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Problem statement

• Given: Stream of undirected graph observations

. . .

• Model: Random Dot Product Graph (RDPG) [Athreya et al. 2018]
• Goal : Detect in an online fashion when the underlying model changed

Contributions and impact
⇒ Marry sequential chage-point detection with graph representation learning
⇒ Explainable algorithm for (pseudo) real-time network monitoring
⇒ Guaranteed error-rate control, detection delay analysis
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Random Dot Product Graphs (RDPGs)

• Node i has associated latent vector xi ∈ Rd

• Edge (i , j) exists with probability Pij = x>
i xj

• Notation:
⇒ n: number of nodes in all graphs
⇒ A ∈ {0, 1}n×n: adjacency matrix - hollow, symmetric
⇒ X = [x1, . . . , xn]> ∈ Rn×d : latent positions matrix
⇒ P = XX> ∈ Rn×n: matrix of edge probabilities

• Model is invariant to rotations in X
⇒ P = XX> = XW(XW)> for any orthogonal W

• Expressive model, SBM a special case of RDPG

• Q: Given a graph A, how do we estimate the latent positions X?
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Adjacency Spectral Embedding

Marenco, Bermolen, Fiori, Larroca, Mateos Online Change Point Detection for Random Dot Product Graphs 4 / 8



Training phase

• Idea: Estimating function approach [Kirch and Tadjuidje Kamgaing 2015]
• Training set of m “clean” graphs with no change-point
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Operational phase
• Sequentially observe matrices A[m + 1], A[m + 2], . . .

• Monitor the cumulative sum S[m, k] =
m+k∑

t=m+1

(
X̂X̂> − A[t]

)
Proposition: For large k, Γ[m, k] := ‖S[m, k]‖2 has a generalized
chi-squared distribution.
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• Lightweight: O(n2) memory storage and computational complexity
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Wireless network monitoring

• Extended RDPG to handle weighted, directed networks
• Real network of Wi-Fi APs. Hourly RSSI measurements for n = 6 nodes

⇒ Ground-truth from network admin: AP 4 was moved on 10/30
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• Explainability via interpretable ASE ⇒ Identify source of change
• Reproducibility ⇒ Try it @ https://github.com/git-artes/cpd_rdpg
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