
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024 1

Gradient-Based Spectral Embeddings of
Random Dot Product Graphs

Marcelo Fiori , Bernardo Marenco , Federico Larroca , Paola Bermolen ,
and Gonzalo Mateos , Senior Member, IEEE

Abstract—The Random Dot Product Graph (RDPG) is a gen-
erative model for relational data, where nodes are represented via
latent vectors in low-dimensional Euclidean space. RDPGs cru-
cially postulate that edge formation probabilities are given by the
dot product of the corresponding latent positions. Accordingly, the
embedding task of estimating these vectors from an observed graph
is typically posed as a low-rank matrix factorization problem.
The workhorse Adjacency Spectral Embedding (ASE) enjoys solid
statistical properties, but it is formally solving a surrogate problem
and can be computationally intensive. In this paper, we bring to
bear recent advances in non-convex optimization and demonstrate
their impact to RDPG inference. We advocate first-order gradient
descent methods to better solve the embedding problem, and to or-
ganically accommodate broader network embedding applications
of practical relevance. Notably, we argue that RDPG embeddings
of directed graphs loose interpretability unless the factor matrices
are constrained to have orthogonal columns. We thus develop a
novel feasible optimization method in the resulting manifold. The
effectiveness of the graph representation learning framework is
demonstrated on reproducible experiments with both synthetic and
real network data. Our open-source algorithm implementations
are scalable, and unlike the ASE they are robust to missing edge
data and can track slowly-varying latent positions from streaming
graphs.

Index Terms—Graph representation learning, gradient descent,
manifold optimization, random dot product graphs.

I. INTRODUCTION

D uring the last few years the Random Dot Product Graph
(RDPG) model has emerged as a popular generative model

for random graphs [3]. This latent position model associates
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each node i ∈ {1, . . . , N} with a vector xi ∈ X ⊂ R
d; a so-

termed node embedding where typically d� N . In its simplest
rendition for undirected and unweighted graphs without self
loops, RDPGs specify an edge exists between nodes i and j
with probability given by the inner-product of the corresponding
embeddings; independently of all other edges. That is to say,
entry Aij of the random adjacency matrix A ∈ R

N×N has the
Bernoulli(x�i xj) distribution.

This apparent simplicity does not compromise expressive
power. Indeed, one can verify that Erdös-Rényi (ER) graphs or
Stochastic Block Models (SBMs) with a positive semi-definite
(PSD) probability matrix are particular cases of an RDPG.
Several other more sophisticated models may be included as
particular cases of RDPG [3], being this expressiveness one
of the main reasons behind its popularity. A second reason is
the model’s interpretability. Since the connection probability is
given by the dot product of the embeddings, the affinity between
the corresponding nodes is directly captured by their alignment.
We may for instance rely on visual inspection of the nodes’
vector representations (possibly after further dimensionality
reduction if d > 3) to screen for community structure, or carry
out angle-based clustering of nodes [4], [5].

The restriction to undirected graphs is overcome by consider-
ing the directed version of RDPG, where each node is assigned
two vectors xl

i,x
r
i ∈ X ⊂ R

d. A directed edge from node i
to j exists with probability (xl

i)
�xr

j [3]. The interpretation is
analogous to the undirected case, with xl

i and xr
i now represent-

ing the propensity of node i towards establishing outgoing and
accepting incoming directed edges, respectively. For extensions
to weighted graphs, see e.g., [6].

Rather than generating random graphs from vectors, focus in
this paper is on the inverse embedding problem at the heart of
graph representation learning (GRL) [7]: given the adjacency
matrix A of a graph adhering to an RDPG model, estimate the
latent position vectors for each node. Because of the RDPG
definition in terms of dot products, the latent position vectors are
only identifiable up to a common rotation. For both undirected
and directed graphs (digraphs), the workhorse approach is based
on a spectral decomposition of A – an estimator known as
Adjacency Spectral Embedding (ASE) [3].

A. Challenges Facing the ASE

Although the ASE is widely adopted and its statistical proper-
ties (such as consistency and its limiting distribution asN →∞)
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are well documented [3], it does present drawbacks which we
seek to overcome.

Large data: The first challenge pertains to scalability. Com-
puting the spectrum of a large adjacency matrix A, even only
the d dominant components, is computationally intensive and
constitutes a bottleneck of state-of-the-art ASE implementa-
tions [8], especially when multiple graphs are to be embedded.
Recent work explicitly comments on the difficulty of scaling
spectral-based inference of RDPGs to large graph settings [9].

Missing data: A second drawback of ASE is its inability to
properly account for missing data, meaning unobserved entries
in A. On a related note, the ASE neglects the all-zeros diagonal
in the adjacency matrix. These limitations were recognized more
than a decade ago [4], yet to the best of our knowledge they have
not been satisfactorily addressed in the RDPG literature. Indeed,
repeated ASE computation to iteratively impute the unknown
entries ofAusing the inner-product of the embeddings estimated
in the previous step lacks convergence guarantees, and multiplies
the ASE complexity by the number of iterations [4].

Streaming data: A third scenario that ASE cannot address sat-
isfactorily arises with streaming data from a dynamic network;
i.e., when we observe a sequence of graphs over time and would
like to track the evolution of the corresponding embeddings,
ideally without having to store past observations. Network dy-
namics may include changes in the edges between a fixed set of
nodes (e.g., monitoring a wireless network), the addition of new
information (e.g., a user that ranks an item in a recommender
system), or the deletion/addition of nodes (e.g., a new user in a
social network). Especially for large graphs, re-computing the
ASE from scratch each time step is computationally demanding.
Given the rotational ambiguity inherent to RDPGs, indepen-
dently obtaining the ASE after each modification to the graph
will likely result in misaligned embeddings that can hinder the
assessment of changes.

B. Contributions and Paper Outline

We seek to address these limitations by (i) re-considering the
underlying optimization problem of which ASE is a solution
(Section II); and (ii) developing iterative embedding algorithms
for the refined formulations (Sections III and IV).

Unlike the ASE recipe of performing a spectral decompo-
sition of A, borrowing recent low-rank matrix-factorization
advances we advocate solving the non-convex embedding prob-
lem using gradient descent (GD) [10], [11]. Explicitly solving
the optimization problem facilitates more precise and flexible
GRL; e.g., it is straightforward to accommodate unobserved
edges by including a mask matrix. Given the iterative nature
of GD, warm-restarting the estimates of either new or existing
nodes allows to embed multiple (possibly streaming) graphs,
while preserving the alignment of consecutive embeddings as
a byproduct. Discarding the residuals corresponding to the
diagonal of A offers better nodal representations as well as
favorable problem structure, which we leverage in Section III-B
to derive block-coordinate descent (BCD) iterations for efficient
undirected RDPG inference.

Applying GD to embed digraph nodes requires special care.
As we argue in Section IV-A, inherent ambiguities in the directed
RDPG model extend beyond a global rotation, and they may
compromise representation quality and the interpretability ben-
efits discussed earlier. We show that an effective way of retaining
these desirable features is to impose orthogonality constraints
on the matrix factors in the decomposition of A – a novel
GRL formulation for digraphs. This constraint in turn defines a
smooth manifold, over which we optimize using a custom-made
feasible method. We stress this is not the well-known Stiefel
manifold, where matrices are constrained to be orthonormal (and
not just orthogonal as here1). This is no minor point. Algorithm
construction thus requires careful definition of the tangent space,
the Riemannian gradient and the retraction [12], [13], all of
which we derive in Section IV-B. Comprehensive synthetic
and real-world (wireless network and United Nations voting)
data experiments in Section V demonstrate the interpretability,
robustness, and versatility of the novel GRL framework. In the
interest of reproducible research, the code and datasets used
to generate all figures in this paper is publicly available at
https://github.com/marfiori/efficient-ASE. Concluding remarks
are in Section VI. Non-essential mathematical details and sup-
plementary experimental results are deferred to the Appendix.

All in all, relative to prior art our RDPG embedding frame-
work offers a better representation at a competitive computa-
tional cost, and it is applicable to more general settings. This
full-blown journal paper extends our preliminary results [1], [2]
in multiple significant ways. In addition to a more thorough
treatment with extended discussions, unpublished proofs, ac-
companying software, and expanded numerical studies with new
datasets; the BCD algorithm for undirected graphs as well as the
treatment of digraphs in Section IV are completely new.

II. PROBLEM STATEMENT AND RELATED WORK

Let us formulate the embedding problem, beginning with
undirected graphs. Consider stacking all the nodes’ latent po-
sition vectors in the matrix X = [x1, . . . ,xN ]� ∈ R

N×d. Given
an observed graph A and a prescribed embedding dimension d
(typically obtained using an elbow rule on A’s eigenvalue scree
plot [8]), the goal is to estimate X. Recalling the definition of
the RDPG model, the edge-wise formation probabilities are the
entriesPij = x�i xj of the rank-d, PSD matrixP = XX�. Since
we do not allow for self-loops, the diagonal entries in A should
be zero and we thus have E[A

∣∣X] = M ◦P, where ◦ is the
entry-wise or Hadamard product and M = 1N1�N − IN is a
mask matrix with ones everywhere except in the diagonal where
it is zero.

