N (4.10)

where (·)+ := max(·, 0). For notational convenience, these N parallel vector soft-thresholded

updates are denoted as O(k) = S [X− 1Nm′(k − 1)− S(k)U′(k), (λ2/2)IN ] under Algo-

rithm 4, where the thresholding operator S sets the entire outlier vector on(k) to zero

whenever ‖rn(k)‖2 does not exceed λ2/2, in par with the group sparsifying property of

group Lasso. Interestingly, this is the same rule used to decide if datum xn is deemed an

outlier, in the equivalent formulation (4.8) which involves Huber’s loss function. Whenever

an `1-norm regularizer is adopted as discussed in Remark 4.2, the only difference is that

updates (4.10) boil down to soft-thresholding the scalar entries of rn(k).
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Algorithm 4 : Batch robust PCA solver

Set U(0) = Ip(:, 1 : q) and O(0) = 0N×p.

for k = 1, 2, . . . do

Update m(k) = (X−O(k − 1))′1N/N .

Form Xo(k) = X− 1Nm′(k)−O(k − 1).

Update S(k) = Xo(k)U(k − 1).

Obtain L(k)D(k)R(k)′ = svd[X′
o(k)S(k)] and update U(k) = L(k)R′(k).

Update O(k) = S [X− 1Nm′(k)− S(k)U′(k), (λ2/2)IN ] .

end for

The entire AM solver is tabulated under Algorithm 4, indicating also the recommended

initialization. Algorithm 4 is conceptually interesting, since it explicitly reveals the in-

tertwining between the outlier identification process, and the PCA low-rank model fitting

based on the outlier compensated data Xo(k).

The AM solver is also computationally efficient. Computing the N × q matrix

S(k) = Xo(k)U(k−1) requires Npq operations per iteration, and equally costly is to obtain

X′
o(k)S(k) ∈ R

p×q. The cost of computing the SVD of X′
o(k)S(k) is of order O(pq2), while

the rest of the operations including the row-wise soft-thresholdings to yield O(k) are linear

in both N and p. In summary, the total cost of Algorithm 4 is roughly kmaxO(Np + pq2),

where kmax is the number of iterations required for convergence (typically kmax = 5 to 10 it-

erations suffice). Because q ≤ p is typically small, Algorithm 4 is attractive computationally

both under the classic setting where N > p, and p is not large; as well as in high-dimensional

data settings where p� N , a situation typically arising e.g., in microarray data analysis.

Because each of the optimization problems in the per-iteration cycles has a unique

minimizer, and the nondifferentiable regularization only affects one of the variable groups

(O), the general results of [116] apply to establish convergence of Algorithm 4 as follows.

Proposition 4.2 As k →∞, the iterates generated by Algorithm 4 converge to a stationary

point of (4.7).
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4.3.2 Selection of λ2: robustification paths

Selecting λ2 controls the number of outliers rejected. But this choice is challenging because

existing techniques such as cross-validation are not effective when outliers are present [104].

To this end, systematic data-driven approaches were devised in [49], which e.g., require a

rough estimate of the percentage of outliers, or, robust estimates σ̂2
e of the nominal noise

variance that can be obtained using median absolute deviation (MAD) schemes [63]. These

approaches can be adapted to the robust PCA setting considered here, and leverage the

robustification paths of (group-)Lasso solutions [cf. (4.7)], which are defined as the solution

paths corresponding to ‖ôn‖2, n = 1, . . . , N , for all values of λ2. As λ2 decreases, more

vectors ôn enter the model signifying that more of the training data are deemed to contain

outliers.

Consider then a grid of Gλ values of λ2 in the interval [λmin, λmax], evenly spaced on a

logarithmic scale. Typically, λmax is chosen as the minimum λ2 value such that Ô 6= 0N×p,

while λmin = ελmax with ε = 10−4, say. Because Algorithm 4 converges quite fast, (4.7) can

be efficiently solved over the grid of Gλ values for λ2. In the order of hundreds of grid points

can be easily handled by initializing each instance of Algorithm 1 (per value of λ2) using

warm starts [59]. This means that multiple instances of (4.7) are solved for a sequence of

decreasing λ2 values, and the initialization of Algorithm 4 per grid point corresponds to the

solution obtained for the immediately preceding value of λ2 in the grid. For sufficiently close

values of λ2, one expects that the respective solutions will also be close (the row support of

Ô will most likely not change), and hence Algorithm 1 will converge after few iterations.

Based on the Gλ samples of the robustification paths and the prior knowledge available

on the outlier model (4.4), a couple of alternatives are also possible for selecting the ‘best’

value of λ2 in the grid. A comprehensive survey of options can be found in [49].

Number of outliers is known: By direct inspection of the robustification paths one can

determine the range of values for λ2, such that the number of nonzero rows in Ô equals the

known number of outliers sought. Zooming-in to the interval of interest, and after discarding

the identified outliers, K-fold cross-validation methods can be applied to determine the

‘best’ λ∗
2.
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Nominal noise covariance matrix is known: Given Σe := E[ene
′
n], one can proceed as

follows. Consider the estimates V̂g obtained using (4.7) after sampling the robustification

path for each point {λ2,g}Gg=1. Next, pre-whiten those residuals corresponding to training

data not deemed as containing outliers; i.e., form R̂g := {r̄n,g = Σ
−1/2
e (xn− ˆbbmg−Ûg ŝn,g) :

n s. to ôn = 0}, and find the sample covariance matrices {Σ̂r̄,g}Gg=1. The winner λ∗
2 := λ2,g∗

corresponds to the grid point minimizing an absolute variance deviation criterion, namely

g∗ := arg ming |tr[Σ̂r̄,g]− p|.

4.3.3 Connections with robust linear regression, dictionary learning, and

clustering

Previous efforts towards robustifying linear regression have pointed out the equivalence be-

tween M-type estimators and `1-norm regularized regression [46], and capitalized on this

neat connection under a Bayesian framework [64]. However, they have not recognized the

link to LTS via convex relaxation of the `0-norm in (4.5). The treatment here goes beyond

linear regression by considering the PCA framework, which entails a more challenging bi-

linear factor analysis model. Linear regression is subsumed as a special case, when matrix

U is not necessarily tall but assumed known, while sn = s, ∀ n = 1, . . . , N .

As an alternative to PCA, it is possible to device dimensionality reduction schemes

when the data admit a sparse representation over a perhaps unknown basis. Such sparse

representations comprise only a few elements (atoms) of the overcomplete basis (a.k.a.

dictionary) to reconstruct the original data record. Thus, each datum is represented by a

coefficient vector whose effective dimensionality (number of nonzero coefficients) is smaller

than that of the original data vector. Recently, the dictionary learning paradigm offers

techniques to design a dictionary over which the data assume a sparse representation; see

e.g., [114] for a tutorial treatment. Dictionary learning schemes are flexible, in the sense

that they utilize training data to learn an appropriate overcomplete basis customized for

the data at hand [77,114].

However, as in PCA the criteria adopted typically rely on a squared-error loss function

as a measure of fit, which is known to be very sensitive to outliers [63, 104]. Interestingly,
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one can conceivably think of robustifying dictionary learning via minor modifications to the

framework described so far. For instance, with the same matrix notation used in e.g., (4.5),

one seeks to minimize

min
V ,O
‖X− SU′ −O‖2F + λ1‖S‖1 + λ2‖O‖2,r. (4.11)

Different from the low-rank outlier-aware model adopted for PCA [cf. (4.4)], here the

dictionary U ∈ R
p×q is fat (q � p), with column vectors that are no longer orthogonal

but still constrained to have unit `2-norm. (This constraint is left implicit in (4.11) for

simplicity.) Moreover, one seeks a sparse vector sn to represent each datum xn, in terms of

a few atoms of the learnt dictionary Û. This is why (4.11) includes an additional sparsity-

promoting `1-norm regularization on S, that is not present in (4.7). Sparsity is thus present

both in the representation coefficients S, as well as in the outliers O.

