

Algorithmic Advances for the Adjacency Spectral Embedding

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.hajim.rochester.edu/ece/sites/gmateos

Co-authors: M. Fiori, B. Marenco, F. Larroca, and P. Bermolen
Acknowledgment: NSF Awards CCF-1750428, CCF-1934962 and ECCS-1809356

EUSIPCO 2022, Belgrade, Serbia August 30, 2022

Classical random graph models

- ightharpoonup Simplest model is the Erdös-Renyi (ER) random graph model $G_{N_v,p}$
 - \Rightarrow Undirected graph N_{ν} vertices, edges present w.p. p, independently

Classical random graph models

- ightharpoonup Simplest model is the Erdös-Renyi (ER) random graph model $G_{N_v,p}$
 - \Rightarrow Undirected graph N_{ν} vertices, edges present w.p. p, independently
- ightharpoonup Stochastic block models (SBMs) explicitly parameterize the notion of communities C_1, \ldots, C_Q
 - \Rightarrow Nodes assigned to \mathcal{C}_q w.p. α_q , connection rates π_{qr} of vertices between/within groups

Classical random graph models

- ▶ Simplest model is the Erdös-Renyi (ER) random graph model $G_{N_v,p}$
 - \Rightarrow Undirected graph N_{ν} vertices, edges present w.p. p, independently
- \triangleright Stochastic block models (SBMs) explicitly parameterize the notion of communities $\mathcal{C}_1, \dots, \mathcal{C}_Q$
 - \Rightarrow Nodes assigned to C_q w.p. α_q , connection rates π_{qr} of vertices between/within groups

Mixtures of Erdős-Rényi models can be surprisingly flexible

Random dot product graphs

▶ Consider a latent space $\mathcal{X}_d \subset \mathbb{R}^d$ such that for all

$$\mathbf{x}, \mathbf{y} \in \mathcal{X}_d \quad \Rightarrow \quad \mathbf{x}^{\top} \mathbf{y} \in [0, 1]$$

- \Rightarrow Inner-product distribution $F: \mathcal{X}_d \mapsto [0,1]$
- ▶ Random dot product graphs (RDPGs) are defined as follows:

$$\mathbf{x}_1, \dots, \mathbf{x}_{N_v} \overset{\text{i.i.d.}}{\sim} F,$$

$$A_{ij} \mid \mathbf{x}_i, \mathbf{x}_j \sim \mathsf{Bernoulli}(\mathbf{x}_i^{\top} \mathbf{x}_j)$$

for
$$1 \le i, j \le N_v$$
, where $A_{ij} = A_{ji}$ and $A_{ii} \equiv 0$

- ► A particularly tractable latent position random graph model
 - \Rightarrow Vertex positions $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_{v}}]^{\top} \in \mathbb{R}^{N_{v} \times d}$
 - S. J. Young and E. R. Scheinerman, "Random dot product graph models for social networks," WAW, 2007

▶ RDPGs ecompass the previous classic models for network graphs

Ex: Recover Erdös-Renyi $G_{N_V,p}$ graphs with d=1 and $\mathcal{X}_d=\{\sqrt{p}\}$

Ex: Recover SBM random graphs by constructing F with pmf

$$P(\mathbf{X} = \mathbf{x}_q) = \alpha_q, \quad q = 1, \dots, Q$$

after selecting d and $\mathbf{x}_1,\dots,\mathbf{x}_Q$ such that $\pi_{qr}=\mathbf{x}_q^{\top}\mathbf{x}_r$

► Approximation results for SBMs justify the expressiveness of RDPGs

Estimation of latent positions

- ▶ **Q**: Given *G* from an RDPG, find the 'best' $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top$?
- ightharpoonup MLE is well motivated but it is intractable for large N_{ν}

$$\hat{\mathbf{X}}_{\mathit{ML}} = \operatorname*{argmax}_{\mathbf{X}} \prod_{i < j} (\mathbf{x}_i^{\top} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{\top} \mathbf{x}_j)^{1 - A_{ij}}$$

