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Abstract—Given a sequence of possibly correlated randomly
generated graphs, we address the problem of detecting changes
on their underlying distribution. To this end, we will consider
Random Dot Product Graphs (RDPGs), a simple yet rich family
of random graphs that subsume Erdös-Rényi and Stochastic
Block Model ensembles as particular cases. In RDPGs each
node has an associated latent vector and inner products between
these vectors dictate the edge existence probabilities. Previous
works have mostly focused on the undirected and unweighted
graph case, a gap we aim to close here. We first extend the
RDPG model to accommodate directed and weighted graphs,
a contribution whose interest transcends change-point detection
(CPD). A statistic derived from the nodes’ estimated latent vec-
tors (i.e., embeddings) facilitates adoption of scalable geometric
CPD techniques. The resulting algorithm yields interpretable
results and facilitates pinpointing which (and when) nodes are
acting differently. Numerical tests on simulated data as well as
on a real dataset of graphs stemming from a Wi-Fi network
corroborate the effectiveness of the proposed CPD method.

Index Terms—Change-point detection, graph representation
learning, node embeddings, wireless networks.

I. INTRODUCTION

Consider the problem of remotely managing a Wi-Fi net-
work. Once the network is installed, it is not uncommon to
experience unforeseen interference – Access Points (APs) are
moved without authorization or even that the surroundings
change. Instead of waiting for the users to report problems,
a proactive monitoring approach would analyze the time-
series of acquired power measurement between APs (typically
available in all large-scale deployments) looking for persistent
changes in the mean. However, for a network with n APs there
may be up to n(n− 1) time-series to analyze, which may not
be practical even for modest values of n [1]. Furthermore, an-
alyzing each time-series separately does not take into account
the underlying structure of the data, namely spatial correlations
naturally modeled via a weighted and directed graph.

This wireless network monitoring problem exemplifies the
usefulness of statistical analysis of dynamic graphs, in particu-
lar detecting changes on the underlying distribution generating
said networks. Further applications include the analysis of
functional brain networks [2], social networks [3], and neu-
ronal activity [4], just to name a few. There exists basically
two approaches to addressing change-point detection (CPD)
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in dynamic graphs. The first one is to extract a vector rep-
resentation from each graph and apply standard (geometric)
CPD algorithms on the resulting time-series [5]. However,
applicability of these techniques may be hindered by the often
limited interpretability and potential loss of information of the
embedding, as well as due to a lack of theoretical guarantees.

The second approach to CPD in graphs, and the one we
explore here, is to resort to probabilistic generative models, for
which theoretically-sound results may be derived. Although
classic ensembles such as Erdös-Rényi (ER) or Stochastic
Block Models (SBM) have been used in the past [6], we
resort to the more general Random Dot Product Graph (RDPG)
model [7], [8]. In RDPGs each node has an associated latent
vector in Rd, and the probability of a pair of nodes having an
edge is simply the inner product between the corresponding
vectors. Even though these vectors may be interpreted as node
embeddings, they are directly related to the generative process,
and are not an (arbitrary) summary of graph structure (as in
traditional graph representation learning). As we discuss in
the next section, RDPGs capture phenomena commonly en-
countered with real-world graphs (e.g., statistical dependencies
among edges) and subsume both ER and SBM as special cases,
while still being amenable to analysis. Moreover, RDPGs
offer interpretability, an attractive feature that simplifies the
explanation of the detected change-points.

Our main contribution is to extend the vanilla RDPG model
for undirected and unweighted graphs [4], [7] and adapt it to
perform CPD on directed and weighted networks (Sec. III).
Extensions to directed graphs are relatively straightforward
(Sec. II-B), but we carefully study those ambiguities inherent
to the model (not discussed in previous work) which may
challenge downstream CPD methods. Our extension of RDPGs
to the weighted case (Sec. II-C) is totally new, and unlike
previous efforts in this direction [9], [10], our non-parametric
approach does not require a priori specification of the weights’
distribution to perform inference and estimation. We believe
this contribution has value on its own, and beyond CPD it can
e.g., impact graph classification and visualization of networks.