Finally, it is shown here that a generative data model for K-means clustering [59]

can share striking similarities with the bilinear model (4.1). Consequently, the sparsity-

controlling estimator (4.7) can be adapted to robustify the K-means clustering task too [43].

Consider for instance that the data in Tx come from q clusters, each of which is represented

by a centroid ui ∈ R
p, i = 1, . . . , q. Moreover, for each input vector xn, K-means introduces

the unknown membership variables sni ∈ {0, 1}, i = 1, . . . , q, where sni = 1 whenever xn

comes from cluster i, and sni = 0 otherwise. Typically, the membership variables are also

constrained to satisfy
∑N

n=1 sni > 0 ∀ i (no empty clusters), and
∑q

i=1 sni = 1 ∀ n (single

cluster membership). Upon defining U := [u1, . . . ,uq] ∈ R
p×q and the membership vectors

sn := [sn1, . . . , snq]
′ ∈ R

q, a pertinent model for hard K-means clustering assumes that input

vectors can be expressed as xn = Usn + en + on, where en and on are as in (4.4). Because

the aforementioned constraints imply ‖sn‖0 = ‖sn‖1 = 1 ∀n, if xn belongs to cluster i, then

sni = 1 and in the absence of outliers one effectively has xn = ui + en. Based on this data

model, a natural approach towards robustifying K-means clustering solves [43]

min
V ,O
‖X− SU′ −O‖2F + λ2‖O‖2,r, s. to sni ∈ {0, 1},

N
∑

n=1

sni > 0,

q
∑

i=1

sni = 1. (4.12)

Recall that in the robust PCA estimator (4.7), the subspace matrix is required to be or-

thonormal and the principal components are unrestrained. In the clustering context how-
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ever, the centroid columns of U are free optimization variables, whereas the cluster mem-

bership variables adhere to the constraints in (4.12). Suitable relaxations to tackle the

NP-hard problem (4.12) have been investigated in [43].

4.4 Further Algorithmic Issues

4.4.1 Bias reduction through nonconvex regularization

Instead of substituting ‖O‖0 in (4.5) by its closest convex approximation, namely ‖O‖2,r,

letting the surrogate function to be nonconvex can yield tighter approximations, and im-

prove the statistical properties of the estimator. In rank minimization problems for instance,

the logarithm of the determinant of the unknown matrix has been proposed as a smooth

surrogate to the rank [40]; an alternative to the convex nuclear norm in e.g., [95]. Non-

convex penalties such as the smoothly clipped absolute deviation (SCAD) have been also

adopted to reduce bias [38], present in uniformly weighted `1-norm regularized estimators

such as (4.7) [59, p. 92]. In the context of sparse signal reconstruction, the `0-norm of a

vector was surrogated in [23] by the logarithm of the geometric mean of its elements; see

also [94].

Building on this last idea, consider approximating (4.5) by the nonconvex formulation

min
V ,O
‖X− 1Nm′ − SU′ −O‖2F + λ0

N
∑

n=1

log(‖on‖2 + δ), s. to U′U = Iq (4.13)

where the small positive constant δ is introduced to avoid numerical instability. Since

the surrogate term in (4.13) is concave, the overall minimization problem is nonconvex and

admittedly more complex to solve than (4.7). Local methods based on iterative linearization

of log(‖on‖2+δ) around the current iterate on(k), are adopted to minimize (4.13). Skipping

details that can be found in [69], application of the majorization-minimization technique to

(4.13) leads to an iteratively-reweighted version of (4.7), whereby λ2 ← λ0wn(k) is used for

updating on(k) in Algorithm 4. Specifically, per k = 1, 2, . . . one updates

O(k) = S
[

X− 1Nm′(k − 1)− S(k)U′(k), (λ0/2)diag(w1(k), . . . , wN (k))
]
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where the weights are given by wn(k) = (‖on(k − 1)‖2 + δ)−1 , n = 1, . . . , N. Note that

the thresholds vary both across rows (indexed by n), and across iterations. If the value of

‖on(k − 1)‖2 is small, then in the next iteration the regularization term λ0wn(k)‖on‖2 has

a large weight, thus promoting shrinkage of that entire row vector to zero. If ‖on(k − 1)‖2
is large, the cost in the next iteration downweighs the regularization, and places more

importance to the LS component of the fit.

All in all, the idea is to start from the solution of (4.7) for the ‘best’ λ2, which is obtained

using Algorithm 4. This initial estimate is refined after runnning a few iterations of the

iteratively-reweighted counterpart to Algorithm 4. Extensive numerical tests suggest that

even a couple iterations of this second stage refinement suffices to yield improved estimates

V̂, in comparison to those obtained from (4.7). The improvements can be leveraged to bias

reduction – and its positive effect with regards to outlier support estimation – also achieved

by similar weighted norm regularizers proposed for linear regression [59, p. 92].

4.4.2 Automatic rank determination: from nuclear- to Frobenius-norm

regularization

Recall that q ≤ p is the dimensionality of the subspace where the outlier-free data (4.1)

are assumed to live in, or equivalently, q = rank[Y] in the absence of noise. So far, q was

assumed known and fixed. This is reasonable in e.g., compression/quantization, where a

target distortion-rate tradeoff dictates the maximum q. In other cases, the physics of the

problem may render q known. This is indeed the case in array processing for direction-of-

arrival estimation, where q is the dimensionality of the so-termed signal subspace, and is

given by the number of plane waves impinging on a uniform linear array; see e.g., [129].

Other applications however, call for signal processing tools that can determine the ‘best’

q, as well as robustly estimate the underlying low-dimensional subspace U from data X.

Noteworthy representatives for this last kind of problems include unveiling traffic volume

anomalies in large-scale networks [79], and automatic intrusion detection from video surveil-

lance frames [20, 31], just to name a few. A related approach in this context is (stable)
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principal components pursuit (PCP) [127,131], which solves

min
L,O
‖X− L−O‖2F + λ∗‖L‖∗ + λ2‖O‖2,r (4.14)

with the objective of reconstructing the low-rank matrix L ∈ R
N×p, as well as the sparse

matrix of outliers O in the presence of dense noise with known variance.1 Note that ‖L‖∗
denotes the matrix nuclear norm, defined as the sum of the singular values of L. The same

way that the `2-norm regularization promotes sparsity in the rows of Ô, the nuclear norm

encourages a low-rank L̂ since it effects sparsity in the vector of singular values of L. Upon

solving the convex optimization problem (4.14), it is possible to obtain L̂ = ŜÛ′ using the

SVD. Interestingly, (4.14) does not fix (or require the knowledge of) rank[L] a fortiori, but

controls it through the tuning parameter λ∗. Adopting a Bayesian framework, a similar

problem was considered in [32].

Instead of assuming that q is known, suppose that only an upper bound q̄ is given.

Then, the class of feasible noise-free low-rank matrix components of Y in (4.1) admit

a factorization L = SU′, where S and U are N × q̄ and p × q̄ matrices, respectively.