Estimation of latent positions

- ▶ **Q**: Given *G* from an RDPG, find the 'best' $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top$?
- ightharpoonup MLE is well motivated but it is intractable for large N_{ν}

$$\hat{\mathbf{X}}_{\mathit{ML}} = \operatorname*{\mathsf{argmax}}_{\mathbf{X}} \prod_{i < j} (\mathbf{x}_i^{\top} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{\top} \mathbf{x}_j)^{1 - A_{ij}}$$

- ▶ Instead, let $P_{ij} = P((i,j) \in \mathcal{E})$ and define $\mathbf{P} = [P_{ij}] \in [0,1]^{N_v \times N_v}$
 - \Rightarrow The RDPG model specifies that $\mathbf{P} = \mathbf{X}\mathbf{X}^{\top}$
 - \Rightarrow **Key:** Observed **A** is a noisy realization of **P** ($\mathbb{E}[A] = P$)
- ▶ Suggests a LS regression approach to find X s.t. $XX^{\top} \approx A$

$$\hat{\mathbf{X}}_{LS} = \operatorname*{argmin}_{\mathbf{X}} \|\mathbf{X}\mathbf{X}^{\top} - \mathbf{A}\|_F^2$$

A. Athreya et al, "Statistical inference on random dot product graphs: A survey," JMLR, 2018

Adjacency spectral embedding

- Since **A** is real and symmetric, can decompose it as $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$
 - ▶ $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ is the orthogonal matrix of eigenvectors ▶ $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_{N_v})$, with eigenvalues $\lambda_1 \geq \dots \geq \lambda_{N_v}$

Adjacency spectral embedding

- **Since A** is real and symmetric, can decompose it as $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$
 - $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ is the orthogonal matrix of eigenvectors
 - $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_{N_v})$, with eigenvalues $\lambda_1 \geq \dots \geq \lambda_{N_v}$
- ▶ Define $\hat{\mathbf{\Lambda}} = \text{diag}(\lambda_1^+, \dots, \lambda_d^+)$ and $\hat{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_d]$ $(\lambda^+ := \max(0, \lambda))$
- ► Best rank-d, positive semi-definite (PSD) approximation of **A** is $\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{\top}$
 - \Rightarrow Ajacency spectral embedding (ASE) is $\hat{\mathbf{X}}_{LS} = \hat{\mathbf{U}}\hat{\mathbf{\Lambda}}^{1/2}$ since

$$\mathbf{A} \approx \hat{\mathbf{U}} \hat{\mathbf{\Lambda}} \hat{\mathbf{U}}^{\top} = \hat{\mathbf{U}} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{U}}^{\top} = \hat{\mathbf{X}}_{LS} \hat{\mathbf{X}}_{LS}^{\top}$$

Adjacency spectral embedding

- **Since A** is real and symmetric, can decompose it as $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$
 - $\mathbf{V} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ is the orthogonal matrix of eigenvectors
 - \wedge $\Lambda = diag(\lambda_1, \ldots, \lambda_{N_{\nu}})$, with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{N_{\nu}}$
- ▶ Define $\hat{\mathbf{\Lambda}} = \text{diag}(\lambda_1^+, \dots, \lambda_d^+)$ and $\hat{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_d]$ $(\lambda^+ := \max(0, \lambda))$
- ► Best rank-d, positive semi-definite (PSD) approximation of **A** is $\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{\top}$
 - \Rightarrow Ajacency spectral embedding (ASE) is $\hat{\mathbf{X}}_{LS} = \hat{\mathbf{U}}\hat{\mathbf{\Lambda}}^{1/2}$ since

$$\mathbf{A} \approx \hat{\mathbf{U}} \hat{\mathbf{\Lambda}} \hat{\mathbf{U}}^{\top} = \hat{\mathbf{U}} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{U}}^{\top} = \hat{\mathbf{X}}_{LS} \hat{\mathbf{X}}_{LS}^{\top}$$

▶ Q: Is the solution unique? Nope, inner-products are rotation invariant

$$\mathbf{P} = \mathbf{X}\mathbf{W}(\mathbf{X}\mathbf{W})^{\top} = \mathbf{X}\mathbf{X}^{\top}, \quad \mathbf{W}\mathbf{W}^{\top} = \mathbf{I}_d$$