II. RANDOM DOT PRODUCT GRAPHS

A. Vanilla RDPG

Let G = (V,E) denote an unweighted and undirected graph,
where V = {1, . . . , n} are the nodes and E ⊆ V × V are
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the edges. In the RDPG model each node i ∈ V has an
associated column vector xi ∈ X ⊂ Rd, and edge (i, j) exists
with probability xTi xj (a particular case of the latent space
model [11]). The geometric interpretation is that nodes with
large ‖xi‖ tend to have higher connectivity, whereas a small
angle between xi and xj indicates higher “affinity”. Note that
the set X of possible xi is such that xTy ∈ [0, 1]∀x,y ∈ X .
In turn, vectors xi may be random with distribution F (x),
where F (x) = 0∀x /∈ X .

Thus, letting A ∈ {0, 1}n×n be the symmetric adjacency
matrix of G and X = [x1, . . . ,xn]T ∈ Rn×d, the RDPG
model specifies

P
(
A
∣∣X) =

∏
i<j

(xTi xj)
Aij (1− xTi xj)

1−Aij . (1)

That is, given X, edges are conditionally independent with
Aij ∼ Ber(xTi xj). For instance, if xi =

√
(p/d)1 ∀ i,

we obtain an ER graph with edge probability p. Correlation
between edges is induced by the choice of the possible vectors
xi and the hierarchical nature of the model. For instance, an
SBM with M communities may be generated by restricting X
to having only (at most) M different columns (i.e. |X | = M ).
Several additional examples are discussed in [8].

Given a graph stemming from an RDPG with adjacency
matrix A, we now discuss how to estimate the matrix X. The
key intuition is that A is a noisy observation of

P = XXT , (2)

the matrix of connections probabilities, since E [A] = P. We
thus adopt the estimator X̂ = argminX ‖A −XXT ‖2F , s. to
rank(X) = d. The solution is readily given by

X̂ = Q̂Λ̂
1/2
, (3)

where A = QΛQT is the spectral decomposition of A,
Λ̂ ∈ Rd×d is a diagonal matrix with the d largest eigenvalues,
and Q̂ ∈ Rn×d are the corresponding d dominant eigenvectors.
We are assuming that Λ̂ has only non-negative values, a
limitation that may be easily circumvented [12]. In practice,
d is likely unknown but can be estimated by looking for
“elbows” on the so-termed scree plot (an ordered plot of
the eigenvalues) [13]. Estimator (3) defines the so-called
Adjacency Spectral Embedding (ASE), which approaches the
actual X as n→∞ provided the true d is chosen [8].

An important aspect of the RDPG model is that, by defi-
nition, it is invariant to rotations of X. To see this, consider
an orthogonal matrix W ∈ Rd×d, and note that the rotated
vectors XW will produce the same probability matrix as in
(2) because XW(XW)T = XWWTX = XXT = P. This
implies the estimator (3) is unbiased up to an unknown rotation
matrix W, and the ambiguity should be accounted for when
detecting changes on the graph’s distribution.

B. Directed RDPG

As defined before, the RDPG model is only suitable for
undirected graphs. Indeed, XXT = P is always symmetric.
Directed graphs require an adaptation to the model [14], where

each node i ∈ V has an associated column vector xi – now in
R2d. Let us denote by xli and xri the first and last d coordinates
of xi respectively, and by Xl,Xr ∈ Rn×d the matrices stack-
ing the transposed nodal vectors as their rows. Analogously
to the vanilla case we define the directed RDPG (D-RDPG)
model as P

(
A
∣∣X) =

∏
i 6=j [(x

l
i)
Txrj ]

Aij [1 − (xli)
Txrj ]

1−Aij

[cf. the product over all i 6= j here versus i < j in (1)], and
the probability matrix is now

P = Xl(Xr)T . (4)

We thus basically have two vectors per node, where xli models
node i’s outgoing connectivity and xri its incoming one [as the
probability of existence of the directed link (i, j) is given by
(xli)

Txrj ].
Note that the rotational ambiguity is still present; i.e., given

an orthogonal matrix W ∈ Rd×d, the rotated vectors XlW
and XrW produce the same P. However, the ambiguity is
exacerbated in this case, and any invertible matrix W will
produce the same P. To see this, consider XlW and XrW−T

and note that XlW(XrW−T )T = XlWW−1(Xr)T =
Xl(Xr)T = P.

