
Online Change Point Detection for Random Dot
Product Graphs

Bernardo Marenco∗, Paola Bermolen∗, Marcelo Fiori∗, Federico Larroca∗, and Gonzalo Mateos†
∗Facultad de Ingenierı́a, Universidad de la República, Uruguay

Email: {bmarenco,paola,mfiori,flarroca}@fing.edu.uy
†Dept. of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.

Email: gmateosb@ur.rochester.edu

Abstract—Given a sequence of random graphs, we address the
problem of online monitoring and detection of changes in the
underlying data distribution. To this end, we adopt the Random
Dot Product Graph (RDPG) model which postulates each node
has an associated latent vector, and inner products between
these vectors dictate the edge formation probabilities. Existing
approaches for graph change-point detection (CPD) rely either
on extensive computation, or they store and process the entire
observed time series. In this paper we consider the cumulative
sum of a judicious monitoring function, which quantifies the
discrepancy between the streaming graph observations and the
nominal model. This reference distribution is inferred via spectral
embeddings of the first few graphs in the sequence, and the
monitoring function can be updated in an efficient, online fashion.
We characterize the distribution of this running statistic, allowing
us to select appropriate thresholding parameters that guarantee
error-rate control. The end result is a lightweight online CPD
algorithm, with a proven capability to flag distribution shifts in
the arriving graphs. The novel method is tested on both synthetic
and real network data, corroborating its effectiveness in quickly
detecting changes in the input graph sequence.

Index Terms—Online change-point detection, graph represen-
tation learning, node embeddings.

I. INTRODUCTION

Online (or sequential) change-point detection (CPD) is the
problem of deciding whether (and if so when) the generating
process underlying an observed data stream has changed.
This is a classic statistical signal processing problem that can
be traced back to the seminal work of Page [1], where, in
the context of quality control, sought to detect a change on
the distribution of an univariate random variable (r.v.). The
challenge is to flag a problem (in order to take corrective
actions) as soon as it happens, while controlling the probability
of false alarm. Unlike the offline or batch case (see e.g., [2]),
here we do not have access to the full data sequence (which
may actually be infinitely long).

Given the ubiquity of datasets that are generated in a
streaming fashion, online CPD is a timely research area with
applications to sensor networks [3], financial markets [4],
or social networks [5], [6]. As these examples suggest, data
are increasingly high-dimensional and possibly non-Euclidean.
Indeed, here we will consider network data streams in the form
of graph sequences. In a nutshell, given an incoming sequence

This work was partially funded by ANII (grant FMV 3 2018 1 148149)
and the NSF (awards CCF-1750428 and ECCS-1809356).

of random (unweighted and undirected) graphs, we would like
to signal if and when the data generating process changes.
Related work. To address this problem, a non-parametric
approach was developed in [7], where the only requirement
is to define a pairwise distance between samples (e.g., the
Frobenius distance between adjacency matrices is adopted
in the case of graphs). Then, a k-nearest-neighbors-based
statistic is calculated sequentially using the incoming data.
As we argue in the comparisons of Sec. IV, said distance is
prone to overlooking simple changes that generative models
easily capture. Noteworthy model-based efforts include [5],
which considered the Generalized Hierarchical Random Graph
(GHRG) model as generating mechanism. A computationally
expensive posterior Bayes factor is calculated for all partitions
of the data over a sliding window. If this value exceeds a
certain threshold (estimated by means of bootstrapping) a
change-point is declared. The work in [8] is somewhat more
general, as it considers the workhorse Stochastic Block Model
(SBM). The distribution of two so-termed scan statistics is
derived for certain particular cases and used to signal a change
on the graph sequence.