Building on the ideas used in the context of finding minimum rank solutions of linear

matrix equations [95], a novel alternative approach to robustifying PCA is to solve

min
U,S,O

‖X− SU′ −O‖2F +
λ∗

2
(‖U‖2F + ‖S‖2F ) + λ2‖O‖2,r. (4.15)

Different from (4.14) and (4.7), a Frobenius-norm regularization on both U and S is adopted

to control the dimensionality of the estimated subspace Û. Relative to (4.7), U in (4.15)

is not constrained to be orthonormal. It is certainly possible to include the mean vector m

in the cost of (4.15), as well as an `1-norm regularization for entrywise outliers. The main

motivation behind choosing the Frobenius-norm regularization comes from the equivalence

of (4.14) with (4.15), as asserted in the ensuing result which adapts [95, Lemma 5.1] to the

problem formulation considered here.

Lemma 4.1 If {L̂, Ô} minimizes (4.14) and rank[L̂] ≤ q̄, then (4.14) and (4.15) are equiv-

alent.

1Actually, [131] considers entrywise outliers and adopts an `1-norm regularization on O.
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Algorithm 5 : Batch robust PCA solver with controllable rank

Set O(0) = 0N×p, and randomly initialize S(0).

for k = 1, 2, . . . do

Update m(k) = [X−O(k − 1)]′1N/N.

Form Xo(k) = X− 1Nm′(k)−O(k − 1).

Update U(k) = Xo(k)′S(k − 1)[S′(k − 1)S(k − 1) + (λ∗/2)Iq̄]
−1.

Update S(k) = Xo(k)U(k)[U′(k)U(k) + (λ∗/2)Iq̄]
−1.

Update O(k) = S [X− S(k)U′(k), λ2/2] .

end for

Proof: Because rank[L̂] ≤ q̄, the relevant feasible subset of (4.14) can be re-parametrized

as {SU′,O}, where S and U are N × q̄ and p × q̄ matrices, respectively. For every triplet

{U,S,O} the objective of (4.15) is no smaller than the one of (4.14), since it holds that [95]

‖L‖∗ = min
U,S

1

2
(‖U‖2F + ‖S‖2F ), s. to L = SU′. (4.16)

One can show that the gap between the objectives of (4.14) and (4.15) vanishes at O∗ := Ô,

S∗ := ULΣ1/2, and U∗ := VLΣ1/2; where L̂ = ULΣV′
L is the SVD of L̂. Therefore, from

the previous arguments it follows that (4.14) and (4.15) attain the same global minimum

objective, which completes the proof. �

Even though problem (4.15) is nonconvex, the number of optimization variables is re-

duced from 2Np to Np + (N + p)q̄, which becomes significant when q̄ is in the order of

a few dozens and both N and p are large. Also note that the dominant Np-term in the

variable count of (4.15) is due to O, which is sparse and can be efficiently handled. While

the factorization L = SU′ could have also been introduced in (4.14) to reduce the number

of unknowns, the cost in (4.15) is separable and much simpler to optimize using e.g., an

AM solver comprising the iterations tabulated as Algorithm 5. The decomposability of

the Frobenius-norm regularizer has been recently exploited for parallel processing across

multiple processors when solving large-scale matrix completion problems [96], or to unveil

network anomalies [79].

Because (4.15) is a nonconvex optimization problem, most solvers one can think of will

at most provide convergence guarantees to a stationary point that may not be globally
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optimum. Nevertheless, simulation results in Section 4.7 demonstrate that Algorithm 5 is

effective in providing good solutions most of the time, which is somehow expected since there

is quite a bit of structure in (4.15). Formally, the next proposition adapted from [79, Prop.

1] provides a sufficient condition under which Algorithm 5 yields an optimal solution of

(4.14). For a proof of a slightly more general result, see [79].

Proposition 4.3 If {Ū, S̄, Ō} is a stationary point of (4.15) and ‖X− S̄Ū′− Ō‖2 ≤ λ∗/2,

then {L̂ := S̄Ū′, Ô := Ō} is the optimal solution of (4.14).

4.5 Robust Subspace Tracking

E-commerce and Internet-based retailing sites, the World Wide Web, and video surveillance

systems generate huge volumes of data, which far outweigh the ability of modern computers

to analyze them in real time. Furthermore, data are generated sequentially in time, which

motivates updating previously obtained learning results rather than re-computing new ones

from scratch each time a new datum becomes available. This calls for low-complexity real-

time (adaptive) algorithms for robust subspace tracking.

One possible adaptive counterpart to (4.7) is the exponentially-weighted LS (EWLS)

estimator found by

min
{V ,O}

N
∑

n=1

βN−n
[

‖xn −m−Usn − on‖22 + λ2‖on‖2
]

(4.17)

where β ∈ (0, 1] is a forgetting factor. In this context, n should be understood as a temporal

variable, indexing the instants of data acquisition. Note that in forming the EWLS esti-

mator (4.17) at time N , the entire history of data {xn}Nn=1 is incorporated in the real-time

estimation process. Whenever β < 1, past data are exponentially discarded thus enabling

operation in nonstationary environments. Adaptive estimation of sparse signals has been

considered in e.g., [5] and [77].

Towards deriving a real-time, computationally efficient, and recursive (approximate)

solver of (4.17), an AM scheme will be adopted in which iterations k coincide with the time

scale n = 1, 2, . . . of data acquisition. Per time instant n, a new datum xn is drawn and the
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corresponding pair of decision variables {s(n),o(n)} are updated via

{s(n),o(n)} := arg min
{s,o}
‖xn −m(n− 1)−U(n − 1)s− o‖22 + λ2‖o‖2. (4.18)

As per (4.18), only o(n) is updated at time n, rather than the whole (growing with time)

matrix O that minimization of (4.17) would dictate; see also [77] for a similar approximation.

Because (4.18) is a smooth optimization problem w.r.t. s, from the first-order optimality

condition the principal component update is s(n) = U′(n − 1)[xn − m(n − 1) − o(n)].

Interestingly, this resembles the projection approximation adopted in [129], and can only

be evaluated after o(n) is obtained. To this end, plug s(n) in (4.18) to obtain o(n) via a

particular instance of the group Lasso estimator

o(n) = arg min
o
‖[Ip −U(n − 1)U′(n− 1)](xn −m(n− 1)− o)‖22 + λ2‖o‖2 (4.19)

with a single group of size equal to p. The cost in (4.19) is non-differentiable at the origin,

and different from e.g., ridge regression, it does not admit a closed-form solution. Upon

defining

H(n) := 2[Ip −U(n − 1)U′(n− 1)]′[Ip −U(n − 1)U′(n− 1)] ∈ R
p×p (4.20)

g(n) := −H(n)[xn −m(n− 1)] ∈ R
p (4.21)

one can recognize (4.19) as the multidimensional shrinkage-thresholding operator

TH(n),λ2
(g(n)) introduced in [93]. In particular, as per [93, Corollary 2] it follows that

o(n) = TH(n),λ2
(g(n)) =







−(H(n) + γIp)
−1g(n), if ‖g(n)‖2 > λ2

0p, otherwise
(4.22)

where parameter γ := λ2
2/(2η) is such that η > 0 solves the scalar optimization

min
η>0

(

1− g′(n)
(

2ηH(n) + λ2
2

)−1
g(n)

)

η. (4.23)

Remarkably, one can easily determine if o(n) = 0p, by forming g(n) and checking whether

‖g(n)‖2 ≤ λ2. This will be the computational burden incurred to solve (4.19) for most n,

since outliers are typically sporadic and one would expect to obtain o(n) = 0p most of the

time. When datum xn is deemed an outlier, ‖g(n)‖2 > λ2, and one needs to carry out the
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Algorithm 6 : Online robust (OR-)PCA

\* Batch initialization phase

Determine λ2 and U(n0) from {xn}n0

n=1, as in Section 4.3.2.

Initialize P(n0) = 103Ip and s(n0) = 0q.

\* Online phase

for n = n0 + 1, n0 + 2, . . . do

Form H(n) and g(n) using (4.20) and (4.21).