Thus, as stated the D-RDPG model in (4) will be extremely
difficult to interpret, particularly when comparing two graphs
and their corresponding embeddings. In order to have roughly
the same level of ambiguity as in the vanilla RDPG case,
we will require that the d columns of both Xl and Xr are
orthogonal vectors (i.e. (Xl)TXl and (Xr)TXr are d × d
diagonal matrices). This extra requirement does not constrain
the expressiveness of the model (matrix P is still of rank d),
but it does limit the ambiguity introduced by W.

All in all, we are left with the same rotation ambiguity as
in the vanilla RDPG, in addition to a scaling one. To see this,
consider a diagonal matrix diag(α) with non-zero entries and
W an orthogonal matrix. Then it follows that XlWdiag(α)
and XrWdiag(α)−1 (which still have orthogonal columns)
will produce the same P as (4). Consequently, comparing the
magnitude of xli with that of xri is meaningless. This scaling
ambiguity, which to the best of our knowledge was overlooked
before, will challenge CPD if one is interested in the behavior
in a single direction (either incoming or outgoing). This is an
interesting extension we will leave for future work.

Let us now discuss how to estimate the matrices Xl and
Xr. Since P = E [A] still holds, we will again look for the
pair {X̂l, X̂r} having orthogonal columns such that X̂l(X̂r)T

is the best rank-d approximant of A. Letting A = UDVT be
the singular-value decomposition of A, we set

X̂l = ÛD̂1/2 and X̂r = V̂D̂1/2. (5)

Note that (5) satisfies the required orthogonality constraint.
The choice in terms of scaling and counterscaling of columns
is clearly arbitrary. Using D̂1/2 simply assumes that edges are
equally generated by the outgoing and incoming connectivity
of the nodes. We may have multiplied and divided each entry
in D̂ by the same non-zero value and used the resulting
decomposition instead.
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C. Weighted RDPG

We now discuss how to extend the RDPG to the weighted
case. Let us then define a positive weight for each edge (i.e., a
map w : E 7→ R+), where the absence of an edge is encoded
as 0. Naturally, an unweighted graph is a particular case of a
weighted graph where weights are either 0 or 1.

Two previous works have proposed adaptations of the
RDPG to the weighted case [9], [10], both of which are
basically identical and we outline now. Assume that the
weights are generated from a given parametric distribu-
tion Gθ(w) (with θ ∈ RM , for instance θ = λ for
a Poisson distribution). Each node i now has M vectors
xi[m] ∈ Rdm (m = 1, . . . ,M ) such that the weight wij
between nodes i and j is random with parametric distribution
G(xT

i [1]xj [1],...,xT
i [M ]xj [M ])(wij), independently of all other

edges. One recovers the vanilla RDPG by considering a Ber(θ)
distribution.

This extension has several drawbacks. For starters, all edges
are required to have the same weight distribution, albeit
with different parameters. This limitation may be partially
overcome by considering a mixture distribution. However, and
limiting even more its applicability, Gθ(w) has to be chosen
a priori. So if edges have different weight distributions, we
would have to know how many of them have each distribution
before proceeding to inference.

We propose instead that the sequence of vectors associated
to each node is related to the moment generating function of
the weight distribution. In particular, each node has a sequence
of column vectors xi[m] ∈ Rdm (for m ∈ N+), and the (now
non-parametric) weight distribution G(wij) is such that

E
[
etwij

]
=

∞∑
m=0

tmE
[
wmij
]

m!
= 1 +

∞∑
m=1

tmxTi [m]xj [m]

m!
.