Going beyond the SBM model, the recent work [9] consid-
ers an inhomogeneous Bernoulli graph; whereby the existence
of an edge between a pair of nodes (i, j) is a Bernoulli
random variable with probability pij , independent of the rest
of the pairs. At every timestep, two statistics are computed
for a logarithmic grid of previous instants to check whether
they exceed a certain threshold. Evaluating these statistics
necessitates computing the eigen-decomposition of an n × n
matrix (where n is the number of nodes in the graph). In
addition to being computationally intensive, the algorithm
in [9] needs to store all historical data in memory, which
may pose a major hurdle even when graphs are of moderate
size. In any case, the procedure comes with solid theoretical
guarantees in the form of detection delay, average run length
and a mini-max lower bound.
Proposed approach and contributions. Here we resort to the
Random Dot Product Graph (RDPG) model, a particular but
very versatile case of the inhomogeneous Bernoulli graph [10],
[11]. In RDPGs each node has an associated latent vector in
Rd, and pij is simply the inner product between the corre-
sponding vectors. As we discuss in Sec. II, RDPGs capture
phenomena commonly encountered with real-world graphs

1519978-1-6654-5828-3/21/$31.00 ©2021 IEEE Asilomar 2021

(e.g., statistical dependencies among edges) and subsume the
SBM as a special case; they are interpretable while still being
amenable to analysis [11].

Building on [12], we will assume a historical dataset with
no change-points is available, from which we estimate the
latent vectors in an offline training phase. As new data arrive
in a streaming fashion, the novel online CPD algorithm
(Sec. III) recursively updates a monitoring function statistic
(whose distribution we characterize analytically). In addition
to providing theoretical guarantees on the false alarm rate
of the resulting online CPD scheme, an attractive feature is
its limited memory footprint – we need to store a single
n × n matrix in memory (in addition to the estimated latent
vectors, naturally). Moreover, the resulting lightweight statistic
updates are an order-of-magnitude more efficient than those
based on repeated eigen-decompositions. Numerical tests in
Sec. IV corroborate the effectiveness of the proposed online
CPD method, using both simulated and real network datasets.

II. PRELIMINARIES AND PROBLEM STATEMENT

Here we introduce the necessary background on RDPG
modeling and inference. We then state the online CPD problem
where the streaming graphs are modeled as RDPGs.

A. Random dot product graphs

Consider an unweighted and undirected graph G = (V,E),
with nodes V = {1, . . . , n} and edges E ⊆ V × V . In the
RDPG model each node i ∈ V has an associated column vec-
tor xi ∈ X ⊂ Rd, and edge (i, j) exists with probability x>i xj
(a particular case of the latent space model [13]). Note that the
set X of possible xi is such that x>y ∈ [0, 1], ∀x,y ∈ X . In
general, vectors xi may be random, drawn from a distribution
in X .

Thus, letting A ∈ {0, 1}n×n be the random symmetric
adjacency matrix of G and X = [x1, . . . ,xn]> ∈ Rn×d the
matrix of latent vertex positions, the RDPG model specifies

P
(
A
∣∣X) =

∏
i<j

(x>i xj)
Aij (1− x>i xj)

1−Aij . (1)

That is, given X, edges are conditionally independent with
Aij ∼ Ber(x>i xj). The RDPG model is a tractable yet
expressive family of random graphs that subsume Erdös-
Rényi (ER) and SBM ensembles as particular cases. Indeed,
if xi =

√
p ∀ i, we obtain an ER graph with edge probability

p. An SBM with M communities may be generated by
restricting X to having only (at most) M different columns
(i.e. |X | = M); see also [11] for additional examples.

B. Inference on RDPG

Given a graph stemming from an RDPG with adjacency
matrix A, we now discuss how to estimate the matrix X of
latent vertex positions. In lieu of a maximum-likelihood esti-
mator that is intractable beyond toy graphs, the key intuition
is that A is a noisy observation of

P = XX>, (2)

the matrix of edge probabilities pij , since E
[
A
∣∣X] = P. It

is thus natural to adopt the estimator

X̂ = argmin
X

‖A−XX>‖2F , s. to rank(X) = d. (3)

The solution to (3) is readily given by

X̂ = Q̂Λ̂1/2, (4)

where A = QΛQ> is the spectral decomposition of A,
Λ̂ ∈ Rd×d is a diagonal matrix with the d largest eigenvalues
of A, and Q̂ ∈ Rn×d are the corresponding d dominant
eigenvectors. We are assuming that Λ̂ has only non-negative
values, a limitation that may be easily circumvented [14]. The
constraint diag(XX>) = 0 can be handled as well [15]. In
practice, d is likely unknown but can be estimated by looking
for “elbows” on the so-termed eigenvalue scree plot [16].
Estimator (4) is known as the Adjacency Spectral Embedding
(ASE), which is asymptotically normal and approaches X as
n→∞ provided the true d is chosen [11].