Update o(n) = TH(n),λ2
(g(n)) via (4.22).

Update s(n) = U′(n− 1)[xn − o(n)].

\* RLS subspace update

Update k(n) = P(n− 1)s(n)/[β + s′(n)P(n− 1)s(n)].

Update P(n) = (1/β)[P(n− 1)− k(n)(P(n − 1)s(n))′].

Update U(n) = U(n− 1) + [xn −U(n− 1)s(n)− o(n)]k′(n).

end for

extra line search in (4.23) to determine o(n) as per (4.22); further details can be found in

in [93]. Whenever an `1-norm outlier regularization is adopted, the resulting counterpart of

(4.19) can be solved using e.g., coordinate descent [5], or, the Lasso variant of least-angle

regression (LARS) [77].

Moving on, the subspace update is given by

U(n) = arg min
U

n
∑

i=1

βn−i‖xi −m(i− 1)−Us(i) − o(i)‖22

and can be efficiently obtained from U(n − 1), via a recursive LS update leveraging the

matrix inversion lemma; see e.g., [129]. Note that the orthonormality constraint on U

is not enforced here, yet the deviation from orthonormality is typically small as observed

in [129]. Still, if orthonormal principal directions are required, an extra orthonormalization

step can be carried out per iteration, or, once at the end of the process. Finally, m(n) is

obtained recursively as the exponentially-weighted average of the outlier-compensated data

{xi − o(i)}ni=1. The resulting online robust (OR-)PCA algorithm and its initialization are

summarized under Algorithm 6, where m and its update have been omitted for brevity.

For the batch case where all data in Tx are available for joint processing, two data-driven
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criteria to select λ2 have been outlined in Section 4.3.2. However, none of these sparsity-

controlling mechanisms can be run in real-time, and selecting λ2 for subspace tracking

via OR-PCA is challenging. One possibility to circumvent this problem is to select λ2

once during a short initialization (batch) phase of OR-PCA, and retain its value for the

subsequent time instants. Specifically, the initialization phase of OR-PCA entails solving

(4.7) using Algorithm 4, with a typically small batch of data {xn}n0
n=1. At time n0, the

criteria in Section 4.3.2 are adopted to find the ‘best’ λ2, and thus obtain the subspace

estimate Û(n0) required to initialize the OR-PCA iterations.

Convergence analysis of OR-PCA algorithm is beyond the scope of this dissertation,

and is only confirmed via simulations. The numerical tests in Section 4.7 also show that

in the presence of outliers, the novel adaptive algorithm outperforms existing non-robust

alternatives for subspace tracking.

4.6 Robustifying Kernel PCA

Kernel (K)PCA is a generalization to (linear) PCA, seeking principal components in a fea-

ture space nonlinearly related to the input space where the data in Tx live [106]. KPCA has

been shown effective in performing nonlinear feature extraction for pattern recognition [106].

In addition, connections between KPCA and spectral clustering [59, p. 548] motivate well

the novel KPCA method developed in this section, to robustly identify cohesive subgroups

(communities) from social network data.

Consider a nonlinear function φ : R
p → H, that maps elements from the input space

R
p to a feature space H of arbitrarily large – possibly infinite – dimensionality. Given

transformed data TH := {φ(xn)}Nn=1, the proposed approach to robust KPCA fits the

model

φ(xn) = m + Usn + en + on, n = 1, . . . , N (4.24)

by solving (Φ := [φ(x1), . . . ,φ(xN )])

min
U,S,O

‖Φ′ − 1Nm′ − SU′ −O‖2F +
λ∗

2
(‖U‖2F + ‖S‖2F ) + λ2‖O‖2,r. (4.25)
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It is certainly possible to adopt the criterion (4.7) as well, but (4.25) is chosen here for

simplicity in exposition. Except for the principal components’ matrix S ∈ R
N×q̄, both the

data and the unknowns in (4.25) are now vectors/matrices of generally infinite dimension.

In principle, this challenges the optimization task since it is impossible to store, or, perform

updates of such quantities directly. For these reasons, assuming zero-mean data φ(xn), or,

the possibility of mean compensation for that matter, cannot be taken for granted here [cf.

Remark 4.1]. Thus, it is important to explicitly consider the estimation of m.

Interestingly, this hurdle can be overcome by endowing H with the structure of a

reproducing kernel Hilbert space (RKHS), where inner products between any two mem-

bers of H boil down to evaluations of the reproducing kernel KH : R
p × R

p → R,

i.e., 〈φ(xi),φ(xj)〉H = KH(xi,xj). Specifically, it is possible to form the kernel matrix

K := Φ′Φ ∈ R
N×N , without directly working with the vectors in H. This so-termed

kernel trick is the crux of most kernel methods in machine learning [59], including kernel

PCA [106]. The problem of selecting KH (and φ indirectly) will not be considered here.

Building on these ideas, it is shown in the sequel that Algorithm 5 can be kernelized, to

solve (4.25) at affordable computational complexity and memory storage requirements that

do not depend on the dimensionality of H.

Proposition 4.4 For k ≥ 1, the sequence of iterates generated by Algorithm 5 when applied

to solve (4.25) can be written as m(k) = Φµ(k), U(k) = ΦΥ(k), and O′(k) = ΦΩ(k). The

quantities µ(k) ∈ R
N , Υ(k) ∈ R

N×q̄, and Ω(k) ∈ R
N×N are recursively updated as in

Algorithm 7, without the need of operating with vectors in H.

Proof: The proof relies on an inductive argument. Suppose that at iteration k− 1, there

exists a matrix Ω(k − 1) ∈ R
N×N such that the outliers can be expressed as O′(k − 1) =

ΦΩ(k − 1). From Algorithm 5, the update for the mean vector is m(k) = [Φ′ − O(k −
1)]′1N/N = [Φ−ΦΩ(k−1)]1N/N = Φµ(k) where µ(k) := [In−Ω(k−1)]1N/N . Likewise,

Xo(k) = Φ′ − 1Nµ′(k)Φ′ − Ω′(k − 1)Φ′ so that one can write the subspace update as

U(k) = ΦΥ(k), upon defining

Υ(k) := [IN −µ(k)1′
N −Ω(k − 1)]S(k − 1)[S′(k − 1)S(k − 1) + (λ∗/2)Iq̄]

−1.
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With regards to the principal components, it follows that (cf. Algorithm 5)

S(k) = [IN − 1Nµ′(k) −Ω′(k − 1)]Φ′ΦΥ(k)[Υ(k)′Φ′ΦΥ(k) + (λ∗/2)Iq̄]
−1

= [IN − 1Nµ′(k) −Ω′(k − 1)]KΥ(k)[Υ(k)′KΥ(k) + (λ∗/2)Iq̄]
−1 (4.26)

which is expressible in terms of the kernel matrix K := Φ′Φ. Finally, the columns on(k)

are given by the vector soft-thresholding operation (4.10), where the residuals are

rn(k) = φ(xn)−m(k)−U(k)sn(k) = Φ[bN,n − µ(k) −Υ(k)sn(k)] := Φρn(k).

Upon stacking all columns on(k), n = 1, . . . , N , one readily obtains [cf. (4.10)]

O′(k) = Φ[IN − µ(k)1′
N −Υ(k)S′(k)]Λ(k) (4.27)

where Λ(k) := diag((‖r1(k)‖2 − λ2/2)+/‖r1(k)‖2, . . . , (‖rN (k)‖2 − λ2/2)+/‖rN (k)‖2). In-

terestingly, the diagonal elements of Λ(k) can be computed using the kernel matrix, since

‖rn(k)‖2 =
√

ρ′
n(k)Kρn(k), n = 1, . . . , N . From (4.27) it is apparent that one can write

O′(k) = ΦΩ(k), after defining

Ω(k) := [IN − µ(k)1′
N −Υ(k)S′(k)]Λ(k).