In lieu of a maximum likelihood estimator that is computation-
ally challenging and may not be unique [14], here we advocate
a least-squares (LS) approach [4] to obtain

X̂ ∈ argmin
X∈RN×d

∥∥M ◦ (A−XX�
)∥∥2

F
. (1)

1We will henceforth use the term orthonormal matrix to refer to any matrix
T such that T�T = I (i.e., the columns of T are orthonormal vectors). The
term orthogonal matrix will be reserved for those matrices whose columns are
mutually orthogonal, but not necessarily of unit norm.
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In words, P̂ = X̂X̂� is the best rank-dPSD approximation to the
off-diagonal entries of the adjacency matrixA, in the Frobenius-
norm sense. The RDPG model is only identifiable up to rotations,
and accordingly the solution of (1) is not unique. Indeed, for
any orthonormal matrix T ∈ R

d×d we have that XT(XT)� =
XX� = P.

Entrywise multiplication with M = 1N1�N − IN effectively
discards the residuals corresponding to the diagonal entries of
A. If suitably redefined, the binary mask M may be used for
other purposes, such as modeling unknown edges if data are
missing. For instance, in a recommender system we typically
have the rating of each user over a limited number of items.
This (dis)information may be captured in (1) by zeroing out the
entries of M corresponding to the unknown edges.

Remark 1 (Adjacency Spectral Embedding): Typically the
mask M is ignored (and sometimes non-zero values are it-
eratively imputed to the diagonal of A [4]), which results in
a closed-form solution for X̂. Indeed, if we let M = 1N1�N
in (1), we have that X̂ = V̂Λ̂

1/2
, where A = VΛV� is the

eigendecomposition of A, Λ̂ ∈ R
d×d is a diagonal matrix with

the d largest-magnitude eigenvalues of A, and V̂ ∈ R
N×d are

the associated eigenvectors. This workhorse estimator is known
as the Adjacency Spectral Embedding (ASE); see also [3] for
consistency and asymptotic normality results, as well as appli-
cations of statistical inference with RDPGs.

Given the ASE limitations outlined in Section I-A, we develop
efficient gradient-based iterative solvers for the embedding prob-
lem (1). Beyond scalability, the algorithmic framework offers a
natural pathway to facilitate embedding graph sequences. In the
applications we study in Section V, said dynamic network data
may be only partially observed, they could be acquired in a
streaming fashion, while both the number of nodes and edges
are allowed to vary across time.

Embedding digraphs: Moving on to digraphs [15], recall that
we now embed each node with two vectors, xl

i,x
r
i ∈ X ⊂ R

d.
Existence of a directed edge from node i to j is modeled
as the outcome of a Bernoulli trial with success probability
(xl

i)
�xr

j [3]. Again, vertically stacking the embeddings into two

matrices Xl,Xr ∈ R
N×d, we introduce the probability matrix

P = Xl(Xr)� such that the expected value of the random
adjacency matrix is E[A

∣∣Xl,Xr] = M ◦P.
If we ignore the mask M, the embedding problem boils down

to finding the best rank-d approximation to the (possibly asym-
metric) adjacency matrix. One such solution may be obtained
via the singular value decomposition (SVD) of A; i.e., A =

UΣV�. We thus have that X̂l = ÛΣ̂
1/2

and X̂r = V̂Σ̂
1/2

,
with Σ̂ containing only the d largest singular values, and Û and
V̂ the associated singular vectors. This procedure is also known
as ASE.

As noted in [6], ambiguities with directed RDPGs can be
more problematic than in the undirected case. Now given any
invertible matrix T (not necessarily orthonormal), the embed-
dings Yl = XlT and Yr = XrT−� generate the same prob-
ability matrix as before; i.e., Yl(Yr)� = XlT(XrT−�)� =
Xl(Xr)� = P. As we show in Section IV-A, constraining ma-
trices Xl and Xr to being orthogonal and having the same

column-wise norms2 effectively limits this ambiguity without
compromising the model’s expressivity (now an admissible T
may only be orthonormal; see Proposition 2), all while preserv-
ing its interpretability. Given these considerations, our approach
to embedding digraphs is to solve the following manifold-
constrained optimization problem

{X̂l, X̂r} ∈ argmin
{Xl,Xr}∈RN×d

∥∥M ◦ (A−Xl(Xr)�)
∥∥2
F

s. to
(
Xl

)�
Xl = (Xr)�Xr diagonal. (2)

In the absence of a mask, a solution of (2) is the legacy ASE.
Indeed, X̂l and X̂r are obtained from orthonormal singular
vectors and have the same column-wise norms because both Û

and V̂ are right-multiplied by Σ̂
1/2

. To tackle the general case,
a novel Riemannian GD method over the manifold of matrices
with orthogonal columns is developed in Section IV-B.

A. Related Work

The low-rank matrix factorization problem (1) has a long
history, with applications to recommender systems (where the
objective is to complete a matrix of user-item ratings which
is assumed to have low rank) [16]; or, in sensor localization
from pairwise distances (the so-called Euclidean distance ma-
trix) [17], just to name a couple of examples. Solution methods
typically rely on spectral decomposition of the full data matrix
(as in ASE), or by considering a convex relaxation via nuclear-
norm minimization [18]. The latter is not best suited for our
problem, where we are interested in the actual factors (not in
P), and their dimensionality could change with time due to
e.g., node additions. Alternatively, over the last few years we
have witnessed increased interest in non-convex optimization
approaches for matrix factorization problems [10]. Our work
may be seen as an effort in this direction. In particular, we
bring to bear recent advances in first-order methods for matrix
factorization problems and demonstrate impact to GRL (specif-
ically, RDPG inference). The formulation (2) is novel to the
best of our knowledge. To solve it we derive GD iterations over
the manifold of orthogonal matrices, which is different from
the Stiefel manifold and thus requires careful treatment given
the unique geometric properties of our problem.

The scalability of ASE, or any other spectral embedding
method for that matter, has long been considered an issue [19].
This challenge is compounded when multiple graphs are to be
embedded, especially in batch settings where all graphs in the
sequence are stored in memory [9]. Existing approaches seeking
aligned embeddings rely on the spectral decomposition of some
matrix whose dimension(s) grow linearly with the number of
graphs [9], [20], [21]. In addition to increasing the computation
cost of ASE, these methods are not applicable in streaming
scenarios, where a possibly infinite sequence of graphs {At}
is observed and we want to recursively update the embeddings
‘on-the-fly’ as new graphs are acquired.

2Let x̄l
i, x̄

r
i ∈ R

N be the i-th columns of Xl and Xr , respectively. When we
sayXl andXr have the same column-wise norms we mean that‖x̄l

i‖2 = ‖x̄r
i ‖2

holds for all i = 1, . . . , d.
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There is an extensive collection of numerical linear algebra
approaches to recursively update an eigendecomposition or SVD
when the (adjacency) matrix is perturbed; e.g., [19]. However,
these do not offer major computational savings except for spe-
cific types of changes (e.g., rank-1 updates), and they may be
prone to error accumulation as t increases [22]. Moreover, they
can yield misaligned embeddings due to the rotational ambi-
guity of RDPGs. The sketching literature offers highly-scalable
randomized algorithms [23]. Other than to initialize our iterative
methods we do not consider those here, because we are interested
in exact solutions to (1) and (2).

In dynamic environments, not only doesAt change over time,
but new nodes may be added to the graph and current ones
removed. Embedding previously unseen nodes corresponds to
an inductive learning setting, generally regarded as beyond the
capabilities of shallow embeddings as the one we are discussing
here [7, Ch. 3.4], [24]. Previous efforts in this direction (that
avoid re-computing eigendecompositions from scratch) either
assume that the connections between the existing nodes, or, their
current embeddings, do not change [25], [26]. In the latter case,
a projection scheme onto the space of current embeddings pro-
duces an asymptotically (N →∞) consistent ASE for the new
node [26]. However, even if latent positions were time invariant,
the estimation error of current nodes’ embeddings propagates
to the new estimates. We will use the projection-based estimate
in [26] as initialization for new nodes in our GD algorithms,
demonstrating benefits in accuracy and stability especially as
several nodes are added, while at the same time refining previous
nodes’ embeddings.

III. EMBEDDING ALGORITHMS FOR UNDIRECTED GRAPHS

We start with the embedding problem for undirected graphs.
Recognizing limitations of state-of-the-art ASE implementa-
tions, here we first review a GD algorithm with well-documented
merits for symmetric matrix completion, yet so far unex-
plored in RDPG inference. GD offers flexible computation of
embeddings and a pathway towards tracking nodal representa-
tions in a streaming graph setting. We then show that the particu-
lar structure of the problem lends itself naturally to more efficient
BCD iterations, and discuss the relative merits of the different
approaches in terms of convergence properties, complexity, and
empirical execution time.