The RDPG model is invariant to rotations in X. To see
this, consider an orthogonal matrix W ∈ Rd×d, and note that
the rotated vectors XW will produce the same probability
matrix as in (2). Hence, the estimator (4) is unbiased up to
an unknown rotation matrix W, and the ambiguity should be
accounted for when detecting changes on G’s distribution.

Consider now A[1] . . . ,A[m] to be a sequence of n × n
independent adjacency matrices, all adhering to an RDPG with
latent position matrix X ∈ Rn×d, i.e., every graph in this
sequence satisfies (1) for the same (but unknown) fixed matrix
X. We define the mean adjacency matrix

Ā =
1

m

m∑
t=1

A[t], (5)

and henceforth let X̂ be the ASE decomposition of Ā. Since Ā
is also an unbiased estimator of P and var(Ā)ij = 1

mpij(1−
pij), then the estimated latent positions will, when n → ∞,
follow a normal distribution with variance scaled by 1

m relative
to the variance of the ASE obtained from a single graph [17].

C. Problem statement

Suppose we are given a batch sequence of m graphs as
in the previous paragraph, in which all matrices stem from
the same RDPG model. We will refer to that sequence as the
training data set, which is used in an offline initialization phase
to estimate model parameters from the null model. Given a
(possibly infinite) sequence of streaming adjacency matrices
A[m + 1],A[m + 2], . . ., we would like to detect at what
time t > m (if any) the null model described in (1) is no
longer valid (i.e., drifts from the aforementioned RDPG model
represent the alternative hypothesis). We tackle this CPD
problem in an online fashion, meaning graph observations
{A[m+ k]}k≥1 are sequentially and efficiently monitored as
they are acquired, without having to store the whole time
series. This way, the algorithm’s computational complexity
and memory footprint does not grow with k. Another attractive
feature is the possibility of detecting the change in (pseudo)

1520

real-time, ideally soon after it occurs and with control on the
probability of false alarm (i.e., type-I-error).

III. ONLINE CHANGE-POINT DETECTION

A. General algorithmic framework

We build on the so-called estimating function approach [12],
[18], which we markedly broaden to accommodate network
data. The central notion behind this online CPD method is
to consider a monitoring function H of each streaming graph
A[t], such that E [H] = 0 under the null hypothesis. If one
monitors a cumulative sum of H, that quantity should remain
small provided there are no changes in the underlying model.
If there is a change however, then E [H] 6= 0 and we should
observe a drift in the trend of the sum.

As proposed in [12], we first estimate the parameters of the
underlying RDPG model using the training data set, i.e., we
estimate the matrix X. The estimation should be carried out
with an estimating function G, where the estimated parameter
X̂ is the solution to a system of equations of the form

m∑
t=1

G(A[t], X̂) = 0. (6)

To define such a function for our problem, given the training
data set we estimate X as the ASE corresponding to Ā [cf.
(5)]. Taking the derivative w.r.t. X of the objective function
in (3) (with A← Ā) and setting it to zero, we arrive at

m∑
t=1

(
X̂X̂> −A[t]

)
X̂ = 0,

suggesting the use of G(A[t], X̂) =
(
X̂X̂> −A[t]

)
X̂ as the

estimating function. Accordingly, G amounts to projecting the
residual X̂X̂> −A[t] onto X̂.

In order to detect a change on the underlying model, we
will track the cumulative sum of a monitoring function H as
new adjacency matrices arrive for t ≥ m+ 1, namely

S[m, k] =

m+k∑
t=m+1

H(A[t], X̂).

While it is possible (and often natural) to use the same function
for both estimation and monitoring (i.e. H = G), we show in
Sec. IV that adopting the residual itself instead of a projection
results in a more powerful detector. Thus, we choose

H(A[t], X̂) = X̂X̂> −A[t].