The proof is concluded by noting that for k = 0, Algorithm 5 is initialized with O′(0) =

0p×N . One can thus satisfy the inductive base case O′(0) = ΦΩ(0), by letting Ω(0) =

0N×N . �

In order to run the novel robust KPCA algorithm (tabulated as Algorithm 7), one does

not have to store or process the quantities m(k), U(k), and O(k). As per Proposition 4.4,

the iterations of the provably convergent AM solver in Section 4.4.2 can be equivalently

carried out by cycling through finite-dimensional ‘sufficient statistics’ µ(k) → Υ(k) →
S(k)→ Ω(k). In other words, the iterations of the robust kernel PCA algorithm are devoid

of algebraic operations among vectors in H. Recall that the size of matrix S is independent

of the dimensionality of H. Nevertheless, its update in Algorithm 5 cannot be carried out

verbatim in the high-dimensional setting here, and is instead kernelized to yield the update

rule (4.26).
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Algorithm 7 : Robust KPCA solver

Initialize Ω(0) = 0N×N , S(0) randomly, and form K = Φ′Φ.

for k = 1, 2, . . . do

Update µ(k) = [In −Ω(k − 1)]1N/N.

Form Φo(k) = IN − µ(k)1′
N −Ω(k − 1).

Update Υ(k) = Φo(k)S(k − 1)[S′(k − 1)S(k − 1) + (λ∗/2)Iq̄]
−1.

Update S(k) = Φ′
o(k)KΥ(k)[Υ(k)′KΥ(k) + (λ∗/2)Iq̄]

−1.

Form ρn(k) = bN,n − µ(k)−Υ(k)sn(k), n = 1, . . . , N , and update Λ(k).

Update Ω(k) = [IN − µ(k)1′
N −Υ(k)S′(k)]Λ(k).

end for

Because O′(k) = ΦΩ(k) and upon convergence of the algorithm, the outlier vector norms

are computable in terms of K, i.e., [‖o1(∞)‖22, . . . , ‖oN (∞)‖22]′ = diag[Ω′(∞)KΩ(∞)].

These are critical to determine the robustification paths needed to carry out the outlier spar-

sity control methods in Section 4.3.2. Moreover, the principal component corresponding to

any given new data point x is obtained through the projection s = U(∞)′[φ(x)−m(∞)] =

Υ′(∞)Φ′φ(x) −Υ′(∞)Kµ(∞), which is again computable after N evaluations the kernel

function KH.

4.7 Numerical Tests

4.7.1 Synthetic data tests

To corroborate the effectiveness of the proposed robust methods, experiments with computer

generated data are carried out first. These are important since they provide a ‘ground truth’,

against which performance can be assessed by evaluating suitable figures of merit.

Outlier-sparsity control. To generate the data (4.4), a similar setting as in [131, Sec. V] is

considered here with N = p and m = 0p. For n = 1, . . . , N , the errors are en ∼ N (0p, σ
2
eIp)

(multivariate normal distribution) and i.i.d. The entries of U and {sn}Nn=1 are i.i.d. zero-

mean Gaussian distributed, with variance σ2
U,s = 10σe/

√
N . Outliers are generated as

on = pn � qn, where the entries of pn are i.i.d. Bernoulli distributed with parameter ρp,

and qn has i.i.d. entries drawn from a uniform distribution supported on [−5, 5]. The
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Table 4.1: Results for the first synthetic data test.

σ2
e λ∗

2 in (4.7) ¯err for (4.7) (refined) ¯err for (4.14) ¯err for PCA

0.01 0.7142 0.0622 0.0682 0.4679

0.05 1.7207 0.1288 0.1519 1.0122

0.1 2.4348 0.1742 0.2150 1.4141

0.25 3.6084 0.2525 0.3403 2.2480

0.5 6.1442 0.3361 0.4783 3.1601

chosen values of the parameters are N = p = 200, q = 20, ρp = 0.01, and varying noise

levels σ2
e = {0.01, 0.05, 0.1, 0.25, 0.5}.

In this setup, the ability to recover the low-rank component of the data L := SU′ is

tested for the sparsity-controlling robust PCA method of this chapter [cf. (4.7)], stable PCP

(4.14), and (non-robust) PCA. The `1-norm regularized counterparts of (4.7) and (4.14) are

adopted to deal with entry-wise outliers. Both values of q and σ2
e are assumed known to

obtain L̂ := ŜÛ′ and Ô via (4.7). This way, λ2 is chosen using the sparsity-controlling

algorithm of Section 4.3.2, searching over a grid where Gλ = 200, λmin = 10−2λmax, and

λmax = 20. In addition, the solutions of (4.7) are refined by running two iterations of

the iteratively reweighted algorithm in Section 4.4.1, where δ = 10−5. Regarding SPCP,

only the knowledge of σ2
e is required to select the tuning parameters λ∗ = 2

√

2Nσ2
e and

λ2 = 2
√

2σ2
e in (4.14), as suggested in [131]. Finally, the best rank q approximation to the

data X is obtained using standard PCA.

The results are summarized in Table 4.1, which shows the estimation errors ērr :=

‖L− L̂‖F /N attained by the aforementioned schemes, averaged over 15 runs of the experi-

ment. The ‘best’ tuning parameters λ∗
2 used in (4.7) are also shown. Both robust schemes

attain an error which is approximately an order of magnitude smaller than PCA. With

the additional knowledge of the true data rank q, the sparsity-controlling algorithm of this

chapter outperforms stable PCP in terms of ērr. This numerical test is used to validate

Proposition 4.3 as well. For the same values of the tuning parameters chosen for (4.14) and
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the rank upper-bound set to q̄ = 2q, Algorithm 5 is run to obtain the solution {Ū, S̄, Ō}
of the nonconvex problem (4.15). The average (across realizations and values of σ2

e) errors

obtained are ‖L̂− S̄Ū′‖F /N = 0.15× 10−6 and ‖Ô− Ō‖F /N = 0.78× 10−7, where {L̂, Ô}
is the solution of stable PCP [cf. (4.14)]. Thus, the solutions are identical for all practical

purposes.

Identification of invalid survey protocols. Robust PCA is tested here to identify

invalid or otherwise aberrant item response (questionnaire) data in surveys, that is, to

flag and hold in abeyance data that may negatively influence (i.e., bias) subsequent data

summaries and statistical analyses. In recent years, item response theory (IRT) has become

the dominant paradigm for constructing and evaluating questionnaires in the biobehavioral

and health sciences and in high-stakes testing (e.g., in the development of college admission

tests); see e.g., [121]. IRT entails a class of nonlinear models characterizing an individual’s

item response behavior by one or more latent traits, and one or more item parameters.

An increasingly popular IRT model for survey data is the 2-parameter logistic IRT model

(2PLM) [97]. 2PLM characterizes the probability of a keyed (endorsed) response ynm, as

a nonlinear function of a weighted difference between a person parameter θn and an item

parameter bm

Pr(ynm = 1|θn) =
e1.7am(θn−bm)

1 + e1.7am(θn−bm)
(4.28)

where θn is a latent trait value for individual n; am is an item discrimination parameter

(similar to a factor loading) for item m; and bm is an item difficulty (or extremity) parameter

for item m. One reason for the popularity of 2PLM is that under certain assumptions,

its parameters can be transformed into the person and item parameters of the maximum

likelihood factor analysis model [109].