A. Back to Basics: Estimation Via Gradient Descent

Recall the embedding problem for undirected graphs in (1),
and denote by f : RN×d → R its smooth objective function
f(X) = ‖M ◦ (A−XX�)‖2F . Although the problem is not
convex with respect toX, it is convex with respect toP = XX�.
In the broad context of matrix factorization problems where
the objective function depends on the product XX�, the GD
approach is often referred to as factored GD [27]. The workhorse
GD algorithm generates embedding updates

Xk+1 = Xk − α∇f(Xk), k = 0, 1, 2, . . . (3)

where α > 0 is the stepsize, and the gradient of f is ∇f(X) =
4[M ◦ (XX� −A)]X. Recall that A and M are known sym-
metric matrices that specify the problem instance.

There have been several noteworthy advances in the study of
GD’s convergence (including rates) for this non-convex setting,
as well as accelerated variants [10], [11], [27], [28], [29], [30].
For the RDPG embedding problem dealt with here, it follows
that if the initial condition X0 is close to the solution of (1),
the GD iteration (3) converges linearly to X̂; see [27, Corollary
7], [11, Theorem 1], as well as [10, Lemma 4] and references
therein for a similar version of this proposition.

Proposition 1: Let X̂ be a solution of (1). Then there exist
δ > 0 and 0 < κ < 1 such that, if d(X0, X̂) ≤ δ, we have

d(Xk, X̂) ≤ δκk, ∀ k > 0 (4)

where {Xk} are GD iterates (3) with appropriate constant
stepsize, and d(X, X̂) := minW ‖XW − X̂‖2F s. to W�W =
WW� = Id is a matrix distance accounting for the rotational
invariance.

Although there are specific X0 which correspond to sub-
optimal stationary points, in our experience GD converges to the
global optimum when initialized randomly. For further details on
the initialization of factored GD, strong convexity assumptions,
and the choice of the stepsize α, see e.g., [27, Section 5].

Remark 2 (Warm restarts to embed multiple graphs): On top
of being flexible to handle missing data encoded in M, this
approach also allows to track the latent positions of a graph
sequence {At} using warm restarts. That is, after computing
the embeddings Xt of the graph with adjacency matrix At,
we initialize the GD iterations (3) with Xt to compute Xt+1

corresponding to At+1. This way, unless the graphs at times
t and t+ 1 are uncorrelated, the embedding of each node will
transition smoothly to its new position (up to noise). Moreover,
if the embeddings of the graph at time t+ 1 are sufficiently
close to the embeddings at time t, say for slowly time-varying
graphs where d(Xt,Xt+1) ≤ δ, then the GD iterates for com-
puting Xt+1 also have the same convergence guarantees and
rates (δκk), by virtue of Proposition 1. This was also observed
empirically, indeed experiments demonstrating this longitudinal
stability property [9] are presented in Sections V-B and V-C.

B. Block Coordinate Descent

Here we develop a BCD method for solving (1), which turns
out to be quite efficient. The algorithm updates one row ofX at a
time in a cyclic fashion, by minimizing the objective function f
with respect to the corresponding row (treating all other entries
of X as constants, evaluated at their most recent updates). In
general, this row-wise sub-problem may not admit a simple
solution; however, we show that due to the structure of the mask
matrix M the updates are given in closed form.

Let f(X) = ‖M ◦ (A−XX�)‖2F and recall x�i is the i-th
row of X. The gradient ∇if of f with respect to xi is

∇if(X) =
(−(M ◦A)iX+ ((M ◦XX�)X)i

)�
= −X�(M ◦A)�i +X�(M ◦XX�)�i , (5)
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Algorithm 1: Block Coordinate Descent (BCD).
Require: Initial X← X0

1: Compute R = X�X
2: repeat
3: for i = 1 : N do
4: R← R− xix

�
i

5: b← X�(Ai)
�

6: xi ← solution of Rx = b
7: R← R+ xix

�
i

8: end for
9: until convergence

10: return X.

where (·)i stands for the i-th row of the matrix argument.
Note that since the graph has no self-loops (i.e., the diagonal

entries of A are zero), then the entry-wise product of A with
M is vacuous over the diagonal. Also because Aii = 0, the
term X�(M ◦A)�i = X�(A)�i in (5) does not depend on xi.
More importantly, XX� clearly depends on xi, and this would
challenge solving ∇if(X) = 0d to obtain a minimizer [due to
the trilinear form of the second term in (5)]. However, a close
re-examination of X�(M ◦XX�)�i suggests this purported
challenge can be overcome. First, observe that

(M ◦XX�)i = x�i X
� − r�i ,

where ri ∈ R
N is a column vector with zeros everywhere except

in entry i, where it takes the value x�i xi. Hence,

X�(M ◦XX�)�i = X�(Xxi − ri) = (X�X− xix
�
i )xi.

All in all, we have a simplified expression for the gradient

∇if(X) = −X�(Ai)
� + (X�X− xix

�
i )xi. (6)

Now, define R = X�X− xix
�
i and notice this matrix does not

depend on xi. Therefore, from (6) it follows that the equation
∇if(xi) = 0d is linear in xi, namely Rxi = X�(Ai)

�. The
pseudo-code of the algorithm is tabulated under Algorithm 1.

The d× d matrix R is invertible provided that X has rank d.
This also implies that the row-wise sub-problem has a unique
minimizer, which is key to establish convergence of BCD to
a stationary point [31, Prop. 2.7.1]. It is worth reiterating that
this favorable linear structure is lost in the absence of a mask
matrix M (cf. ASE in Remark 1). Since in RDPG embeddings
we typically have d� N , solving multiple d× d linear sys-
tems is affordable; especially when compared to matrix-vector
operations of order Θ(Nγ), γ > 1, like in GD.

C. Complexity and Execution Time Analyses

We compare four computational methods to obtain RDPG
embeddings of undirected graphs: the ASE based on (i) full
eigendecomposition, and (ii) truncated SVD as implemented in
Graspologic [8]; (iii) GD initialized with the randomized-
SVD (RSVD) [23] (we account for the RSVD in the execution
time); and (iv) randomly initialized BCD as in Algorithm 1.

The full eigendecomposition of A has worst-case Θ(N3)
complexity, while for sparse graphs the d-dominant components

Fig. 1. Execution time for embedding SBM graphs with up to N = 24000
nodes. As N grows, BCD exhibits competitive scaling to the state-of-the-art
ASE algorithm implemented in the Graspologic package.

can be obtained with Θ(Nd) per-iteration cost. For GD, the
per-iteration computational cost incurred to evaluate ∇f(X)
is dominated by the matrix multiplications, which is Θ(N2 d)
for a naïve implementation. The number of iterations depends
on X0, but even with a favorable initialization the runtime
is still higher than the Θ(Nd) of truncated SVD-based ASE.
A refined convergence-rate analysis of GD for the symmetric
matrix completion problem is presented in [11]. Although in
general it is tricky to compare the complexity of GD against BCD
approaches, we can evaluate the per-iteration computational cost
of both methods (for BCD this means a whole cycle over the
rows of X is completed). In both cases, each entry of the matrix
X is updated exactly once. Each cycle consist of N instances
of d× d linear systems, so this is Θ(Nd3) in the worst case.
In addition, in our experience Algorithm 1 converges in fewer
iterations than the GD method.

In Fig. 1 we compare the execution times of methods (i)-(iv) as
a function of N , all the way to N = 24000. For ASE, we use the
SciPY optimized implementation of the eigendecomposition
in Python, as in state-of-the-art RDPG inference packages such
as Graspologic [8]. Our GD and BCD implementations
are in pure Python, not optimized for performance. For each
N , we sampled several 2-block SBM graphs, with connection
probabilities of p = 0.5 (within block) and q = 0.2 (across
blocks). Community sizes areN/3 and 2N/3. We letd = 2 in all
cases. Results are averaged over 10 Monte Carlo replicates, and
corresponding standard deviations are depicted in Fig. 1. In all
cases, the methods converge to a solution of (1). The obtained
cost function is very similar for each run, with slightly lower
values for the GD and BCD methods because they are solving the
problem with the zero-diagonal restriction. As expected, BCD
exhibits competitive scaling with the truncated SVD-based ASE,
and can embed graphs with N = 20000 nodes in just over a
minute.

A moderately large graph, such as the one with N = 24000,
is ideal to assess the effect of d on the computation time. Graphs
of this scale are expected to have several communities, and thus
values larger than d = 2 (as before) will likely be required. We
thus explore this scenario in more detail, embedding a d-block
SBM graph using d dimensions, and measure the execution time
of BCD (Algorithm 1) and the truncated SVD methods as d
increases. Results are reported in Table I. Interestingly, BCD
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TABLE I
EXECUTION TIME (IN SECONDS) AS A FUNCTION OF THE EMBEDDING

DIMENSION d, FOR d-BLOCK SBM GRAPHS WITH N = 24000 NODES

yields faster results than truncated SVD whend ≥ 50, gracefully
scaling with the embedding dimension. As we mentioned before,
in our experience BCD converges in very few iterations and
offers competitive computation performance.

IV. EMBEDDING ALGORITHMS FOR DIGRAPHS

Shifting gears to embedding nodes in digraphs, we start with
a close examination of the ambiguities inherent to the directed
RDPG model and justify the need for orthogonality constraints
on the factors’ columns. To compute the desired nodal repre-
sentations, we then develop a first-order feasible optimization
method in the manifold of matrices with orthogonal columns.