We reiterate here that the matrix X̂ is computed during
training, via the ASE of the average Ā of the adjacency
matrices in the training set. Once monitoring starts, X̂ is fixed
and we do not compute the ASE for new observations.

Since all involved matrices are hollow and symmetric, we
only need to consider entries, say, above the main diagonal. It
will also prove useful in the analysis that follows to vectorize
the resulting values. We thus define a vector function h as

h(A[t], X̂) = vec
[
triu
(
X̂X̂> −A[t]

)]
,

where vec(triu(B)) means arranging the entries above the
main diagonal of matrix B in a vector. If B ∈ Rn×n, then
vec(triu(B)) ∈ Rr, with r = n(n−1)

2 .
If the norm of the partial sum

s[m, k] =

m+k∑
t=m+1

h(A[t], X̂) (7)

exceeds a certain threshold, we will conclude that the model
is no longer valid. Let us then denote our statistic as

Γ[m, k] = ‖s[m, k]‖22.

In order to control the variance of Γ[m, k] as k grows,
a weighting function ω[k] is also introduced. We use
ω[k] = (rk3/2)−1 and instead monitor ω[k]Γ[m, k]; the reason
for this choice is explained in the next section.

All in all, the null hypothesis of no change will be rejected
at the first time instant k when

ω[k]Γ[m, k] > cα[k],

where cα[k] is a certain threshold that depends on the dis-
tribution of ω[k]Γ[m, k] under the null hypothesis and the
prescribed type-I-error level α. In the next section we will
discuss how this threshold is chosen.

B. Statistical analysis

In order to select the weighting and threshold functions,
we will study the distribution of our statistic under the null
hypothesis. We will first develop theory for the case when the
ASE estimate is error-free, i.e., X̂X̂> = XX> = P. This way
the estimated latent positions allow for a perfect reconstruction
of the connection probability matrix. In practice, this will be
valid when m and/or n are large enough. Since for most
applications this is not necessarily true, we will then extend
the analysis for the imperfect case.

1) Perfect ASE estimation: In this case one has1

h = vec [triu (P−A[t])], with E [h] = 0. The covariance
matrix ΣH = E(hh>) ∈ Rr×r, has null non-diagonal entries
since the variables aij are independent. The diagonal entries
are var [aij] = pij(1− pij). In short, ΣH is a diagonal matrix
whose nonzero entries are pl(1 − pl), l = 1, . . . , r, with pl
denoting the entries of vec [triu (P)] (i.e., a reindexing of pij).

Proposition 1. Under the perfect ASE estimation assumption,
as k →∞ the test statistic sequence converges in distribution,
namely

k−1Γ[m, k]
D→

r∑
l=1

pl(1− pl)y2l , (8)

where {yl}rl=1 are i.i.d. standard Gaussian random variables.

Proof. Invoking the Central Limit Theorem (CLT), as k →∞
the distribution of k−1/2s[m, k] in (7) converges to a multi-
variate Gaussian distribution N (0,ΣH), i.e., k−1/2s[m, k]

D→
(ΣH)1/2y, where y is a standard Gaussian random vector.

1We have omitted the dependence of h on t and X̂ for clarity.

1521

Hence, k−1Γ[m, k] also converges in distribution because
k−1Γ[m, k] = (k−1/2s[m, k])>k−1/2s[m, k]. Using the con-
vergence of k−1/2s[m, k] and the fact that ΣH is a diagonal
matrix whose nonzero entries are pl(1−pl), the desired result
in (8) follows.

Since yl is a standard Gaussian r.v. then y2l
D
= χ2

1, and also

E [Γ[m, k]] = k

r∑
l=1

pl(1− pl),

var [Γ[m, k]] = 2k2
r∑
l=1

p2l (1− pl)2,

where we have used that the {yl}rl=1 are mutually independent.
To control the variance of Γ, the weighting function for

the perfect ASE case can be chosen as ω[k] = (rk)−1. The
threshold cα[k] is selected as the (1 − α)-quantile of the
distribution in (8) (after weighting with ω[k]), which provides
a type-I error of approximately α. Next, we show that in the
presence of estimation errors the weighting function will have
to be defined differently.

