Online Change Point Detection for Random Dot Product Graphs

Bernardo Marenco¹, Paola Bermolen¹, Marcelo Fiori¹, Federico Larroca¹, and Gonzalo Mateos²

¹Facultad de Ingeniería, Universidad de la República, Uruguay

²Dept. of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.

Asilomar Conference on Signals, Systems, and Computers Oct. 31st - Nov. 3rd, 2021

Problem statement

• Given: Stream of undirected graph observations

- Model: Random Dot Product Graph (RDPG) [Athreya et al. 2018]
- Goal : Detect in an online fashion when the underlying model changed

Contributions and impact

- \Rightarrow Marry sequential chage-point detection with graph representation learning
- \Rightarrow Explainable algorithm for (pseudo) real-time network monitoring
- \Rightarrow Guaranteed error-rate control, detection delay analysis

Random Dot Product Graphs (RDPGs)

- Node *i* has associated latent vector $\mathbf{x}_i \in \mathbb{R}^d$
- Edge (i, j) exists with probability $P_{ij} = \mathbf{x}_i^\top \mathbf{x}_j$
- Notation:

 $\Rightarrow n: \text{ number of nodes in all graphs} \\\Rightarrow \mathbf{A} \in \{0, 1\}^{n \times n}: \text{ adjacency matrix - hollow, symmetric} \\\Rightarrow \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\top \in \mathbb{R}^{n \times d}: \text{ latent positions matrix} \\\Rightarrow \mathbf{P} = \mathbf{X} \mathbf{X}^\top \in \mathbb{R}^{n \times n}: \text{ matrix of edge probabilities} \end{cases}$

- Model is invariant to rotations in X
 ⇒ P = XX^T = XW(XW)^T for any orthogonal W
- Expressive model, SBM a special case of RDPG

• Q: Given a graph A, how do we estimate the latent positions X?

Adjacency Spectral Embedding

Training phase

- Idea: Estimating function approach [Kirch and Tadjuidje Kamgaing 2015]
- Training set of *m* "clean" graphs with no change-point

Operational phase

- Sequentially observe matrices A[m+1], A[m+2], ...
- Monitor the cumulative sum $\mathbf{S}[m,k] = \sum_{t=m+1}^{m+k} \left(\hat{\mathbf{X}} \hat{\mathbf{X}}^{\top} \mathbf{A}[t] \right)$

Proposition: For large k, $[m, k] := ||\mathbf{S}[m, k]||^2$ has a generalized chi-squared distribution.

• Lightweight: $O(n^2)$ memory storage and computational complexity

Marenco, Bermolen, Fiori, Larroca, Mateos

Wireless network monitoring

- Extended RDPG to handle weighted, directed networks
- Real network of Wi-Fi APs. Hourly RSSI measurements for n = 6 nodes \Rightarrow Ground-truth from network admin: *AP 4 was moved on 10/30*

- Explainability via interpretable ASE ⇒ Identify source of change

References

Athreya, Avanti et al. (2018). "Statistical Inference on Random Dot Product Graphs: a Survey". In: Journal of Machine Learning Research 18.226, pp. 1–92. URL: http://jmlr.org/papers/v18/17-448.html.

Kirch, C. and J. Tadjuidje Kamgaing (2015). "On the use of estimating functions in monitoring time series for change points". In: *Journal of Statistical Planning and Inference* 161, pp. 25–49. ISSN: 0378-3758.