

Change Point Detection in Weighted and Directed Random Dot Product Graphs

Federico Larroca*, Paola Bermolen*, Marcelo Fiori* and Gonzalo Mateos[†]

*Facultad de Ingeniería, Universidad de la República, Uruguay [†]Dept. of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

Introduction

Detecting changes on a sequence of random graphs has many applications:

- Social networks
- Neuronal activity
- Wireless network monitoring

Introduction

Detecting changes on a sequence of random graphs has many applications:

- Social networks
- Neuronal activity
- Wireless network monitoring
- Two possible approaches:
 - 1. Embedding-based: limited interpretability and lack of theoretical guarantees
 - 2. Probabilistic generative models: theoretically sound results but lack of generality of classic models (e.g. ER or SBM)

Introduction

Detecting changes on a sequence of random graphs has many applications:

- Social networks
- Neuronal activity
- Wireless network monitoring
- Two possible approaches:
 - 1. Embedding-based: limited interpretability and lack of theoretical guarantees
 - 2. Probabilistic generative models: theoretically sound results but lack of generality of classic models (e.g. ER or SBM)
- We resort to the very versatile Random Dot-Product Graph (RDPG) model:
 - Each node *i* has an associated vector $\mathbf{x}_i \in \mathbb{R}^d$
 - A link exists between nodes *i* and *j* with probability $\mathbf{x}_i^T \mathbf{x}_j$
 - Attention: rotation ambiguity

RDPG: intuition

Vectors may be estimated by spectral decomposition of the adjacency matrix
Example: the Zachary's Karate Club graph

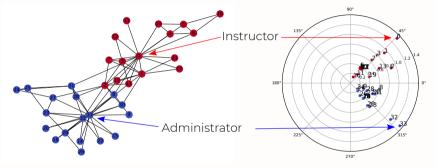


Figure: Zachary's Karate Club graph and its resulting \mathbf{x}_i for d = 2.

Intuition: larger vectors tend to be more connected and angle between vectors indicate affinity

Weighted graphs?

■ We propose to extend the RDPG model to the weighted case ■ Assume weights $\omega_{i,j}$ are independently drawn from distributions with $\sum_{i=1}^{\infty} t^m \mathbb{E}[\omega_{ij}^m]$

moment-generating function $M_{\omega_{i,j}}(t) = \mathbb{E}[e^{t\omega_{i,j}}] = \sum_{j=1}^{\infty} \frac{t^m \mathbb{E}[\omega_{i,j}^m]}{m!}$

■ Weighted RDPG: Each node has a sequence of vectors $\mathbf{x}_i[m] \in \mathbb{R}^{d_m}$ where $\mathbb{E}[\omega_{i,j}^m] = \mathbf{x}_i[m]^T \mathbf{x}_j[m]$

• Vanilla RDPG is recovered by setting $\mathbf{x}_i[m] = \mathbf{x}_i \forall m$

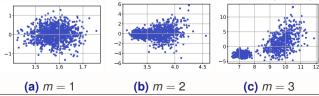
Weighted graphs?

- We propose to extend the RDPG model to the weighted case
- Assume weights $\omega_{i,j}$ are independently drawn from distributions with

moment-generating function $M_{\omega_{i,j}}(t) = \mathbb{E}[e^{t\omega_{i,j}}] = \sum_{j=1}^{\infty} \frac{t^m \mathbb{E}[\omega_{i,j}^m]}{m!}$

■ Weighted RDPG: Each node has a sequence of vectors $\mathbf{x}_i[m] \in \mathbb{R}^{d_m}$ where $\mathbb{E}[\omega_{i,j}^m] = \mathbf{x}_i[m]^T \mathbf{x}_j[m]$

- Vanilla RDPG is recovered by setting $\mathbf{x}_i[m] = \mathbf{x}_i \forall m$
- Vectors $\mathbf{x}_i[m]$ may be estimated as in the RDPG case by considering $\mathbf{A}^{(m)} = [\omega_{i,j}^m]$
- Example: weighted SBM with p = 0.5 and weights $N(\mu = 5, \sigma = 0.1)$ except between a group of nodes where the distribution is $Poisson(\lambda = 5)$



Application: Change-Point Detection

- Due to the rotation ambiguity, vectors x_i[m] cannot be used directly to detect changes:
 - Use the entries of $\hat{\mathbf{Y}}[m] = \hat{\mathbf{X}}[m]\hat{\mathbf{X}}[m]^T$ instead (in particular, the entries that do not share nodes such as $(i, j) \in \mathcal{O} = \{(i, i + n/2) \forall i = 1, ..., n/2\}$)

Application: Change-Point Detection

- Due to the rotation ambiguity, vectors x_i[m] cannot be used directly to detect changes:
 - Use the entries of Ŷ[m] = X̂[m] X̂[m]^T instead (in particular, the entries that do not share nodes such as (i, j) ∈ O = {(i, i + n/2) ∀i = 1,...,n/2})
- Example: Wi-Fi network with n = 6 APs, with measurements collected hourly during almost four weeks, where an AP was moved at $t \approx 310$

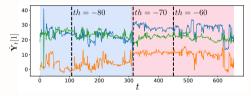


Figure: The evolution of $\hat{\mathbf{Y}}_t[1]$ for entries $(i, j) \in \mathcal{O}$ in the RSSI graph. The background color indicates the change-point estimated through our method and the vertical lines by applying different thresholds *th* to the graph.