A. On the Interpretability of the Directed RDPG

Recall that if {X̂l, X̂r} is a minimizer of f(Xl,Xr) =

‖M ◦ (A−Xl(Xr)�)‖2F , then so is {X̂lT, X̂rT−�} for any
invertible matrix T. Let us now discuss why Xl and Xr should
be constrained to be orthogonal and have the same column-wise
norms. In other words, why do we need the constraints in (2) to
obtain useful embeddings when the graph is directed.

To gain some insights, suppose we ignore these constraints
altogether and use GD to minimize f(Xl,Xr). Similar to (3),
at iteration k + 1 we update {Xl

k+1,X
r
k+1} as follows

Xl
k+1 = Xl

k − α∇Xlf(Xl
k,X

r
k), (7)

Xr
k+1 = Xr

k − α∇Xrf(Xl
k,X

r
k), (8)

where∇fXl(Xl,Xr) = 4[M ◦ (Xl(Xr)� −A)]Xl and a sim-
ilar expression holds for ∇fXr (Xl,Xr).

The ASE offers an alternative baseline, which requires to
discard the mask M. ASE estimates {X̂l, X̂r} have orthogonal
columns because they are derived from the SVD of A. Same
index columns in X̂l and X̂r have the same norm as well, since
the orthonormal matrices Û and V̂ are both right-multiplied

by Σ̂
1/2

. However, if we minimize f(Xl,Xr) iteratively as in
(7)-(8) to accommodate missing and streaming data, we may
loose column-wise orthogonality with detrimental consequences
we illustrate in the following example.

Example 1 (Bipartisan senate): Consider a synthetic political
dataset of votes cast by senators in support of laws, over a certain
period of time. This may be regarded as a bipartite digraph
where nodes correspond to senators and laws, and the fact that
senator i has voted affirmatively for law j is indicated by the
existence of edge (i, j). We examine a polarized scenario, where
two political parties put forth laws for voting. Affirmative votes
are more likely for senators from the party that introduced the
law, and less likely for senators from the opposing party. There
are also a few bipartisan laws, for which affirmative votes tend

Fig. 2. Bipartisan senate example. ASE (left) and GD (right). Since ASE
implicitly imposes equally normed orthogonal columns (as it is derived from
an SVD), it produces interpretable embeddings. On the other hand, GD may
result in laws and parties that are not aligned, and thus loses interpretability if
no further constrains are imposed in the formulation.

to be more balanced across parties. We simulated such a graph
with 50 senators of each party, where Party 1 proposed 50 laws
and Party 2 proposed 200 laws, and there were 40 additional
bipartisan laws under consideration (i.e., N = 390 in total).
Furthermore, the inter-community probability matrix is

Π =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0.9 0.01 0.2

0 0 0.1 0.8 0.3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where communities are ordered as Party 1 senator, Party 2
senator, Party 1 law, Party 2 law, and finally bipartisan law. In
other words, senators of Party 1 are very supportive of their own
laws and unlikely to vote for those introduced in the other side
of aisle, whereas Party 2 senators are more moderate.

We compare the embeddings estimated through ASE and by
GD [i.e., iterating (7) and (8) until convergence]. Recall that in-
terpretation of these results should rely on the geometry induced
by the RDPG model. Similarity among nodes is captured by their
colinearity in latent space, not by their Euclidean distance being
small (as it is the case with e.g., Laplacian eigenmaps [32]).
Accordingly, in this particular example we expect that the em-
beddings of Party 1 senators and laws will be almost perfectly
aligned, while slightly less so for Party 2. ASE results using
d = 2 are shown in Fig. 2 (left). As expected, the outward
embeddings for laws and inward embeddings for senators are
zero (since the former do not vote and the latter are not voted).
Furthermore, the outward embeddings corresponding to senators
of each party are close and roughly orthogonal to senators of
the other party, reflecting the polarized landscape. Finally, the
inward embeddings of laws submitted by each party are aligned
with the corresponding cluster of senators, whereas bipartisan
laws lie somewhere between both groups. The difference in
magnitude between embeddings of senators and laws is due
to the different number of such nodes in the graph, and the
column-wise norm constraint imposed to the embeddings.

On the other hand, inspection of Fig. 2 (right) reveals that
GD converges to a solution where laws are not aligned with the
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corresponding party senators. Accordingly, the affinity of parties
to their laws is less evident than before. In fact, it appears as if
Party 1 is not as supportive of its laws as in the ASE-based
visualization which, as we discussed before, is the opposite
of what we expected. While the input graph is the same for
both methods and the total cost f(X̂l, X̂r) is smaller for the
GD method, interpretability is hindered because of the larger
ambiguity set in the absence of additional constraints.

Example 2 (Digraph with symmetric expectation): To further
justify why orthogonality constraints are essential, consider a
digraph sampled from a symmetric P (i.e., the probability of
both edge directions is the same, but each arc is independently
sampled). It would be desirable that in this case the model
enforced Xl = Xr, since the outgoing and incoming behaviour
of the nodes is the same. The general directed model should
recover the subsumed undirected one and, naturally, the same
should hold for the embedding method.

However, these desiderata are not necessarily met. As stated
earlier, given an invertible matrix T, the embeddings Yl =
XlT and Yr = XrT−� yield the same probability matrix
P = Xl(Xr)�. This impies that unless T = T−� (meaning
T is an orthonormal matrix corresponding to a rotation), we
could apply different transformations to the inward and outward
embeddings and still obtain the same RDPG.

Given these observations, consider a directed RDPG model
where the embedding matrices Xl and Xr are constrained to be
orthogonal and of the same column-wise norm. The following
result asserts that this suffices to ensure an admissible T is
orthonormal, hence reducing the model’s ambiguity to a global
rotation – just like in the undirected case.

Proposition 2: Let P = Xl(Xr)� be the probability matrix
of a directed RDPG model, where {Xl,Xr} areN × dmatrices
with rank d such that (Xl)�Xl = (Xr)�Xr = DX is diagonal.
Let T ∈ R

d×d be an invertible matrix such that Yl = XlT and
Yr = XrT−� are also orthogonal with the same column-wise
norms; i.e. (Yl)�Yl = (Yr)�Yr = DY is diagonal. Then, T
is an orthonormal matrix.

Proof: Combining Yr = XrT−� with (Xr)�Xr = DX

and (Yr)�Yr = DY we find that DX = TDY T
�. Pro-

ceeding analogously with Yl we further obtain that DX =
T−�DY T

−1. Multiplying both identities results in D2
X =

TD2
Y T

−1. Thus, the columns of T are linearly independent
eigenvectors of a diagonal matrix. Furthermore, given DX =
TDY T

� it follows that the above eigendecomposition is nec-
essarily one with orthonormal eigenvectors. �

The constraints in (2) do not limit the expressiveness of the
model, since they are compatible with those ASE implicitly
imposes. Next, we develop a feasible first-order method that
enforces the orthogonality constraint at all iterations. After con-
vergence it is straightforward to equalize the resulting column-
wise norms so that they are the same for both X̂l and X̂r, without
affecting the generated P; see Remark 3.

B. Optimizing on a Manifold

We have concluded that for the sake of interpretability and
quality of the representation, it is prudent to impose the matrices

Xl and Xr have orthogonal columns. One classical way to
tackle this is by adding these constraints to the optimization
problem as in (2), and solve it via Lagrangian-based methods.
For some constraints with geometric properties, a more suitable
and timely approach is to pose the optimization problem on
a smooth manifold. One can then resort to feasible methods
that search exclusively over the manifold, i.e., the constraints
are satisfied from the start and throughout the entire iterative
minimization process [12], [13]. This way, we can think of the
optimization as being unconstrained because the manifold is all
there is. In the sequel we explore this last idea.

Interestingly, the space of matrices having orthogonal
columns does not form any known and well-studied manifold.
Yet, we show the required geometric structure is present in our
problem and thus we have to define several objects as well as
compute various operators to facilitate optimization [12], [13].
The conceptual roadmap is as follows. Recall that a smooth
manifoldM can be locally approximated by a linear space, the
so-called tangent space. If we consider the objective function
f :M �→ R defined from the (Riemannian) manifold to R,
then the Riemannian gradient of the function is an element of
the tangent space. This Riemaninann gradient, which will be
denoted as grad f , can be computed as the projection of the
Euclidean gradient ∇f to the tangent space. Having computed
the gradient, a classical descent method consists of taking a
certain step in the opposite direction. However, this step likely
results in a point outside of the manifold, so we have to project it
back toM. This projection might be computationally intensive,
so the retraction alternative is used instead.