2) Imperfect ASE estimation: In this case, we will write

X̂X̂> −A[t] = XX> −A[t] + X̂X̂> −XX>,

where X is the true latent positions matrix (cf. P = XX>).
Defining the estimation error E = X̂X̂> −XX>, then

h(A[t], X̂) = vec
[
triu
(
XX> −A[t]

)]
+ e, (9)

where e = vec [triu (E)]. So the first term in (9) corresponds
to a perfect ASE, while the second one captures the estimation
error stemming from an imperfect reconstruction of P. Note
that after training, e is fixed and it does not depend on t.

Again, invoking the CLT, the distribution of the cumulative
sum s can be approximated by the multivariate Gaussian
N (ke, kΣH). Standard calculations for the norm of a non-
centered Gaussian vector allow us to approximate the distri-
bution of Γ[m, k] by the distribution of the random variable

Γ̄ = k

r∑
l=1

pl(1− pl) (yl + bl)
2
, (10)

where {yl}rl=1 is an independent sequence of standard Gaus-
sian random variables and {bl}rl=1 are the entries of vector
b =
√
kΣ
−1/2
H e.

From (10), for large k we can compute the expected value
and variance of Γ as in the perfect case. The difference is
that each (yl + bl)

2 is distributed as a non-central χ2(1, b2l)
distribution with one degree of freedom and parameter b2l =

k

pl(1− pl)
e2l (as before, {el}rl=1 denote the entries of vector

e). Hence,

E [Γ[m, k]] = k2‖e‖22 + k

r∑
l=1

pl(1− pl) = k2‖e‖22 + k‖σ‖1,

var [Γ[m, k]] = 4k3
r∑
l=1

pl(1− pl)e2l + 2k2
r∑
l=1

p2l (1− pl)2

= 4k3σ>e2 + 2k2‖σ‖22,

where for notational convenience we defined the auxiliary
vector σ with entries {pl(1−pl)}rl=1 and e2 denotes the entry-
wise square of e. The preceding arguments suffice to establish
the following result on the convergence of Γ[m, k].

Proposition 2. In the general case, as k →∞ the test statistic
sequence converges in distribution, namely

Γ[m, k]− k2‖e‖22 − k‖σ‖1√
4k3σ>e2 + 2k2‖σ‖22

D→ y,

where y is a standard Gaussian random variable.

Apparently, we need to choose ω[k] = (rk3/2)−1 to control
the variance of the weighted statistic. The threshold cα[k] is
set as the (1−α)-quantile of the generalized chi-squared dis-
tribution defined in (10) after weighting. Since its cumulative
distribution function has a complex form which would require
numerical integration, in practice one could simply use the
mean plus three standard deviations to obtain a type-I error of
approximately α = 0.01.

C. Implementation details

The above procedure requires prior knowledge on the values
of P and e in order to set the threshold cα[k]. In most
applications these values are not known, so it is necessary
to estimate them. To that end, we use the training set.

For P we simply use the estimate P̂ = X̂X̂T , i.e. we
estimate P using the ASE of Ā in (5), computed over the
training set. To estimate E (and subsequently e) we perform
“leave-one-out” passes over the training set: we randomly
select an index j in 1, . . . ,m and compute the ASE of A[j]
and of

Ā(−j) =
1

m− 1

m∑
t=1
t6=j

A[t],

the mean adjacency matrix over the left-out samples. Because
var
[
XjX

>
j −P

]
= var

[
X̂jX̂

>
j −P

]
/(m−1), with Xj and

X̂j the ASE of Ā(−j) and A[j], respectively [17], we compute

Ej =
X̂jX̂

>
j −XjX

>
j√

m− 1
,

a fixed number of times, obtain a set of values Ej , and estimate
a “worst-case” Ê via the 0.99-quantile of this set.