⇒ RDPG embedding problem is identifiable modulo rotations

Embedding an SBM graph

 \triangleright Ex: SBM with $N_v = 1500$, Q = 3 and mixing parameters

$$oldsymbol{lpha} = \left[egin{array}{c} 1/3 \\ 1/3 \\ 1/3 \end{array}
ight], \quad oldsymbol{\Pi} = \left[egin{array}{ccc} 0.5 & 0.1 & 0.05 \\ 0.1 & 0.3 & 0.05 \\ 0.05 & 0.05 & 0.9 \end{array}
ight]$$

- ► Sample adjacency **A** (left), $\hat{\mathbf{X}}_{LS}\hat{\mathbf{X}}_{LS}^{\top}$ (center), rows of $\hat{\mathbf{X}}_{LS}$ (right)
- ▶ Use embeddings to bring to bear geometric methods of analysis

Interpretability of the embeddings

ightharpoonup Ex: Zachary's karate club graph with $N_{\nu}=34$, $N_{e}=78$ (left)

- Node embeddings (rows of $\hat{\mathbf{X}}_{LS}$) for d=2 (right)
 - lacktriangle Club's administrator (i=0) and instructor (j=33) are orthogonal
- ► Interpretability of embeddings a valuable asset for RDPGs
 - ⇒ Vector magnitudes indicate how well connected nodes are
 - ⇒ Vector angles indicate positions in latent space

Limitations and open questions

- ► Graspologic: SoA package for RDPG estimation in Python (eigendecompostion in SciPy)
 - Q: Scalability for large graphs? Streaming settings for dynamic graphs?
- ▶ ASE does not account for the all-zero diagonal of **A**. Truly we want to solve

$$\hat{\mathbf{X}} \in \operatorname*{argmin}_{\mathbf{X} \in \mathbb{R}^{N \times d}} \| \mathbf{M} \circ (\mathbf{A} - \mathbf{X} \mathbf{X}^{\top}) \|_{\mathcal{F}}^{2}$$

- \Rightarrow $\mathbf{M} := \mathbf{1}\mathbf{1}^{ op} \mathbf{I}$ is a mask matrix, with zero-diagonal and ones everywhere else
- ▶ Iterative approach in [Scheinerman-Tucker'10] is complex and may not converge
 - **Q:** First-order non-convex optimization methods? Missing data in **A**?

Limitations and open questions

- ► Graspologic: SoA package for RDPG estimation in Python (eigendecompostion in SciPy)
 - Q: Scalability for large graphs? Streaming settings for dynamic graphs?
- ▶ ASE does not account for the all-zero diagonal of **A**. Truly we want to solve

$$\hat{\mathbf{X}} \in \operatorname*{argmin}_{\mathbf{X} \in \mathbb{R}^{N imes d}} \| \mathbf{M} \circ (\mathbf{A} - \mathbf{X} \mathbf{X}^{ op}) \|_F^2$$

- \Rightarrow $\mathbf{M} := \mathbf{1}\mathbf{1}^{\top} \mathbf{I}$ is a mask matrix, with zero-diagonal and ones everywhere else
- ► Iterative approach in [Scheinerman-Tucker'10] is complex and may not converge Q: First-order non-convex optimization methods? Missing data in A?
- ▶ Goal: an RDPG inference approach that offers a better representation at a lower computational cost, in more general settings

Gradient descent

- ▶ Let $f : \mathbb{R}^{N_v \times d} \mapsto \mathbb{R}$ be the objective function $f(\mathbf{X}) = \|\mathbf{M} \circ (\mathbf{A} \mathbf{X}\mathbf{X}^\top)\|_F^2$
 - \Rightarrow Non-convex w.r.t. \mathbf{X} , convex w.r.t. $\mathbf{P} = \mathbf{X}\mathbf{X}^{\top}$
- ► Gradient descent (GD) method (a.k.a. factorized GD or Procrustes flow)