Next, we define more precisely our manifold, and derive
the tangent space, the projection and finally the retraction.
The manifold that resembles the most to ours is the so-called
Stiefel manifold, which consist of matrices with orthogonal and
unit-norm (i.e., orthonormal) columns

St(d,N) :=
{
X ∈ R

N×d : X�X = Id
}
. (9)

But here we do not require unit-norm columns. Thus, let RN
∗ =

R
N \ {0N} be the set ofN dimensional vectors without the null

vector, and letRN×d
∗ be the product of d copies ofRN

∗ . This open
set is the set of N × d matrices without null columns. We are
interested in matrices with orthogonal columns, namely

M(d,N) := {X ∈ R
N×d
∗ : X�X is diagonal}

= {X ∈ R
N×d
∗ : M ◦ (X�X) = 0d×d}, (10)

where once more M = 1d1
�
d − Id is a particular mask matrix,

with zeros in the diagonal and ones everywhere else.
The following proposition establishes that M is actually a

manifold (for notational convenience, we henceforth use M
instead ofM(d,N) since both d and N are fixed throughout).
Moreover,M is a Riemannian manifold sinceM⊂ R

N×d is a
vector space equipped with the usual trace inner product. The
proofs of subsequent results can be found in the Appendix.

Proposition 3: The setM in (10) is a differential manifold
and its dimension isNd− d(d− 1)/2. Furthermore, the tangent
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space at X ∈M is given by

TXM = {ζ ∈ R
N×d : M ◦ (ζ�X+X�ζ

)
= 0N×d}.

To perform a manifold GD step, one needs to compute the
Riemmanian gradient of the function defined inM. We obtain
grad f as the projection of the Euclidean gradient [cf. (7)-(8)]
onto the tangent space. A natural way to compute said projection
is to first characterize and compute the projection to the normal
space. Given X ∈M, the normal space at X is TXM⊥ =
{N ∈ R

N×d : 〈N, ζ〉 = tr(N�ζ) = 0, ∀ ζ ∈ TXM}. A useful
alternative characterization is given next.

Lemma 1: The normal space at X is

TXM⊥ = {XΛ ∈ R
N×d : Λ ∈ Sd},

where Sd = {X ∈ R
d×d : X = X�, diag(X) = 0d×d} is the

set of d× d symmetric matrices with null diagonal.
Computing the projection to the normal space requires some

work due to the null diagonal constraint in Sd, which is not
present in the normal space to St(d,N) [13, p. 161]. The result
is given in the next lemma.

Lemma 2: Let X ∈M and let π⊥X : RN×d �→ TXM⊥ be the
projection to the normal space. Then

π⊥X(Z) = Xs(2DL), (11)

where s : Rd×d �→ Sd is a symmetrizing function s(Z) =
Z+Z�

2 − diag(Z), D = (X�X)1/2 and L = (D−1X�Z) ◦ F,
where E = 1d1

�
dD

2 +D21d1
�
d and F has entries Fij = E−1ij .

Note that (11) is of the formXΛ, withΛ ∈ Sd. It thus belongs
to the normal space by virtue of the characterization in Lemma 1.
The calculations to show it is indeed the projection are detailed in
the Appendix, and boil down to proving thatZ− π⊥X(Z) lives in
the tangent space. Specifically, to establish (11) we takeXΛ and
derive conditions that Λ had to verify when imposing that Z−
XΛ ∈ TXM. After some derivations, we find Λ = s(2DL),
with the auxiliary matrices D,E,F and L defined in Lemma 2.
Finally, the desired projection to the tangent space is given as
follows.

Proposition 4: Let X ∈M. The projection to the tangent
space πX : RN×d �→ TXM can be computed as:

πX(Z) = Z− π⊥X(Z) = Z−Xs(2DL).

When we take a small step in the opposite direction of grad f ,
in general we fall outsideM and we have to project back to it.
We need a projection from the tangent bundle to the manifold,
or a retraction, which is more efficient in general.

Given a full rank matrix Z ∈ R
N×d, consider its decomposi-

tionZ = Q̃R̃, where Q̃ is a matrix with orthogonal columns and
R̃ is upper triangular with ones in the diagonal. This decompo-
sition is unique. Indeed, one may obtain Q̃ by a Gram-Schmidt
process, but skipping the normalization steps. A more efficient
approach is to consider the classical QR decomposition (Z =
QR, with Q orthonormal and R upper triangular), and compute
Q̃ = QDR, where DR = diag(R) is the diagonal matrix with
the diagonal entries of R. In a way, this modification of the QR
decomposition shifts the “normalization” of the columns from
the upper triangular factor towards the orthogonal factor.

Algorithm 2: Riemannian Gradient Descent (GD) onM.

Require: Initial Xl
0 and Xr

0

1: repeat
2: Compute Euclidean gradients ∇fXl(Xl

k,X
r
k) and

∇fXr (Xl
k,X

r
k)

3: Compute Riemannian gradients as
grad fXl(Xl

k,X
r
k) = πXl

k
(∇fXl(Xl

k,X
r
k))

grad fXr (Xl
k,X

r
k) = πXr

k
(∇fXr (Xl

k,X
r
k))

4: Compute retraction with α chosen via the Armijo rule
Xl

k+1 = RXl
k
(−α grad fXl(Xl

k,X
r
k)),

Xr
k+1 = RXr

k
(−α grad fXr (Xl

k,X
r
k))

5: until convergence
6: return {Xl

k,X
r
k}.

Note that Q̃ ∈M and this decomposition will serve to define
a retraction to the manifold in the next proposition. Again, this
procedure differs from the popular Q-factor retraction to the
Stiefel manifold [13, p. 160].

Proposition 5: Let X ∈M and ζ ∈ TXM a tangent vector.
Then, the mapping

RX(ζ) = q̃f(X+ ζ)

is a retraction, where q̃f(A) denotes the Q̃ factor of the modified
QR decomposition described above, and the sum X+ ζ stands
for the usual abuse of notation for embedded manifolds on vector
spaces.

We now have all the ingredients for the GD method to min-
imize f(Xl,Xr) = ‖M ◦ (A−Xl(Xr)�)‖2F over M, which
is tabulated under Algorithm 2. The convergence rate of Rie-
mannian GD is the same as the unconstrained counterpart (i.e.,
producing points with grad f smaller than ε in O(1/ε2) itera-
tions) [33]. The computational complexity of each iteration is
dominated by the QR decomposition in the retraction.

We extended the Pymanopt package [34] with a class for
the manifoldM defined in Proposition 3, which forms part of
the code available for this paper.

Remark 3 (Rescaling the factors’ columns): Algorithm 2
does not quite solve (2). While both {Xl

k,X
r
k} belong to M,

the constraint (Xl
k)
�Xl

k = (Xr
k)
�Xr

k will in general not be
satisfied upon convergence. Dropping the iteration index for
simplicity, let x̄l

i, x̄
r
i ∈ R

N be the i-th columns of Xl and Xr,
respectively. To obtain a feasible solution from the output of
Algorithm 2, for each dimension i = 1, . . . , d we define scaling
factors si = ‖x̄l

i‖2/‖x̄r
i ‖2 and collect them in the diagonal

matrixS = diag(s1, . . . , sd). We then rescale the columns of the
embedding matrices via Xl

k ← Xl
kS
−1/2 and Xr

k ← Xr
kS

1/2,
without affecting the value of the objective function but now
satisfying the constraint in (2).

Example 3 (Bipartisan senate revisited): Going back to the
bipartisan senate from Example 1, Fig. 3 depicts the solution of
(2) for the same simulated bipartite senator-law digraph (impos-
ing the orthogonality constraints and rescaling in Remark 3).
Unlike in Example 1, the Riemannian GD algorithm on the
manifoldM is able to recover the same structure as the ASE.
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Fig. 3. Solution to the embedding problem (2) for the bipartisan senate
example. ASE (left) and Riemannian GD (right). Notice how both solutions
are nearly identical [cf. unconstrained GD in Fig. 2 (right)], underscoring the
importance of the orthogonality constraints.

Laws are now correctly aligned with their corresponding party,
thus faithfully revealing the structure in the data.

V. NUMERICAL EXPERIMENTS AND APPLICATIONS

In this section we illustrate our embedding algorithms’ ability
to produce accurate and informative estimates of nodal latent
position vectors. We explore a variety of GRL applications
and consider synthetic and real network data. Our test cases
are designed to target ASE challenges outlined in Section I-A,
namely: i) missing data; ii) embedding multiple networks; and
iii) graph streams (with fixed and varying number of nodes).
For each case we assess the results with respect to estimation
accuracy, interpretability, and stability/alignment in dynamic
environments. The suitability of spectral embeddings (rooted
in the RDPG model) for downstream tasks has already been
well-documented [3], [26]. For this reason, the goal here is to
demonstrate the effectiveness of our algorithms in generating
node embeddings that faithfully represent network structure
in novel settings i)-iii). Supplementary results exploring algo-
rithm sensitivity to random initialization are in Appendix E.
The code for all these experiments is publicly available at
https://github.com/marfiori/efficient-ASE.

A. Inference With Missing Data

First we illustrate how GD-based inference can be useful for
GRL with missing data. The setup is similar to that of Example 1,
but here we rely on real United Nations (UN) General Assembly
voting data [35]. For each roll call and country, the dataset
includes if the country was present and if so the corresponding
vote (either ‘Yes’, ‘No’, or ‘Abstain’) for each proposal. We
analyze the associated bipartite digraph pertaining to a particular
year, where nodes correspond to countries and roll calls, and an
edge from a country to a roll call exists if it voted affirmatively.
If the country was absent or abstained, we will tag that edge as
unknown (Mij = 0).