Binary item responses (‘agree/disagree’ response format) were generated for N = 1, 000

hypothetical subjects who were administered p = 200 items (questions). The 2PLM function

(4.28) was used to generate the underlying item response probabilities, which were converted

into binary item responses as follows: a response was coded 1 if Pr(ynm|θn) ≥ U(0, 1), and

coded 0 otherwise, where U [0, 1] denotes a uniform random deviate over [0, 1]. Model

parameters were randomly drawn as {am}200m=1 ∼ U [1, 1.5], {bm}200m=1 ∼ U [−2, 2], and
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Figure 4.1: Pseudo scree plot of outlier size (‖ôn‖2); the 100 largest outliers are shown.

{θl}200l=1 ∼ N (05, I5). Each of the 200 items loaded on one of q = 5 latent factors. To

simulate random responding – a prevalent form of aberrancy in e.g., web-collected data

– rows 101-120 of the item response matrix Y were modified by (re)drawing each of the

entries from a Bernoulli distribution with parameter 0.5, thus yielding the corrupted matrix

X.

Robust PCA in (4.7) was adopted to identify invalid survey data, with q = 5, and

λ2 chosen such that ‖Ô‖0 = 150, a safe overestimate of the number of outliers. Results

of this study are summarized in Fig. 4.1, which displays the 100 largest outliers (‖ôn‖2)
from the robust PCA analysis of the N = 1, 000 simulated response vectors. When the

outliers are plotted against their ranks, there is an unmistakable break between the 20th and

21st ordered value indicating that the method correctly identified the number of aberrant

response patterns in X. Perhaps more impressively, the method also correctly identified

rows 101-to-120 as containing the invalid data.

Online robust subspace estimation. A simulated test is carried out here to corroborate



4.7 Numerical Tests 101

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−2

10
−1

10
0

10
1

Time index n

A
ng

le
 b

et
w

ee
n 

es
tim

at
ed

 s
ub

sp
ac

e 
U

(n
) 

an
d 

U

PAST [129]
GROUSE [7]
OR−PCA

Figure 4.2: Time evolution of the angle between the learnt subspace U(n), and the true U used

to generate the data (β = 0.99 and λ2 = 1.65). Outlier contaminated data is introduced at time

n = 1001.

the convergence and effectiveness of the OR-PCA algorithm in Section 4.5. For N = 2, 000,

p = 150, and q = 5, nominal data in Ty are generated according to the stationary model

(4.1), where en ∼ N (0p, 10
−3Ip). Vectors x1001, . . . ,x1005 are outliers, uniformly i.i.d. over

[−0.5, 0.5]. The results depicted in Figs. 4.2 and 4.3 are obtained after averaging over 50

runs. Fig. 4.2 depicts the time evolution of the angle between the learnt subspace (spanned

by the columns of) Û(n) and the true subspace U generating Ty, where λ2 = 1.65 and

β = 0.99. The convergent trend of Algorithm 6 to U is apparent; and markedly outperforms

the non-robust subspace tracking method in [129], and the first-order GROUSE algorithm

in [7]. Note that even though U is time-invariant, it is meaningful to select 0 � β < 1 to

quickly ‘forget’ and recover from the outliers. A similar trend can be observed in Fig. 4.3,

which depicts the time evolution of the reconstruction error ‖yn − Û(n)Û(n)′yn‖22/p.

Robust spectral clustering. The following simulated test demonstrates that robust
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Figure 4.3: Time evolution of the reconstruction error. (β = 0.99 and λ2 = 1.65). Outlier contami-

nated data is introduced at time n = 1001.

KPCA in Section 4.6 can be effectively used to robustify spectral clustering (cf. the

connection between both non-robust methods in e.g., [59, p. 548]). Adopting the data

setting from [59, p. 546]), N = 450 points in R
2 are generated from three circular

concentric clusters, with respective radii of 1, 2.8, and 5. The points are uniformly

distributed in angle, and additive noise en ∼ N (02, 0.15I2) is added to each datum.

Five outliers {xn}455n=451 uniformly distributed in the square [−7, 7]2 complete the train-

ing data Tx; see Fig. 4.4 (left). To unveil the cluster structure from the data, Algo-

rithm 7 is run using the Gaussian radial kernel K(xi,xj) = exp(−‖xi − xj‖22/c), with

c = 10. The sparsity-controlling parameter is set to λ2 = 1.85 so that ‖Ô‖0 = 5,

while λ∗ = 1, and q̄ = 2. Upon convergence, the vector of estimated outlier norms is

[‖o1(∞)‖22, . . . , ‖oN+5(∞)‖22]′ = [0, . . . , 0, 10−4, 1.3 × 10−3, 1.5 × 10−2, 10−2, 1.7 × 10−2]′,

which shows that the outliers are correctly identified. Estimates of the (rotated) first two

dominant eigenvectors of the kernel matrix K are obtained as the columns of Υ̂, and are
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Figure 4.4: (Left) Data in three concentric clusters, in addition to five outliers shown in black.

(Right) Coordinates of the first two columns of Υ, obtained by running Algorithm 7. The five

outlying points are correctly identified, and thus can be discarded. Non-robust methods will assign

them to the green cluster.

depicted in Fig. 4.4 (right). After removing the rows of Υ̂ corresponding to the outliers

[black points in Fig. 4.4 (right)], e.g., K-means clustering of the remaining points in Fig.

4.4 (right) will easily reveal the three clusters sought. From Fig. 4.4 (right) it is apparent

that a non-robust KPCA method will incorrectly assign the outliers to the outer (green)

cluster.

4.7.2 Real data tests

Video surveillance. To validate the proposed approach to robust PCA, Algorithm 4 was

tested to perform background modeling from a sequence of video frames; an approach that

has found widespread applicability for intrusion detection in video surveillance systems. The

experiments were carried out using the dataset studied in [31], which consists of N = 520

images (p = 120 × 160) acquired from a static camera during two days. The illumination

changes considerably over the two day span, while approximately 40% of the training images

contain people in various locations. For q = 10, both standard PCA and the robust PCA

of Section 4.3 were applied to build a low-rank background model of the environment

captured by the camera. For robust PCA, `1-norm regularization on O was adopted to
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Figure 4.5: Background modeling for video surveillance. First column: original frames. Second

column: PCA reconstructions, where the presence of undesirable ‘ghostly’ artifacts is apparent,

since PCA is not able to completely separate the people from the background. Third column:

robust PCA reconstructions, which recover the illumination changes while successfully subtracting

the people. Fourth column: outliers in ô, which mostly capture the people and abrupt changes in

illumination.

identify outliers at a pixel level. The outlier sparsity-controlling parameter was chosen as

λ2 = 9.69 × 10−4, whereas a single iteration of the reweighted scheme in Section 4.4.1 was

run to reduce the bias in Ô.

Results are shown in Fig. 4.5, for three representative images. The first column com-

prises the original frames from the training set, while the second column shows the cor-

responding PCA image reconstructions. The presence of undesirable ‘ghostly’ artifacts

is apparent, since PCA is unable to completely separate the people from the background.

The third column illustrates the robust PCA reconstructions, which recover the illumination

changes while successfully subtracting the people. The fourth column shows the reshaped

outlier vectors ôn, which mostly capture the people and abrupt changes in illumination.
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responses) BFI datasets are shown.

Robust measurement of the Big Five personality factors. The ‘Big Five’ are five

factors (q = 5) of personality traits, namely extraversion, agreeableness, conscientiousness,

neuroticism, and openness; see e.g., [65]. The Big Five inventory (BFI) on the other hand,

is a brief questionnaire (44 items in total) tailored to measure the Big Five dimensions.

