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Changes in memberships
Update

Problem statement

» Given: Stream of graph observations

Adjacency Spectral Embedding

P —XX' » Alternative approach: SVD

decomposition using [3]

» Limitation: Does not preserve alignment. Larger
estimation error

» Setup: |Initially, two-community SBM with 200
nodes. At each timestep, one random node’s
community assignment is changed

f(tatt:T

Gradient Descent

» Model: Random Dot Product Graph (RDPG) [1]

o [Brand '06]

» Goal: Efficiently track nodes latent positions
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Contributions and impact:

0.251

= Track representation for dynamic graphs

= Scalable and fast computation of nodal
representations
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Xtatt:&

Gradient Descent

= Embedding dynamic networks with varying

Brand '06
number of nodes | |

Estimate X via LS regression: X g = argminy ||[XXT — A||%Z = X5 = QAY/?

i
1!0

Q: Scalability for large graphs? Streaming settings for dynamic graphs? Missing data in A?
Gradient descent (GD) approach: Estimate X, ; = X; — aV f(X;) with f(X) = [[M o (A — XX ")||%
Mask matrix M := 11" — I accounts for all-zero diagonal of A

* Node ¢+ = 1,...,n has associated latent vector

X; € R R
Edge (i, j) exists with probability P;; = x| x; Convergence: if X is close to the solution, the iteration converges with linear rate to X5 [2]

Notation;

Node addition and deletion

+ Project to subspace spanned by columns of X,
then run GD

» Alternative approach: Compute out-of-sample
extension [4]

- A €{0,1}"*™: adjacency matrix
- X = [x1,...,%x,]" € R**¢4
- P=XX" e R™"

Real data

» Dataset of yearly football matches between national teams [5]

 Australia played in the Oceania Football Confederation until 2005, when it joined the Asian Football
Confederation

Model is invariant to rotations in X:
P=XX'"=XW(XW)' foranyorthogonal W
Expressive model, SBM a special case of RDPG

 Limitation: Larger estimation error

X at year 1993 X at year 2004 X at year 2015
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