Fig. 4 depicts the node embeddings (d = 2) of the graph from
1955, estimated by ASE (naively assuming unknown edges do
not exist, Aij = 0) and Riemannian GD (i.e. Algorithm 2).

Fig. 4. UN General Assembly voting data for 1955. ASE (left) and Riemannian
GD (i.e., Algorithm 2) with mask matrix encoding present and absent (or
abstained) voters (right). Our approach is able to assign the absent voters to
the correct group (e.g., South Africa) and offers a more clear clustering of roll
calls.

Consider the countries, which are displayed as circles. We
highlight four interesting cases: Russia, USA, France, and South
Africa. At the time, the first two represented two poles of
the world, and are naturally almost orthogonal to each other
for both methods. Note furthermore how the ASE seems to
indicate that South Africa is less likely to vote in agreement
with Russia than (even) the USA, whereas the opposite is true for
France.

The problem comes from equating an absence or abstention
to a negative vote. For instance, South Africa was only present in
roughly one third of the roll calls, and it voted almost identically
to the USA. The Riemannian GD method, which acknowledges
unknown edges via the mask M, provides an embedding that
reflects this agreement. Something similar happens with France,
which differed from the USA only in six roll calls. Four cor-
respond to USA abstentions and France voting ‘Yes’, another
one where the opposite happened (and thus both cases should
not be accounted for in the optimization problem), and finally
the roll call 10036 where France was one of only two countries
to vote ‘No’ (the USA voted ‘Yes’).

Regarding the embeddings of roll calls marked with a cross
in Fig. 4, note how 10036 is aligned with the Russian block
of countries by ASE, but it is better placed as an intermediate
proposal in Fig. 4 (right) – equally likely to be voted by all coun-
tries. Something similar occurs with roll call 10035, which dealt
with the same subject of 10036, but met resistance from more
countries (roughly a dozen, including the USA and France). In
both cases several countries were not present or abstained during
the voting. Incorrectly assuming these votes as negative by ASE
leads to biased results. Much more can be said about the roll
calls and their associated UN resolutions, but let us conclude
the discussion by noting that roll call embeddings generated
by Algorithm 2 form three clusters reflecting the geopolitical
landscape at the time. There is a cluster for each pole (American
and Russian), plus an intermediate one where both poles tend
to vote similarly. On the other hand, ASE generates roll call
embeddings that are incorrectly aligned (e.g., 10036), and a loose
grouping of intermediate roll calls with shared voting from both
poles.
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B. Embedding Multiple Graphs: The Batch Case

Suppose now that we observe m > 1 graphs {At}mt=1 and we
are interested, for instance, in testing whether they are drawn
from the same RDPG model, or, in tracking the embeddings
over time. Assume that we can identify nodes across different
observations; e.g., they correspond to labeled users in a social
network and so a matching algorithm is not needed. Indepen-
dently obtaining the ASE for each graph is undesirable because
it yields arbitrarily rotated embeddings, a challenge that has
motivated several recent research efforts.

Indeed, a hypothesis test which involves solving a Procrustes
problem to align the embeddings was put forth in [36]. An
alignment alternative is to jointly embed all m graphs via a
single ‘super-matrix’ decomposition. The so-called Omnibus
embedding first forms an mN ×mN matrix derived from all
{At}mt=1, and then computes its ASE which enjoys asymptotic
normality [20]. The Unfolded ASE (UASE) also constructs an
auxiliary matrix, but by horizontally stacking all {At}mt=1 [9],
[21]. Nodal representations are then extracted from the SVD of
this N ×mN matrix. Under some technical assumptions, the
UASE provably offers desirable longitudinal and cross-sectional
stability [9]. However, the complexity and memory footprint of
these batch approaches grow linearly with m, and they are only
applicable to undirected graphs.

In the context of the algorithms proposed in this paper, we
may leverage their iterative nature and initialize them using the
estimated embeddings of another related (e.g., contiguous in
time) graph. Unless radical changes take place from one graph
to the other, this so-called warm restart is expected to produce
embeddings that are closely aligned, with the added benefit of
converging in few iterations.

Stability of BCD estimates: Let us illustrate this (desirable)
behaviour through a numerical example. We borrow the setting
and code from [9]. Consider two graph samples drawn from a
dynamic SBM with inter-community probability matrices

Π1 =

⎛
⎜⎜⎜⎝
0.08 0.02 0.18 0.10

0.02 0.20 0.04 0.10

0.18 0.04 0.02 0.02

0.10 0.10 0.02 0.06

⎞
⎟⎟⎟⎠ ,

Π2 =

⎛
⎜⎜⎜⎝
0.16 0.16 0.04 0.10

0.16 0.16 0.04 0.10

0.04 0.04 0.09 0.02

0.10 0.10 0.02 0.06

⎞
⎟⎟⎟⎠ .

Initially there are four communities. At time 2, the first two
communities merge, community 3 moves, and community 4 has
its connection probabilities unchanged.

Ideally, when embedding both graphs: i) the representations of
nodes in community 4 should not change (longitudinal stability);
and ii) the time 2 embeddings of members of communities 1 and
2 should be similar, up to noise (cross-sectional stability). Fig. 5
displays the results for UASE [9], Omnibus embedding [20],
independent ASE for each graph, and BCD (i.e. Algorithm 1
warm-restarted at time 2 with the result of time 1). As expected,

Fig. 5. Embeddings of two SBM graph realizations, where communities 1
and 2 merge, while community 4 keeps the connection probabilities with other
groups. Observe how the BCD approach (far right) manages to capture this
behaviour, while providing the best representation for each graph individually
(quantified by the smallest cost function values). Example adapted from [9].

independent ASE lacks longitudinal stability, and the Omnibus
embedding fails to exhibit cross-sectional stability. Note how
the time 2 Omnibus estimates of communities 1 and 2 remain
separate, due to time 1 ‘interference’ affecting this joint embed-
ding.

UASE and BCD produce embeddings that fulfill both stability
requirements i) and ii). However, BCD yields a better overall
representation for both graphs. This is quantified via the cost
function (1) evaluated at each solution; see above each plot for
the numerical values. Unlike the batch UASE, gradient descent
methods as the ones we present here offer a pathway towards
tracking nodal representations in a streaming graph setting – the
subject dealt with next.

C. Model Tracking for Graph Streams

Consider now a monitoring scenario, where we observe a
stream of time-indexed graphs {At} and the goal is to track
the underlying model. Different from the batch setting of the
previous section, we are now unable to jointly process the entire
graph sequence. This may be due to memory constraints or
stringent delay requirements. We will still assume that nodes
are identifiable across time, but the algorithm’s computational
cost and memory footprint may not increase with t.

1) Fixed Vertex Set: We first consider the setting where N is
fixed and we would like to track the latent vectors Xt ∈ R

N×d.3

Previous efforts in this direction have been mainly motivated
by the change-point detection problem; i.e., detecting if and
when the generative model of the observed graph sequence
changes [6], [37], [38], [39]. Our focus is on the related problem
of estimating the embeddings’ evolution. A couple noteworthy
applications include recommender systems (where rankings are
revealed, or even change, over time) [40] or, as we discuss below,
monitoring wireless networks [41].

Independent ASE computation for each At suffers from the
alignment issue already discussed. Instead, and supposing for

3We stick to undirected graphs for ease of exposition, but extensions to
digraphs are straightforward and presented in the numerical experiments.
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Fig. 6. Two-block dynamic SBM in which a single node changes affiliation at
each t. Comparison between online GD and recursive SVD [19]. (top) Embed-
dings for the first two time-steps (d = 2); the node that changed communities
is highlighted in green. Best viewed in a color display. Note how the change
of a single node produces markedly different results for [19], whereas online
GD offers stable estimates. (bottom) Evolution of ‖X̂tX̂

�
t −Pt‖F . Solid

line indicates median across ten realizations, with the range between first and
third quartiles shown in a lighter color. Online GD exhibits uniformly bounded
error, whereas [19] accumulates error as t grows.

now that M can be ignored, it may well be the case that
recursive methods to update the SVD of a perturbed matrix
At = At−1 +Δt suffice [19]. However, as we show in the
following synthetic example, these approaches may also produce
arbitrarily rotated estimates from one time-step to the next, and
suffer from catastrophic error accumulation [22].

Tracking of a dynamic SBM: Our idea is instead to proceed
as in Remark 2, and warm-restart the GD iterations with the
previous time-step’s estimate X̂t−1 (analogously to the example
in Fig. 5). Consider a dynamic SBM graph with N = 200
nodes and two communities. At each time-step t = 0, 1, 2, . . . a
single randomly chosen node changes its community affiliation.
We compare the tracking performance of warm-restarted GD
[i.e., several iterations of GD in (3) initialized with the previous
time-step’s estimate] and the fast, recursive SVD algorithm
in [19]. The nodal embeddings for t = 0 and 1 (i.e., a single
node changed affiliation) are depicted in Fig. 6 (top). Notice how
online GD produces stable results, with a single vector moving
from one cluster to the other. The rest of the nodes’ embeddings
remain virtually unchanged. On the other hand, the recursive
SVD in [19] fails to preserve a common angular reference for
X̂0 and X̂1. Another well-documented drawback of these incre-
mental SVD methods is that, since they update only the d most
significant components, the error ‖X̂tX̂

�
t −Pt‖F increases

with t [22]. Fig. 6 (bottom) illustrates this error-accumulation

Fig. 7. Diagram of the proposed tracking system. The entry-wise filter F(z)
implements an averaging operator, e.g., a fixed-length moving average.

behavior, to be contrasted with online GD that keeps the error
in check for all t ≥ 0.