IV. NUMERICAL TESTS

A. Simulated data

A usual problem in networks is to detect when communities
arise. So, we first test the proposed online CPD method by
generating a sequence of ER graphs with n = 100 nodes
and connection probability p = 0.3. After t∗ = 120, the
model shifts to a two-block SBM with 50 nodes in each
community and connection probability 0.275 for nodes in the
same community and 0.325 for nodes in different blocks.
We use the first m = 100 graphs as the training set, and
the value of d is automatically chosen (via scree plot) by

1522

10 20 30 40 50 60 70 80 90

k

1.0

1.5

2.0

2.5

3.0

3.5
W

ei
gh

te
d

st
at

is
ti

c

ω[k]Γ[m, k]

Mean

Estimated mean

0.99 quantile

Threshold

Fig. 1. Evolution of ω[k]Γ[m, k], its mean and the estimated mean, for
simulated data. The solid vertical line indicates the actual change-point, while
the dashed one is the detection. Two thresholds are shown: the 0.99-quantile
of the distribution in (10) and three standard deviations away from the mean.

the graspologic library used to obtain the ASE. Note
that since the index k in Γ[m, k] measures how much time
has elapsed since monitoring started, the change-point is at
k∗ = 20.

Figure 1 shows the results for that scenario. We show two
thresholds: the 0.99 quantile of the estimated distribution (i.e.,
the distribution given by (10) but with ê instead of e) and the
estimated mean plus three standard deviations. As we can see,
the difference between those two thresholds is small, so the
latter is preferred due to its reduced complexity. Using that
threshold a change-point is declared at k = 48 (or t = 148),
so our algorithm is identifying the change in the model. The
detection delay can be explained if we look at the estimated
mean: since we are estimating the error E as the 0.99-quantile
over the training set, we obtain an estimate that is always
greater than the true value. Also, there is an inertia effect
associated with monitoring the cumulative sum (7), so the
drift in Γ[m, k] will not be noticed immediately; see also the
discussion in Sec. V.
Comparison with [7]. Had we adopted the approach proposed
in [7] (monitoring the distance induced by the Frobenius norm
of the adjacency matrices), we would have missed the change
altogether. Indeed, if A,B ∈ Rn×n are adjacency matrices of
two ER graphs with connection probability p, then

E
[
‖A−B‖2F

]
= (n2 − n)2p(1− p),

since all entries Aij and Bij are Ber(p) r.v.s. Thus
‖A−B‖2F ≈ 2p(1− p)n2 if n is sufficiently large. Suppose
now that C and D are two adjacency matrices from a two-
block SBM, where each community has n/2 nodes and the
connection probabilities are q1 for nodes in the same cluster
and q2 for nodes in different communities. Then the connection
probability matrix for C and D is

PSBM =

(
Q1 Q2

Q2 Q1

)
,

where Q1 = q1(Jn/2 − In/2) and Q2 = q2Jn/2, with Jm
denoting the m×m all-ones matrix and Im the identity matrix
of size m. So those matrices have n2/2 entries of whose

expected value is q2 and (n/2 − 1)n ≈ n2/2 entries whose
expected value is q1. All in all, similarly to the ER case we
have

‖C−D‖2F ≈ n2
(
q1 − q21 + q2 − q22

)
,

‖A−C‖2F ≈ n2
(
p− p(q1 + q2) +

q1 + q2
2

)
.

If we choose q1 and q2 such that q1 +q2 = 2p, then we obtain
‖A−B‖2F ≈ ‖A−C‖2F . In other words, the distance between
an observation before the change (A) and an observation after
the change (C) will be very similar to the distance between
two observed matrices before the change (A and B). For
matrices after the change, when q1 + q2 = 2p we have that

‖C−D‖2F ≈ 2n2
(
p− p2 − (p− q1)2

)
,

so choosing p and q1 to be very similar (but not equal, so there
is effectively a change), for large n these two models will
be indistinguishable under the Frobenius distance criterion.
As an example, in the previous setup the algorithm proposed
in [7] (using the author’s implementation in the R package
gStream) found no change-points in the data.
On the choice of the monitoring function. This same
example allows us to illustrate why choosing the estimating
function G as monitoring function H′ =

(
X̂X̂> −A[t]

)
X̂

is not a good idea. For perfect ASE estimation, if our train-
ing data adheres to an ER model with parameter p, then
X̂ =

√
pJn×d and X̂X̂> = pJn. If there is a change in the

nominal model and the observed matrices are subsequently as
C above (i.e., we shift from an ER to a two-block SBM), then
E [H′] = (pJn−PSBM)

√
pJn×d. Since each row of PSBM has

n/2− 1 entries with value q1 and n/2 entries with value q2,
each entry of E [H′] is given by

(E [H′])ij ≈ n
√
p

(
p− q1 + q2

2

)
,

for large n. Accordingly, choosing p, q1 and q2 as before we
find that E [H′] = 0, i.e. we do not expect to see a change in
the monitoring function after the change.