Subjects taking the questionnaire are asked to rate in a scale from 1 (disagree strongly)

to 5 (agree strongly), items of the form ‘I see myself as someone who is talkative’. Each

item consists of a short phrase correlating (positively or negatively) with one factor; see

e.g., [65, pp. 157-58] for a copy of the BFI and scoring instructions.

Robust PCA is used to identify aberrant responses from real BFI data comprising the

Eugene-Springfield community sample [52]. The rows of X contain the p = 44 item responses

for each one of the N = 437 subjects under study. For q = 5, (4.7) is solved over grid of
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Figure 4.7: Pseudo scree plot of outlier size (‖ôn‖2); the 40 largest outliers are shown. Robust PCA

declares the largest 8 as aberrant responses.

Gλ = 200 values of λ2, where λmin = 10−2λmax, and λmax = 20. The first plot of Fig. 4.6

shows the evolution of Ô’s row support as a function of λ2 with black pixels along the nth

row indicating that ‖ôn‖2 = 0, and white ones reflecting that the responses from subject n

are deemed as outliers for the given λ2. For example subjects n = 418 and 204 are strong

outlier candidates due to random responding, since they enter the model (‖ôn‖2 > 0) for

relatively large values of λ2. The responses of e.g., subjects n = 63 (all items rated ‘3’) and

249 (41 items rated ‘3’ and 3 items rated ‘4’) are also undesirable, but are well modeled

by (4.1) and are only deemed as outliers when λ2 is quite small. These two observations

are corroborated by the second plot of Fig. 4.6, which shows the robust PCA results on a

corrupted dataset, obtained from X by overwriting: (i) rows 151 − 160 with random item

responses drawn from a uniform distribution over {1, 2, 3, 4, 5}; and (ii) rows 301−310 with

constant item responses of value 3.

For λ2 = 5.6107 corresponding to ‖Ô‖0 = 100, Fig. 4.7 depicts the norm of the 40
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largest outliers. Following the methodology outlined in Section 4.7.1, 8 subjects including

n = 418 and 204 are declared as outliers by robust PCA. As a means of validating these

results, the following procedure is adopted. Based on the BFI scoring key [65], a list of all

pairs of items hypothesized to yield positively correlated responses is formed. For each n,

one counts the ‘inconsistencies’ defined as the number of times that subject n’s ratings for

these pairs differ in more than four, in absolute value. Interestingly, after rank-ordering all

subjects in terms of this inconsistency score, one finds that n = 418 ranks highest with a

count of 17, n = 204 ranks second (10), and overall the eight outliers found rank in the top

twenty.

Unveiling communities in social networks. Next, robust KPCA is used to identify

communities and outliers in a network of N = 115 college football teams, by capitalizing

on the connection between KPCA and spectral clustering [59, p. 548]. Nodes in the net-

work graph represent teams belonging to eleven conferences (plus five independent teams),

whereas (unweighted) edges joining pairs of nodes indicate that both teams played against

each other during the Fall 2000 Division I season [50]. The kernel matrix used to run robust

KPCA is K = ζIN +D−1/2AD−1/2, where A and D denote the graph adjacency and degree

matrices, respectively; while ζ > 0 is chosen to render K positive semi-definite. The tuning

parameters are chosen as λ2 = 1.297 so that ‖Ô‖0 = 10, while λ∗ = 1, and q̄ = 3. Fig. 4.8

(a) shows the entries of K, where rows and columns are permuted to reveal the clustering

structure found by robust KPCA (after removing the outliers); see also Fig. 4.8 (b). The

quality of the clustering is assessed through the adjusted rand index (ARI) after excluding

outliers [43], which yielded the value 0.8967. Four of the teams deemed as outliers are Con-

necticut, Central Florida, Navy, and Notre Dame, which are indeed teams not belonging

to any major conference. The community structure of traditional powerhouse conferences

such as Big Ten, Big 12, ACC, Big East, and SEC was identified exactly.



4.7 Numerical Tests 108

Team index

T
ea

m
 in

de
x

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a)

BrighamYoung

FloridaState

Iowa

KansasStateNewMexico

TexasTech

PennState

SouthernCalifornia
ArizonaState

SanDiegoState Baylor

NorthTexas

NorthernIllinois

Northwestern

WesternMichigan

Wisconsin
Wyoming

Auburn

Akron

VirginiaTech

Alabama

UCLA

Arizona

Utah

ArkansasState

NorthCarolinaState

BallState

Florida

BoiseState

BostonCollegeWestVirginia

BowlingGreenState

Michigan

Virginia

Buffalo

Syracuse

CentralFlorida

GeorgiaTech

CentralMichigan

Purdue

Colorado

ColoradoState

Connecticut

EasternMichigan

EastCarolina

Duke

FresnoState

OhioState

Houston

Rice

Idaho

Washington

Kansas

SouthernMethodist

Kent

Pittsburgh

Kentucky

Louisville

LouisianaTech

LouisianaMonroe

Minnesota

MiamiOhio

Vanderbilt

MiddleTennesseeState

Illinois

MississippiState

Memphis

Nevada

Oregon

NewMexicoState

SouthCarolina

Ohio

IowaState

SanJoseState
Nebraska

SouthernMississippi

Tennessee

Stanford

WashingtonState

Temple

Navy

TexasA&M

NotreDame

TexasElPaso
Oklahoma

Toledo

Tulane

Mississippi

Tulsa

NorthCarolina

UtahState

Army Cincinnati

AirForce

Rutgers

Georgia LouisianaState

LouisianaLafayette

Texas

Marshall

MichiganState

MiamiFlorida

Missouri

Clemson

NevadaLasVegas

WakeForest

Indiana

OklahomaState

OregonState

Maryland

TexasChristian

California

AlabamaBirmingham

Arkansas

Hawaii

(b)

Figure 4.8: (a) Entries of K after removing the outliers, where rows and columns are permuted to

reveal the clustering structure found by robust KPCA. (b) Graph depiction of the clustered network.

Teams belonging to the same estimated conference (cluster) are colored identically. The outliers are

represented as diamond-shaped nodes.
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4.8 Summary

Outlier-robust PCA methods were developed in this chapter, to obtain low-dimensional rep-

resentations of (corrupted) data. Bringing together the seemingly unrelated fields of robust

statistics and sparse regression, the novel robust PCA framework was found rooted at the

crossroads of outlier-resilient estimation, learning via (group-) Lasso and kernel methods,

and real-time adaptive signal processing. Social network analysis, video surveillance, and

psychometrics, were highlighted as relevant application domains.
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4.9 Appendices

4.9.1 Proof of equivalence of (4.7) and (4.8)

Towards establishing the equivalence between problems (4.7) and (4.8), consider the pair

{V̂ , Ô} that solves (4.7). Assume that V̂ is given, and the goal is to determine Ô. Upon

defining the residuals r̂n := xn−m̂− Ûŝn and from the row-wise decomposability of ‖ ·‖2,r,

the rows of Ô are separately given by

ôn := arg min
on∈Rp

[

‖r̂n − on‖22 + λ2‖on‖2
]

, n = 1, . . . , N. (4.29)

For each n = 1, . . . , N , because (4.29) is nondifferentiable at the origin one should consider

two cases: i) if ôn = 0p, it follows that the minimum cost in (4.29) is ‖r̂n‖22; otherwise,

ii) if ‖ôn‖2 > 0, the first-order condition for optimality gives ôn = r̂n − (λ2/2)r̂n/‖r̂n‖2
provided ‖r̂n‖2 > λ2/2, and the minimum cost is λ2‖r̂n‖2 − λ2

2/4. Compactly, the solution

of (4.29) is given by ôn = r̂n(‖r̂n‖2−λ2/2)+/‖r̂n‖2 , while the minimum cost in (4.29) after

minimizing w.r.t. on is ρv(r̂n) [cf. (4.9) and the argument following (4.29)]. The conclusion

is that V̂ is the minimizer of (4.8), in addition to being the solution of (4.7) by definition.�
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Chapter 5

Future Work

This dissertation dealt with sparsity-controlling outlier rejection methods for statistical

learning from high-dimensional data. In this final chapter, we point out possible directions

for future research, and additional experimental validation using the largest repository of

online-assessed personality and preference data.