Wireless network monitoring: We may further leverage the
fact thatXt is typically correlated withXt−1 in order to improve
the embeddings’ accuracy over time. For example, suppose
Xt−m = . . . = Xt = X over some interval of length m. It is
then prudent to estimate X by solving (1), but using the aver-
age Āt = 1/m

∑t
k=t−m Ak instead [42]. Note that Āt may

be interpreted as the adjacency matrix of a weighted graph.
Edge weights can also be modeled by an RDPG, where now the
embeddings are such thatXX� = E[A]. Unlike the unweighted
case, E[A] are not probabilities. Still, under mild assumptions
on the weights’ distribution, the solution of (1) for weighted A
is a consistent estimator of X as N →∞ [6].

These observations motivate well the two-stage tracking sys-
tem depicted in Fig. 7. The stream of adjacency matrices {At}
is fed to the entry-wise filter F(z), which outputs {Bt}. For
instance, F(z) may be a moving average of fixed length m as
before. If memory is at a premium, we may use a single-pole IIR
filter instead so that {Bt} is an exponentially-weighted moving
average of the input adjacency matrices. We may even drop the
filtering stage altogether (setting m = 1) to yield a least mean
squares (LMS)-type online GD algorithm.

We now empirically demonstrate this simple tracking sys-
tem yields accurate and stable embeddings of dynamic RDPG
graphs. Consider a Wi-Fi network from which a monitoring
system periodically acquires the Received Signal Strength Indi-
cator (RSSI) between Access Points (APs) – a feature typically
available in enterprise-level deployments. We will use our GRL
framework to flag network changes and eventually diagnose
them. We analyze graphs At whose nodes are the APs and the
edge weights are the measured RSSI values (plus a constant
offset so that all values are positive). Since these measurements
are typically not symmetric, we have a digraph sequence. We
rely on the dataset described in [43], which consists of hourly
measurements between N = 6 APs at a Uruguayan school, over
almost four weeks (m = 655 graphs). During the monitoring pe-
riod, the network administrator moved an AP (i = 4) at t ≈ 310.

To track the AP embeddings, we run an online version of
Algorithm 2 as schematically shown in the diagram of Fig. 7,
but adapted to digraphs. This entails a retraction after the Rie-
mannian GD step, not shown in the diagram. We use an IIR filter
F(z) with a pole at 0.9. Furthermore, we adopt a fix stepsize
α = 0.01 instead of choosing it via the Armijo rule.

The evolution of the online Riemannian GD estimates X̂l
t

and X̂r
t for d = 2 is shown in Fig. 8. Different color palettes

are used to distinguish the nodes, and as t increases the colors
become lighter. Note how at all times there are two (almost)
orthogonal cluster of nodes: c1) APs 1 and 2 (in the lower part
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Fig. 8. Embeddings X̂l
t (left) and X̂r

t (right) for the RSSI digraph (d = 2).
Color palettes distinguish the APs and a lighter tone indicates larger values of
t. Best viewed in a color display. The network’s change at t ≈ 310 is apparent.
AP 4 was moved (i = 4) closer to the upper cluster of APs.

of the plots); and c2) APs 3, 5 and (to a lesser extent) 6. AP
4 is embedded between both communities for all t. Moreover,
note how the trajectory of each AP can be split into a couple
clear states, discernable as the colors transition from darker to
lighter. This is indicative of the change in AP 4’s position at
roughly the middle of the monitoring period. Finally, movement
within both AP clusters is mostly radial, hence dot products
between cluster members are preserved. On the other hand, AP 4
moves tranversally closer to c2, consistent with the information
provided by the network administrator. It appears as if it was
moved closer to AP 5, and AP 1 remains its closest member
from c1.

2) Time-Varying Node Set: In dynamic environments it is not
uncommon for nodes to join or leave the network. Going back
to the wireless network test case, the question remains on how
to proceed should an AP fail, or if the administrator decides to
add a new one to improve coverage. Dealing with the former
case is straightforward; if a node leaves the network at time t,
we simply drop the corresponding row in X̂t−1 and re-run the
GD algorithm (warm-restarted from there).

Node additions require more thought. Suppose that a sin-
gle node i = N + 1 joins the network at time t. Let aN+1 =
[A1,N+1, . . . , AN,N+1]

� ∈ {0, 1}N be the (N + 1)-th column
of At ∈ {0, 1}N+1×N+1, excluding AN+1,N+1 = 0 and drop-
ping the subindex t for notational convenience. Then given
X̂t−1 ∈ R

N×d, we can embed node i by solving

x̂N+1 = argmin
θ∈Rd

‖aN+1 − X̂t−1θ‖22. (12)

This simple but intuitive out-of-sample embedding procedure
was studied in [26], and shown to recover the true latent positions
as N →∞. If several nodes are added at a given time-step,
they can all be embedded by solving multiple LS problems
like (12). However, this procedure disregards the information
from the connections between new nodes. Furthermore, if the

Fig. 9. Dynamic Erdös-Rényi graph in which a single node is added at each
t. Comparison between online GD and out-of-sample LS embedding [26].
Evolution of ‖X̂tX̂

�
t −Pt‖F /

√
Nt. Solid line indicates median across ten

realizations, with range between first and third quartiles shown in a lighter color.
Once more, online GD exhibits uniformly bounded error, whereas the baseline
method [26] accumulates error as t grows.

embeddings of existing nodes are not updated, their growing
inaccuracies as At evolves will negatively impact future nodes’
representations.

As we show in the following numerical experiments, these
drawbacks can be overcome by running our online GD-based
algorithms to update all embeddings X̂t, initializing existing
nodes with X̂t−1 and new one(s) with x̂N+1 as in (12).

Dynamic random graph with growing vertex set: Consider an
Erdös-Rényi graph with a fixed connection probability p = 0.1,
and initial number of nodes N0 = 100. At each time-step t we
add a single node so that Nt = Nt−1 + 1. The evolution of
the error ‖X̂tX̂

�
t −Pt‖F /

√
Nt is shown in Fig. 9. Note how

(carefully warm-restarted) online GD exhibits bounded error
behavior, in stark contrast with repeated LS-based embeddings
as in [26]. Admittedly, this gain in accuracy comes with a
modest increase in computation (few GD steps), and identical
memory footprint (i.e., storing the current embeddings and the
new adjacency matrix) as the baseline in [26].

Tracking international relations from UN voting data: Here
we revisit the UN General Assembly voting data from Sec-
tion V-A. Following the same bipartite digraph construction
procedure, we study all yearly graphs from 1955 to 2015. In this
dynamic network we have a time-varying node set. Roll calls
change from one year to the next, and also several countries
joined the UN later (while others have ceased to exist). We
embed the first graph from 1955 using Riemannian GD initial-
ized at random (as before, using d = 2). For each successive
year, we warm-restart Algorithm 2 with the embeddings from
the previous year, while new nodes are initialized using the LS
solution (12).

Fig. 10 depicts the embeddings of four countries: USA, Israel,
Cuba, and the USSR (later, the Russian Federation). We use
a similar visualization style as in Fig. 8, with different color
palettes used to distinguish among countries, and lighter tones
indicating more recent years. Observe how the representations
for the USA and Israel remain strongly aligned over the entire
time horizon, which is consistent with their longstanding agree-
ment on UN resolution matters. The embedding for the USSR
is initially (nearly) orthogonal to the USA and Israel, with Cuba
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Fig. 10. UN General Assembly voting data from 1955 to 2015. Evolution
of nodal positions for the USA, Israel, Cuba, and the USSR (or, after 1991,
the Russian Federation) estimated via online Riemannian GD. Color palettes
distinguish the countries and a lighter tone indicates later years. Best viewed
in a color display. Note how the USA and Israel remain strongly aligned over
the entire span, with Cuba and the USSR shifting alignments depending of their
political views.

initially showing a greater affinity to the USA/Israel block. This
is consistent with Cold War geopolitics of the time. Then, after
1959, Cuba’s position shifts to the lower half-plane, becoming
more aligned with the USSR. This is expected given Cuba’s
sharp shift in foreign policy as a result of the Cuban revolution,
with its ideology being in agreement with that of the USSR. This
polarized scenario remained unchanged until 1991. That year the
embedding for the USSR (now the Russian Federation) moves
closer to the USA/Israel block, which reflects the politics of the
Russian Federation in the aftermath of USSR’s dissolution. Cuba
remains at an (almost) orthogonal position from the USA/Israel
block, with Russia eventually shifting to a middle ground after
the mid-2000’s.