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \alpha \nabla f(\mathbf{X}_t), \quad t = 0, 1, 2, \dots$$

 \Rightarrow Step size lpha > 0 and $\nabla f(\mathbf{X}) = 4 \left[\mathbf{M} \circ (\mathbf{X} \mathbf{X}^{\top} - \mathbf{A}) \right] \mathbf{X}$, for symmetric \mathbf{A} and \mathbf{M}

Gradient descent

- ▶ Let $f : \mathbb{R}^{N_v \times d} \mapsto \mathbb{R}$ be the objective function $f(\mathbf{X}) = \|\mathbf{M} \circ (\mathbf{A} \mathbf{X} \mathbf{X}^\top)\|_F^2$ ⇒ Non-convex w.r.t. \mathbf{X} . convex w.r.t. $\mathbf{P} = \mathbf{X} \mathbf{X}^\top$
- ► Gradient descent (GD) method (a.k.a. factorized GD or Procrustes flow)

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \alpha \nabla f(\mathbf{X}_t), \quad t = 0, 1, 2, \dots$$

- \Rightarrow Step size $\alpha > 0$ and $\nabla f(\mathbf{X}) = 4 \left[\mathbf{M} \circ (\mathbf{X} \mathbf{X}^{\top} \mathbf{A}) \right] \mathbf{X}$, for symmetric **A** and **M**
- **Convergence:** if X_0 is close to the solution, the iteration converges with linear rate to \hat{X}

Proposition. There exist $\delta>0$ and $0<\kappa<1$ such that, if $\|\mathbf{X}_0-\hat{\mathbf{X}}\|_F\leq\delta$, then

$$d(\mathbf{X}_t, \hat{\mathbf{X}}) \leq \kappa^t d(\mathbf{X}_0, \hat{\mathbf{X}}), \quad \text{for all } t > 0,$$

where $d(\mathbf{X}, \hat{\mathbf{X}}) := \min_{\mathbf{W} \in \mathcal{O}^{d \times d}} \|\mathbf{X}\mathbf{W} - \hat{\mathbf{X}}\|_F^2$ accounts for the rotational ambiguity.

Y. Chi et al, "Nonconvex optimization meets low-rank matrix factorization: An overview," TSP, 2019

► Scalability to large graphs

Run-time comparison for SBMs with up to $N_v = 25000$ nodes

► Scalability to large graphs

Even better with coordinate descent approaches

- ► Scalability to large graphs
- ► Better quality representations

Since we discard residuals for the diagonal entries of ${\bf A}$

- ► Scalability to large graphs
- ► Better quality representations
- ► Can handle missing data

Bipartite graph: parties and laws

- ► Parties submit their laws
- Some bipartisan laws
- ➤ Some senators have 30% chance of being absent

- ► Scalability to large graphs
- ► Better quality representations
- ► Can handle missing data
- ► Tracking via warm restarts

- $N_v = 6$ Wi-Fi APs in a rural Uruguayan school
- Hourly measurements over 4 weeks (655 graphs)
- ▶ AP 4 was moved at $t \approx 310$

- ► Scalability to large graphs
- Better quality representations
- ► Can handle missing data
- Tracking via warm restarts

- ► Two SBMs with Q = 4 communities, Π changes
- Communities 1 and 2 merge in the second model
- Community 4 maintains probabilities w/other groups

Gallagher et al, "Spectral embedding for dynamic networks with stability guarantees," NeurIPS, 2021

Concluding remarks

- ► ASE to estimate latent nodal positions in RDPGs ⇒ Non-convex matrix factorization problem
- Convergent, first-order gradient descent algorithm for refined formulation
 - ⇒ Scalable and fast computation of nodal representations
 - ⇒ Can handle missing data
 - ⇒ Able to track representation for dynamic graphs
- ► Try it @ https://github.com/git-artes/cpd_rdpg
- ► Future work
 - ⇒ Embedding dynamic network with varying number of nodes (Asilomar'22)
 - \Rightarrow Statistical properties such as consistency, asymptotic normality, stability ($N_{v} o \infty$)