B. Real data

The Enron email dataset [19] consists of emails exchanged
between n = 151 company employees from 1998 to 2002.
Using a weekly grouping of these mails (where an edge exists
between two employees if they have exchanged at least one
mail in the corresponding period), we applied our online CPD
method to the one year period between December 1, 1999,
and December 1, 2000. As a baseline for comparison and to
ensure we had a training period with no changes, we first
ran the offline CPD algorithm in [20]. We found that in that
period of time there is only one change-point, in the week
of July 10th. This is consistent with the known timeline of
events for the company, since on July 19, 2000, a partnership
between Blockbuster and Enron to provide movie-on-demand
services was announced [21]. Since this dataset comprises
internal emails only, it is natural for the email network to
change before the partnership was publicly announced.

1523

May/2000 Jul/2000 Sep/2000 Nov/2000

0.20

0.25

0.30

0.35

0.40

0.45
W

ei
gh

te
d

st
at

is
ti

c
24/Jul10/Jul ω[k]Γ[m, k]

Estimated mean

Threshold

Fig. 2. Online CPD for the Enron dataset. A change in background color
indicates the actual change-point, as detected by the offline algorithm [20]. The
dashed vertical line shows the detected change-point for the online algorithm.

For the online detection, we used the first 17 weeks as the
training set, which correspond to the period between December
1, 1999, and May 31, 2000. The threshold was set at three
standard deviations away from the estimated mean. Results
are shown in Figure 2. After monitoring starts on April 1st,
a change-point is detected on July 24, in line with what was
obtained with the offline algorithm.

V. DISCUSSION AND FUTURE WORK

We developed an online CPD algorithm for monitoring
applications involving streaming network data. The goal is to
declare in (pseudo) real time when a sequence of observed
graphs changes its underlying distribution. Leveraging the
RDPG modeling framework, the novel algorithm computes
(offline) the ASE of the first graphs (i.e., a training set) and
then efficiently updates the cumulative sum of a monitoring
function h as data arrive sequentially-in-time. Statistical anal-
ysis of the monitored random sequence facilitates deriving
meaningful detection thresholds to control type-I error rates.

Under imperfect ASE estimation, we show the distribution
of the statistic Γ (and its weighted version ωΓ) contains a
term depending on the model estimation error. Although in
this work we presented a practical and effective “leave-one-
out” approach to approximate its value, a worthwhile future
direction in our agenda is the study of theoretical bounds and
guarantees for this plug-in statistic.

Our methodology detects changes in the model with respect
to a training set of nominal graphs, and assumes that the
number of nodes in the network does not change. Depending
on the particular application, it may be interesting to consider
the case where certain nodes are not always present on the
network, and we are interested in only a subset of them. This
is another exciting and challenging avenue for future work.

Since the monitoring function is accumulated over time in
an infinite-memory fashion, the “reaction time” or “inertia”
(i.e., the detection delay) is likely to increase as time goes
by. Possible workarounds are to adaptively select the time
interval over which the accumulation takes place [18], use
fixed-length sliding windows, or, to impose an exponentially-
decaying weighting policy (as in adaptive filters for tracking).

Finally, it is important to highlight that the scope of our
statistical analysis is limited to undirected and unweighted
graphs. A gamut of network science applications call for the
non-trivial extensions to the directed and weighted cases [22].

REFERENCES

[1] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1-2, pp. 100–115, 1954.

[2] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change
point detection methods,” Signal Process., vol. 167, pp. 107299, 2020.

[3] X. He, Y. Xie, S.-M. Wu, and F.-C. Lin, “Sequential graph scanning
statistic for change-point detection,” in 52nd Asilomar Conference on
Signals, Systems, and Computers, 2018, pp. 1317–1321.