VI. CONCLUDING REMARKS

We developed a gradient-based spectral-embedding frame-
work to estimate latent positions of RDPGs. Relative to prior art
our algorithmic approaches offer better representation at a com-
petitive computational cost, and they are more broadly applica-
ble to settings with incomplete, dynamic, and directed network
data. We motivated and proposed a novel manifold-constrained
formulation to embed directed RDPGs, and developed novel
Riemannian GD iterations to estimate interpretable latent nodal
positions. The effectiveness of the GRL framework is demon-
strated via reproducible experiments with both synthetic and real
(wireless network and United Nations voting) data. We made all
our codes publicly available.

This work and its current limitations open up several exciting
and challenging directions for future research. For even better
scalability, in the near future we plan to migrate our Python
implementations to a faster language such as C. Exploring the
viability of parallelizing the BCD iterations is another direction
in our future research agenda. With regards to the streaming sce-
nario, it would be of interest to develop lightweight online rules
to adaptively determine the embedding dimension. Performing

dynamic regret analyses of the online GD methods would be
a valuable contribution, since such guarantees in non-convex
settings are so far quite rare.

APPENDIX

A. Proof of Proposition 3

In order to show that M is a manifold and to further un-
derstand its differential structure, consider the function F :
R

N×d
∗ �→ Sd defined as F (X) = M ◦ (X�X− Id). Observe

that M is defined as the preimage of zero through F , so we
will prove that this is a regular value.

For ζ ∈ R
N×d, the derivative of F in X ∈ F−1(0d×d) along

ζ is DF (X)ζ = M ◦ (ζ�X+X�ζ). Next we establish that
DF (X) is onto. Indeed, let η be a matrix in the orthogonal
complement of the image, i.e., η ∈ ImDF (X)⊥ ⊂ Sd. Then

〈η,M ◦ (ζ�X+X�ζ)〉 = 0, ∀ζ ∈ R
N×d.

Now, since the diagonal of η is null, we may drop the Hadamard
product with M and obtain

〈η,M◦(ζ�X+X�ζ)〉=〈η, ζ�X+X�ζ〉=0, ∀ζ ∈ R
N×d.

So we have tr(ηζ�X) + tr(ηX�ζ) = 0 and these two sum-
mands are equal to each other by virtue of the circular property
of the trace operator.

Hence, we obtain 2 tr(ηX�ζ) = 0, ∀ ζ ∈ R
N×d, and since

this trace vanishes for all ζ, we have that ηX� = 0d×N . Mul-
tiplying by X we obtain ηX�X = 0d×d. Becasue X�X is
diagonal, necessarily η = 0d×d and therefore DF (X) is onto.
The conclusion is thatM is a differential manifold, of dimension
Nd− d(d−1)

2 .
The tangent space at X can be obtained as the kernel of

DF (X), so we have

TXM = {ζ ∈ R
N×d : M ◦ (ζ�X+X�ζ

)
= 0d×d}, (13)

completing the proof. �

B. Proof of Lemma 1

Consider a matrix of the form XΛ with Λ ∈ Sd, and let us
show that it is orthogonal to a matrix of the tangent space. Now,
observe that tr((XΛ)�ζ) = tr(Λζ�X).

Therefore,

tr
(
(XΛ)�ζ

)
=

1

2
tr
(
Λ(X�ζ + ζ�X)

)
= 0.

The last trace is zero sinceΛ ∈ Sd andX�ζ + ζ�X is diagonal,
because ζ ∈ TXM. �

As expected, the dimension of the normal space is N(N−1)
2 ,

which is the dimension of Sd.

C. Proof of Lemma 2 and Proposition 4

To compute the projection to the normal space, recall some
auxiliary matrices defined in Lemma 2. LetX ∈M. ThenX�X
is diagonal, with positive entries. Define D = (X�X)1/2 and
let E = 1d1

�
dD

2 +D21d1
�
d . These matrices allow us to re-

write the operation ϕ(A) = AD2 +D2A as ϕ(A) = A ◦E.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on January 04,2024 at 22:11:02 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

In particular, this allows us to obtain an expression for the inverse
operation, which will be needed. Indeed, if F is the matrix with
entries Fij = E−1ij , then (AD2 +D2A) ◦ F = A, for all A ∈
R

d×d. We can now prove the expression of the projection as
follows.

From the characterization of Lemma 1, it is clear that
Xs(2DL) ∈ TXM⊥, since s(2DL) ∈ Sd. Let us see that Z−
Xs(2DL) ∈ TXM. From (13), we have to show that

(Z−Xs(2DL))�X+X� (Z−Xs(2DL)) is diagonal.

Indeed,

(Z−Xs(2DL))�X+X� (Z−Xs(2DL))

= Z�X− (s(2DL))�X�X+X�Z−X�Xs(2DL)

=Z�X+X�Z−1
2

[
2DL+2(DL)�

]
X�X+diag(2DL)X�X

− 1

2
X�X

[
2DL+ 2(DL)�

]
+X�Xdiag(2DL).

Now, since diag(2DL) and X�X are diagonal matrices, they
commute, and their product is diagonal. So we can forget those
two terms in the expression, and continue with the rest. We will
use the expression of L and the fact that X�X = D2. Hence,

Z�X+X�Z− 1

2

[
2DL+ 2(DL)�

]
X�X

− 1

2
X�X

[
2DL+ 2(DL)�

]
=Z�X+X�Z−[DLD2 +L�DD2+D2DL+D2L�D

]
=Z�X+X�Z−[D (

LD2+D2L
)
+
(
L�D2+D2L�

)
D
]

= Z�X+X�Z− [
D (L ◦E) +

(
L� ◦E)

D
]
.

Now, observe that L ◦E = ((D−1X�Z) ◦ F) ◦E =
D−1X�Z, and the same happens with L�. We end up
with

Z�X+X�Z− [
D

(
D−1X�Z

)
+
(
Z�XD−1

)
D
]
= 0d×d,

which in particular is diagonal. Therefore, Z−Xs(2DL) ∈
TXM and this completes the proof. �

The proof of Proposition 4 is straightforward now. We have
all we need to compute the projection to the tangent space πX :
R

N×d �→ TXM, since πX(Z) + π⊥X(Z) = Z. �

D. Proof of Proposition 5

Denoting by R
N×d
fr the set of N × d full-rank matrices, and

by Supp1(d) the set of upper triangular matrices with ones in
the diagonal, let us consider the mapping

φ :M× Supp1(d) �→ R
N×d
fr , with φ(Q̃, R̃) = Q̃R̃.

From the discussion immediately preceding the statement of
Proposition 5, we have that φ is bijective. Furthermore, φ
is smooth since its the restriction of the matrix multiplica-
tion to a submanifold. Now, given a full rank matrix M, the
first component of φ−1 can be obtained as the result of a
modified Gram-Schmidt process, which is is differentiable.

Fig. 11. Evolution of f(Xl
k,X

r
k) =

1
2 ‖M ◦ (A−Xl

k(X
r
k)
�)‖2F using Al-

gorithm 2 to embed an LFR graph, starting from 75 different random initial-
izations. The first 5 iterations are omitted for clarity. Note how the algorithm
systematically produces estimates of the embeddings with a lower cost than
ASE, and marginal variability regardless of the initialization.

The second component can then be obtained as R̃ = Q̃−1M,
and therefore it is also differentiable. It follows that φ is a
diffeomorfism.

We also have that φ(Q̃, Id) = Q̃. Following [12, Prop. 4.1.2]
we have that the projection onto the first component of φ−1

is a retraction, which is exactly the q̃f mapping defined in
Proposition 5. �

E. Robustness to Initialization

Since the objective functions we optimize are non-convex and
convergence guarantees provided are to stationary solutions, it is
prudent to study the algorithms’ sensitivity to the initialization.
As discussed in Section III-A, except for specific problematic
initializations corresponding to sub-optimal stationary points,
in our experience all algorithms converge to the optimum when
they are initialized at random. The following experiment illus-
trates this desirable property, in particular for the Riemannian
GD (i.e., Algorithm 2) method developed to embed digraphs.
Similar results are obtained for the other algorithms, but not
included here to avoid repetition.

We consider a Lancichinetti–Fortunato–Radicchi (LFR) [44]
benchmark graph withN = 1000 nodes, randomly initialize Al-
gorithm 2 and plot the evolution of the cost function f(Xl

k,X
r
k)

in (2). The LFR model is a widely adopted benchmark that pro-
duces graphs with properties observed in real-world networks,
particularly in terms of the resulting degree distribution and
community sizes. Here, the LFR graph was generated using
parameters τ1 = 3 and τ2 = 2 as exponents of the power law
distributions for the degree and community size, respectively,
and mixing parameter μ = 0.1. The resulting graph has 16
communities, the larger one with 142 nodes, and the smaller
one with 30 nodes. The largest hub has 157 neighbors, and
there are several nodes with degree 2. Fig. 11 shows the results
over 75 randomly initialized runs where d = 16, and also the
cost function value 1676.49 obtained by ASE. Regardless of
the initialization, the limiting objective values obtained via
Riemannian GD exhibit marginal variability (mean = 1635.66,
std = 6.52) and always outperform ASE. In terms of timing,
embedding each of these LFR graphs with N = 1000 nodes
takes 40 seconds on average.
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