(6)

In words, we model the m-th order statistic of the weight wij
between nodes i and j via the inner product xi[m]Txj [m].
One can recover the vanilla RDPG by setting xi[m] = xi ∀m,
where xi is the vector associated to node i on the vanilla case.
Moreover, vectors xi[m] are estimable as in the vanilla case,
as an ASE of the matrix A(m) = [wmij ] provides an unbiased
estimator of the matrix X[m].

To illustrate the discriminative power of this novel embed-
ding, we consider a weighted SBM graph, where edges exist
with fixed probability p = 0.5, but weights are Gaussian
with mean µ = 5 and standard deviation σ = 0.1 for all
edges except between a group of nodes where the distribution
is Poisson with parameter λ = 5 (meaning that weights
have the same mean). The vectors x̂[m] corresponding to
the ASE for m = 1, 2, 3 and dm = 2 are shown in Fig.
1. Note how the nodes are indistinguishable for m = 1.
Indeed, the x̂i[1] vectors are, as expected, centered around
(
√
µp, 0) = (

√
λp, 0) ≈ (1.58, 0) corresponding to the mean

weight. For m = 2 the vectors are now centered around
(
√
p(µ2 + σ2), 0) ≈ (3.5, 0) and (

√
p(λ2 + λ), 0) ≈ (3.9, 0).

However, the noise corrupting the estimates hinders the ability
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Fig. 1. ASE embedding of A(m) for the case with Gaussian and Poisson-
distributed weights for dm = 2 and m = 1 (left), 2 (center), and 3 (right).
Nodes with different weight distributions are only revealed for m = 3.

to distinguish both distributions. For m = 3, where the
skewness of the distribution comes into play, nodes are clearly
separated into two groups.

III. CHANGE-POINT DETECTION

A. CPD for Vanilla RDPG

Let us now consider a sequence of adjacency matrices
At ∈ {0, 1}n×n, t = 1, . . . , T , generated by a vanilla RDPG.
The goal is to detect changes on the underlying distribution
of At. In this context, and under mild conditions, this is
equivalent to detecting changes on the distribution of the
vectors (xi)t [4]. We have then that for a given t, each
vector is random with a certain distribution (F (x))t, where
(F (x))t = (F (x))t+1 except when t+1 constitutes a change-
point. Furthermore, vectors are not necessarily re-drawn at
each time-step (unless, naturally, it is a change-point), thus
inducing temporal correlation.

A first CPD approach would be to estimate the matrices X̂t,
and try to detect changes on the estimated vectors’ distribution.
However, the rotational ambiguity we have discussed in Sec.
II implies the embeddings are not necessarily aligned for
different values of t. As a workaround one could attempt to
solve a so-called Procrustes problem, but as T increases this
alignment method may represent an insurmountable computa-
tional burden.

The alternative is to consider a proxy to the vectors (xi)t
that is unambiguous. In particular, the matrix Ŷt = X̂tX̂

T
t

(i.e., the estimated expected value of the adjacency matrix) is
clearly invariant to rotations of the vectors. Furthermore, and
as discussed in [4], it is not necessary to consider the whole
matrix, but only entries that do not share nodes (for instance,
those corresponding to indices (i, j) ∈ O = {(i, i+n/2)∀i =
1, . . . , n/2}), thus resulting in n/2 independent observations
for each t. This simplifies proving consistency of the resulting
CPD algorithm without sacrificing statistical accuracy, all
while avoiding unnecessary computational burden.

All in all, for each t = 1, . . . , T we now have a set
of n/2 i.i.d. random variables (the entries i, j of Ŷt for
(i, j) ∈ O), and we would like to detect at what values of t
(if any) does the underlying distribution change. We are thus
facing a standard CPD problem, for which several algorithms
exist [15]. In particular, for the experiments of Sec. IV we will
use a variation of the CUSUM algorithm of [4].