[4] H. Keshavarz, G. Michaildiis, and Y. Atchade, “Sequential change-point
detection in high-dimensional Gaussian graphical models,” J. Mach.
Learn. Res, vol. 21, no. 82, pp. 1–57, 2020.

[5] L. Peel and A. Clauset, “Detecting change points in the large-scale
structure of evolving networks,” in AAAI Conference on Artificial
Intelligence, 2015, vol. 29, pp. 2914–2920.

[6] C. Kaushik, T. M. Roddenberry, and S. Segarra, “Network topology
change-point detection from graph signals with prior spectral signa-
tures,” arXiv:2010.11345 [stat.ML], 2020.

[7] H. Chen, “Sequential change-point detection based on nearest neigh-
bors,” Ann. Stat, vol. 47, no. 3, pp. 1381 – 1407, 2019.

[8] H. Wang, M. Tang, Y. Park, and C. E. Priebe, “Locality statistics
for anomaly detection in time series of graphs,” IEEE Trans. Signal
Process., vol. 62, no. 3, pp. 703–717, 2014.

[9] Y. Yu, O. H. M. Padilla, D. Wang, and A. Rinaldo, “Optimal network
online change point localisation,” arXiv:2101.05477 [math.ST], 2021.

[10] S. J. Young and E. R. Scheinerman, “Random dot product graph models
for social networks,” in Algorithms and Models for the Web-Graph,
Anthony Bonato and Fan R. K. Chung, Eds., Berlin, Heidelberg, 2007,
pp. 138–149, Springer Berlin Heidelberg.

[11] A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T.
Vogelstein, K. Levin, V. Lyzinski, and Y. Qin, “Statistical inference
on random dot product graphs: A survey,” J. Mach. Learn. Res., vol.
18, no. 1, pp. 8393–8484, Jan. 2017.

[12] C. Kirch and J. Tadjuidje Kamgaing, “On the use of estimating functions
in monitoring time series for change points,” J. Stat. Plan. Inference,
vol. 161, pp. 25 – 49, 2015.

[13] P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space approaches
to social network analysis,” J. Am. Stat. Assoc., vol. 97, no. 460, pp.
1090–1098, 2002.

[14] P. Rubin-Delanchy, J. Cape, M. Tang, and C. E. Priebe, “A statistical in-
terpretation of spectral embedding: The generalised random dot product
graph,” arXiv:1709.05506 [stat.ML], 2017.

[15] E.R. Scheinerman and K. Tucker, “Modeling graphs using dot product
representations,” Comput. Stat, vol. 25, pp. 1–16, 2010.

[16] M. Zhu and A. Ghodsi, “Automatic dimensionality selection from the
scree plot via the use of profile likelihood,” Comput Stat Data Anal,
vol. 51, no. 2, pp. 918 – 930, 2006.

[17] R. Tang, M. Ketcha, A. Badea, E. D. Calabrese, D. S. Margulies, J. T.
Vogelstein, C. E. Priebe, and D. L. Sussman, “Connectome smoothing
via low-rank approximations,” IEEE Trans. Med. Imaging, vol. 38, no.
6, pp. 1446–1456, 2018.

[18] C. Kirch and S. Weber, “Modified sequential change point procedures
based on estimating functions,” Electron. J. Statist., vol. 12, no. 1, pp.
1579 – 1613, 2018.

[19] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan statistics
on Enron graphs,” Computational & Mathematical Organization Theory,
vol. 11, no. 3, pp. 229–247, 2005.

[20] O. H. M. Padilla, Y. Yu, and C. E. Priebe, “Change point localization
in dependent dynamic nonparametric random dot product graphs,”
arXiv:1911.07494 [stat.ME], 2019.

[21] “Enron, Blockbuster Partner For Movie Mania,” https://www.forbes.
com/2000/07/20/mu4.html?sh=11e6b41a3541, Accessed: 2021-04-29.

[22] A. G. Marques, S. Segarra, and G. Mateos, “Signal processing on
directed graphs,” IEEE Signal Process Mag., vol. 37, no. 6, pp. 99–
116, 2020.

1524