5.1 Robust Canonical Correlation Analysis

While PCA can perform dimensionality reduction of sources that are directly observable

at the encoder, oftentimes the compressed data are used to reconstruct a remote source

presented to the encoder input. Such hidden, remote sources, arise due to sensing noise, or

non-ideal channels between the source of interest and the sensing devices [68]. Dimensional-

ity reduction in this case aims at compressing data to render them as much correlated with

the hidden source of interest. A pertinent framework to tackle such a problem is canoni-

cal correlation analysis (CCA) [15]. CCA has been traditionally employed to reveal linear

relationships between two correlated vectors [15]. Recently, this task has been successfully

applied to genomic data interpretation [91, 123]. Similar to PCA, CCA is very sensitive

to outlying observations [14]. We are planning on investigating doubly robust CCA for-

mulations whereby outliers are explicitly accounted for both in the remote source training

data, and the observations to be compressed. We envision application of the novel robust
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methods to bioinformatics and system identification tasks [15].

5.2 Parametric Model Generalizations

This section shows how the USPACOR framework of this thesis can be generalized to other

parametric models beyond linear regression (cf. Chapter 2).

5.2.1 Errors-in-variables and total least-squares

Total least-squares (TLS) extends ordinary LS to fully-perturbed linear models, such as the

errors-in-variables one; see e.g., [80]. With Σ̂ denoting the sample covariance of the data

vectors {[x′
n yn]′}Nn=1, the TLS estimator corresponds to the eigenvector associated with the

smallest eigenvalue of Σ̂. As such, TLS performs ‘orthogonal regression,’ which minimizes

the sum of squared orthogonal distances from [x′
n yn]′ to the fitting hyperplane, as opposed

to the vertical distance minimized by LS [80]. To robustify TLS against outliers, USPACOR

can be applied to yield the desired robust estimator θ̂ as solution of

min
θ,o

N
∑

i=1

(yn − x′
nθ − on)2

1 + ‖θ‖22
+ λ1‖o‖1 . (5.1)

Alternating minimization between variables θ and o can converge to a stationary point of

this nonconvex criterion. Each sub-problem per iteration reduces to either TLS or a scalar

Lasso, and in both cases the solutions admit analytical forms.

5.2.2 Generalized linear models

The MSE-optimal regression function E[y|x] is modeled here by the so-termed activation

function f(x′θ). A special case popular for (say binary) classification leads to logistic

regression, where f(u) := (1 + e−u)
−1

, and the response yn equals 1 when input vector

xn belongs to the first class, and 0 otherwise [59, p. 119]. To robustify logistic regression

USPACOR estimates θ by

min
θ,o
−

N
∑

n=1

yn log zn + (1− yn) log(1− zn) + λ‖o‖1 (5.2)
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where zn := f(x′
nθ+on). Problem (5.2) is convex and can be efficiently solved by reweighted

LS iterations [59, p. 120]. The result can be extended readily to: i) multiclass classification;

and ii) probit regression, where f(u) is replaced by the standard Gaussian cumulative

distribution function.

5.3 Distributed Algorithms for Matrix Completion

The popular Netflix prize competition (http://www.netflixprize.com/) has stirred a

great deal of interest and research on (low-rank) matrix completion; see e.g., [7, 19, 24].

This problem is closely related to PM and online recommendation systems (ORS) [3]. ORS

predict preferences of a consumer for products (Amazon books, Netflix movies), based on

his/her previously revealed preferences, as well as the preferences of other consumers. Be-

cause each user only rates a small subset of products, there is an inherent under-determinacy

in predicting based on limited ratings (most values yij := [Y]ij are missing). This under-

determinacy can only be resolved by relying on structural assumptions on the ratings matrix

Y (consumers × products) sought.

Arguably the most common choice is to assume that the ratings matrix has low rank.

A remarkable result asserts that under some technical incoherence conditions, the nuclear

norm minimization problem

min
X

‖X‖∗, s. to [X]ij = [Y]ij , (i, j) ∈ Ω (5.3)

can recover a highly incomplete low rank matrix Y with overwhelming probability [19]. Note

that (5.3) is a convex problem, and Ω denotes the set of indices of observed preferences.

While a great body of work has been proposed to solve (5.3) [17,75,76,112], it appears that

none of these methods can currently operate on the scale of data commonly acquired by

Internet retailers and social networking sites. This calls for custom-made low-complexity

real-time (adaptive) matrix algorithms, ideally also distributable for Hadoop or large-scale

grid computation.

Because the nuclear norm is non-separable, it is challenging to develop distributed al-

gorithms directly from (5.3). Recently, an incremental stochastic gradient algorithm was
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put forth in [96]. Building on the Frobenius norm characterization of the nuclear norm

(cf. Chapter 4), we are currently working on developing a distributed matrix completion

algorithm. The idea is solve the separable problem

min
{U,S}

1

2

(

‖U‖2F + ‖S‖2F
)

, s. to [SU′]ij = [Y]ij , (i, j) ∈ Ω (5.4)

which is equivalent to (5.3) under mild assumptions. The AD-MoM framework used in this

thesis for distributed CA can be applied in this context as well. Since (5.4) is a non-convex

optimization problem, convergence is not guaranteed by the existing theory. However, we

believe that the convergence results can be extended to this non-convex setting, since there

may be sufficient structure in the bilinear factorization X = SU′.

5.4 Validation Using GPIPP Psychological Ratings

Since its inception in 1997, the Gosling-Potter Internet Personality Project (GPIPP)

has generated the largest repository of online-assessed personality and preference

data. Among several other inventories, the most popular GPIPP test is the BFI

(http://www.outofservice.com/bigfive/) studied in Chapter 4. Relative to the Eugene-

Springfield community sample [52], the GPIPP repository is much richer in terms of subject

diversity and sample size.

To date, the family of related GPIPP Web sites (http://www.outofservice.com/) has

attracted more than 8 million visitors interested in taking online personality and social at-

titude tests. These heterogeneous volunteers are aged 9-to-90, represent diverse ethnicities

and cultures, and come from more than 100 countries. Much contemporary social science

research is focused on individuals who are decidedly WEIRD (Western, Educated, Indus-

trialized, Rich, and Democratic). The GPIPP data are ‘WIRED’ (i.e., collected over the

Internet) but not WEIRD. For instance, in a recent study of 564, 502 cases ‘19% of the

sample were not from advanced economies, 20% were from non-Western societies; 35% of

the Western-society sample were not from the United States; and 66% of the U.S. sample

were not in the 18-22 (college) age group’ [54]. The GPIPP data have been used to study

personality correlates [100] and measurement of self-esteem across the life span [101]; cross-
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cultural and geographic variation in personality and attitudes [98]; and statewide political

preferences and voting patterns [99]. We have contacted Prof. S. Gosling who has agreed

to give us full access to the GPIPP repository. In analyzing the GPIPP data, Prof. Gosling

and his colleagues have often struggled to find principled algorithmic means of identify-

ing invalid protocols from among the sizable number of cases in the database. We have

strong convictions that the methods in this dissertation (e.g., robust PCA in Chapter 4)

will therefore help solve a pressing problem in the personality analysis community.
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