B. CPD for Directed RDPG

In the D-RDPG case we have that Pt = Xl
t(X

r
t )
T for

t = 1, . . . , T . Recall that on top of the rotational ambiguity,
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we also have a column scaling-counterscaling indeterminacy
on the factor matrices. Moreover, we have to estimate two
matrices per time-step so if aligning X̂t was challenging in
the vanilla RDPG case, in the directive case the challenges are
compounded.

We thus proceed as before and consider Ŷt = X̂l
t(X̂

r
t )
T .

Assuming the outgoing behavior of nodes is independent of
the incoming one (i.e., the first d entries of (xi)t ∈ R2×d are
independent of the last d ones), we may also sample entries
(i, j) ∈ O′ = {(j + n/2, j)∀j = 1, . . . , n/2} (in addition to
those in O).

C. CPD for Weighted RDPG

In the weighted case, a naive idea would be to consider the
matrices Ŷt[m] = X̂t[m]X̂T

t [m] (or the directed counterpart
if needed) and run a standard CPD algorithm for each m
separately. However, recall from the example in Sec. II-C
that as m increases, Ŷ[m] incorporates more features from
the underlying weights’ distribution. In general, the particular
application will dictate which values of m would be most
informative. For instance, if we only care about connectivity
and mean weights, then m = 1 suffices. If we are interested in
detecting more fine-grained changes in the distribution, then
we would consider higher values of m.

Considering several values of m would only be useful to
detect particular changes that produce the same m-th moment.
Going back to the example in Sec. II-C, we would not detect
any changes by considering only Ŷ[1] if p is halved while
λ and µ are doubled at the same t, which may be remedied
by additionally considering Ŷ[2]. In our simulations we will
consider a single m (thus ignoring this kind of situations), but
it is an interesting problem to characterize for which scenarios
it is necessary to consider several values of m and how to
efficiently combine the resulting matrices Ŷ[m].

IV. NUMERICAL TESTS

Let us now present some numerical examples. In particular,
we have adapted the CPD algorithm described in [4]. Our code
is available at https://github.com/git-artes/cpd rdpg.
Simulated data. We begin by considering a sequence of
T = 110 simulated graphs generated by a weighted and
directed SBM. In particular, assume two blocks (each of size
50 nodes) with community connection probabilities equal to
Q =

(
0.5 0.3
0.3 0.03

)
. The weights are Gaussian until t = 80,

when the weights from community 2 to community 1 become
Poisson. The mean weight is 5.0 until t = 30, when the
mean weight from community 1 to 2 becomes 3.0. Finally,
the standard deviation is equal to 0.1, until t = 50 when it
becomes

√
5 for the weights from community 2 to 1. Note

that this last change is such that at t = 80 the mean and the
standard deviation remain constant.

Fig. 2 shows the corresponding Ŷt[4] for the entries (i, j) ∈
O. As expected, the most challenging change-point is at
t = 80, which the algorithm detects but with an offset in
the localization (see the vertical dashed line at t = 76). All
other change points are perfectly detected and localized.

0 20 40 60 80 100
0

500

1000

1500

Fig. 2. The evolution of Ŷt[4] for entries (i, j) ∈ O in the directed and
weighted SBM example. The background color indicates the real change-
points and the vertical lines the estimation.

Given the scarcity of generative models for weighted graphs,
the most common alternative when using probabilistic methods
to perform CPD is to apply a threshold th to the weights
and fall back to the unweighted case. This threshold may
be simply th = 0 as in [6], which would detect changes
on the connection probability only (none in this example).
Positive values of this threshold are naturally possible, but
would detect changes on the weight’s CDF evaluated at th
(i.e. on G(th)) which is not very informative, and adds the
problem of choosing the value(s) of th (more on this below).

On the other hand, our approach detects changes on several
moments of the weight’s distribution depending on the choice
of m. The next example illustrates how lower values of
m may be interesting for certain applications and how the
interpretability of the RDPG models (as opposed to methods
such as those proposed in [5]) may be further leveraged.
Real data. Received Signal Strength Indicator (RSSI) mea-
surements between APs on a school are obtained from the
dataset described in [16]. In this particular example we con-
sidered a network consisting of n = 6 APs, with measure-
ments collected hourly during almost four weeks, spanning
from 10/17/2018 to 11/13/2018 (corresponding to T = 655
graphs) where the AP corresponding to node 3 was moved
on 10/30/2018. As RSSI is measured in dBm (and are neg-
ative), we have first added an offset of 91 to all weights
so that they become positive (as −90 dBm is the smallest
RSSI measurement in this case) and that larger values still
mean “stronger” edges. We have thus a directed (as power
measurements between APs are not necessarily symmetric)
and weighted graph.

We are interested in connectivity and mean values, so we
focus on m = 1. The values of Ŷt[1] for entries (i, j) ∈ O
are shown in Fig. 3. Note that we are using only samples
in O since for this application it is not prudent to assume
independence among the incoming and outgoing behaviours.
Fig. 3 shows a noticeable change-point at t = 310, which is
correctly detected and localized by the algorithm. This point
corresponds to around noon of 10/30/2018, which verifies the
correctness of our method. As we discussed before, using a
threshold to perform CPD in this case only yields reasonable
results for specific values of th; see Fig. 3.

In addition to CPD, a valuable feature of RDPG and
its variants is their easy interpretability. To illustrate this
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Fig. 3. The evolution of Ŷt[1] for entries (i, j) ∈ O in the RSSI graph. The
background color indicates the change-point estimated through our embedding
and the vertical lines by applying different thresholds th to the graph.
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Fig. 4. X̂l
1 and X̂l

2 on the left and X̂r
1 and X̂r

2 on the right (for d = 2, latent
vectors corresponding to Ā1 and Ā2 respectively). Vectors corresponding to
the same node are joined by an arrow. |xl

3|, |xl
4|, |xr

3| and |xr
4| increase after

the change-point.

attribute, let us average all adjacency matrices for t ∈ [0, 309]
and t ∈ [310, 654], resulting in matrices Ā1 and Ā2, and
analyze the resulting latent positions. In order to avoid the
rotation ambiguities, we have used the so-called Omnibus
Embedding [17], which in this case amounts to performing
ASE to M =

( Ā1 (Ā1+Ā2)/2

(Ā1+Ā2)/2 Ā2

)
. This approach is only

practical when jointly embedding a few adjacency matrices
(two here), as the size of M increases rapidly with the
number of matrices considered. The resulting vectors (d = 2)
are depicted in Fig. 4, where an arrow shows the changes
between the embeddings of Ā1 and Ā2. Notice how the largest
changes, particularly on the outgoing behaviour, correspond to
nodes 4 and (to a lesser extent) 3. Since xl3 and xr4 (as well
as xl4 and xr3) are aligned and both increase their magnitude
(differently to node 2), an increase in the mean weight between
these two nodes is the main reason behind the change-point.
The scaling ambiguity we discussed in Sec. II-C obscures
which of the two APs was actually moved.

V. CONCLUSIONS AND FUTURE WORK

We have presented a generative model based CPD algorithm
for weighted and directed graphs. In particular, we have
considered the Random Dot Product Graph model, which was
originally proposed for unweighted and undirected graphs.
We have thus presented how to extend the model to directed
and weighted graphs. Although the extension to directed
graphs was studied before (here we take a closer look at
model identifiability), our generalization to weighted graphs
is more general and useful than previous proposals, and thus
it represents a significant contribution beyond CPD.

There are several important extensions still worth investi-
gating. For instance, it would be interesting to consider the
case when the number of nodes changes over time. Since the
distribution of the vectors is affected by n (larger values of
n produce estimates x̂i with less variance), the techniques
we presented here may not be applied as is [18]. Another
interesting extension would be to detect changes only on a
certain direction (outgoing or incoming connections) while
taking into account the scaling ambiguity we presented.
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