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Abstract—Principal component analysis (PCA) is widely used
for high-dimensional data analysis, with well-documented ap-
plications in computer vision, preference measurement, and
bioinformatics. In this context, the fresh look advocated here
permeates benefits from variable selection and compressive
sampling, to robustify PCA against outliers. A least-trimmed
squares estimator of a low-rank component analysis model is
shown closely related to that obtained from an �0-(pseudo)norm-
regularized criterion encouraging sparsity in a matrix explicitly
modeling the outliers. This connection suggests efficient (approx-
imate) solvers based on convex relaxation, which lead naturally
to a family of robust estimators subsuming Huber’s optimal M-
class. Outliers are identified by tuning a regularization parameter,
which amounts to controlling the sparsity of the outlier matrix
along the whole robustification path of (group)-Lasso solutions.
Novel algorithms are developed to: i) estimate the low-rank
data model both robustly and adaptively; and ii) determine
principal components robustly in (possibly) infinite-dimensional
feature spaces. Numerical tests corroborate the effectiveness of
the proposed robust PCA scheme for a video surveillance task.

I. INTRODUCTION
Principal component analysis (PCA) is the workhorse of

high-dimensional data analysis and dimensionality reduction,
with numerous applications in statistics, engineering, and
the social sciences; see, e.g., [7]. Nowadays ubiquitous e-
commerce sites, the World Wide Web, and urban traffic
surveillance systems generate massive volumes of data. As
a result, the problem of extracting the most informative – yet
low-dimensional – structure from high-dimensional datasets is
of paramount importance [5]. In this direction, PCA provides
least-squares (LS) optimal linear approximations to a data set
in R

p of any rank q ≤ p. The desired linear subspace is
efficiently obtained from the q dominant eigenvectors of the
sample data covariance matrix [7].
Along with data that adhere to postulated models, present

in large volumes of data are those that do not (outliers) [12].
Unfortunately, LS is known to be very sensitive to out-
liers [12], [6], and this undesirable property is inherited by
PCA as well [7]. Early efforts towards robustifying PCA
have relied on robust estimates of the data covariance matrix;
see, e.g., [1]. Statistical physics have been applied to robust
PCA in [15], while a method building on M-estimators was
put forth in [3]. Recently, polynomial-time algorithms with
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performance guarantees were developed for low-rank matrix
recovery in the presence of sparse errors [2]. This pertains
to an idealized robust PCA problem, since those entries not
affected by outliers are assumed to be observed without errors.
Moreover, it is not possible to determine principal components
from the low-rank matrix recovered.
In the present paper, a robust PCA scheme is developed

which requires minimal assumptions on the outlier model. A
natural least-trimmed squares (LTS) PCA estimator is first
shown closely related to an estimator obtained from an �0-
(pseudo)norm-regularized criterion, adopted to fit a low-rank
component analysis model that explicitly incorporates an un-
known sparse vector of outliers per datum. As in compressive
sampling [14], efficient (approximate) solvers are obtained by
surrogating the �0 norm of the outlier matrix with its closest
convex approximant. This leads naturally to an M-type PCA
estimator which subsumes Huber’s optimal choice as a special
case [4]. Unlike Huber’s formulation though, results here are
not confined to an outlier contamination model. A tunable
parameter controls the sparsity of the estimated matrix, and the
number of outliers as a byproduct. Hence, effective methods
to select this parameter are of paramount importance, and
systematic approaches are pursued by efficiently exploring the
whole robustifaction path of (group-)Lasso solutions [5], [17].
In this sense, the method here capitalizes on but is not limited
to sparse settings where outliers are sporadic, since one can
examine all sparsity levels along the robustification path.
Novel robust algorithms are developed to: i) adaptively

estimate the low-rank data model as new data comes in;
and ii) determine principal components in (possibly) infinite-
dimensional feature spaces, thus robustifying kernel PCA as
well [13]. Numerical tests on both real and synthetic data
demonstrate the effectiveness of the novel methods.
Notation: Operators (·)′, tr(·), and med(·) will denote transpo-
sition, matrix trace, and median, respectively; vector diag(M)
collects the diagonal elements of M. The �p norm of vector
x is ‖x‖p := (

∑n
i=1 |xi|p)

1/p for p ≥ 1; and ‖M‖F :=√
tr (MM′) is the matrix Frobenious norm. The p×p identity

matrix will be represented by Ip, while 0p (1p) will denote
the p× 1 vector of all zeros (ones), and 0p×q := 0p0

′
q.

II. ROBUSTIFYING PCA
Consider the classical PCA problem [7], in which a set

of data T := {xn}N
n=1 in the p-dimensional Euclidean input
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space is given, and the goal is to find the best q-rank (q ≤ p)
linear approximation to the data in T . One approach to solving
this problem, is to adopt a low-rank (component analysis)
model

xn = m + Usn + en, n = 1, . . . , N (1)

where m ∈ R
p is a location (mean) vector; matrix U ∈

R
p×q has orthonormal columns spanning the signal sub-
space; {sn}N

n=1 are the so-termed principal components, and
{en}N

n=1 are zero-mean i.i.d. random errors. The unknowns
in (1) can be collected in U := {m,U, {sn}N

n=1}, and
they are estimated via LS. The resulting estimates are m̂ =∑N

n=1 xn/N and ŝn = Û
′(xn − m̂), n = 1, . . . , N ; while Û

is given by the q-dominant right singular vectors of the N ×p
data matrix X := [x1, . . . ,xN ]′ [5, p. 535]. Note that the
principal components (entries of) sn are the projections of the
centered data points onto the signal subspace. Equivalently,
PCA can be formulated to optimize maximum variance, or,
minimum reconstruction error criteria; see, e.g., [7].
Given training data in T possibly contaminated with out-

liers, the goal here is to develop a robust estimator of U that
requires minimal assumptions on the outlier model. Building
on LTS regression [12], the desired robust estimate ÛLTS :=
{m̂, Û, {ŝn}N

n=1} can be obtained as the minimizer of the
following LTS PCA estimate

ÛLTS := arg min
U

ν∑
n=1

r2
[n](U) (2)

where r2
[n](U) is the n-th order statistic among the squared

residual norms r2
1(U), . . . , r2

N (U), and rn(U) := ‖xn −m −
Usn‖2. The so-termed coverage ν determines the breakdown
point of the LTS PCA estimator [12], since N−ν residuals are
not present in (2). Even though (2) is nonconvex, existence of
a minimizer ÛLTS can be established as follows: i) for each
subset of T with cardinality ν (there are

(
N
ν

)
such subsets),

solve the corresponding PCA problem to obtain a candidate
estimator per subset; and ii) pick ÛLTS as the one among all(
N
ν

)
candidates with the least cost. This solution procedure

is combinatorially complex, and thus intractable except for
small sample sizes N . Algorithms to obtain approximate LTS
solutions in linear regression are available; see e.g., [12].
Instead of discarding large residuals, the alternative ap-

proach here explicitly accounts for outliers in the low-rank
data model. To this end, consider the vector variables {on}N

n=1

one per training data point, which take the value on �= 0p

whenever datum n is an outlier, and on = 0p otherwise. This
leads to the outlier-aware factor analysis model

xn = m + Usn + on + en, n = 1, . . . , N (3)

where the on can be deterministic or random with unspec-
ified distribution. In the under-determined linear system of
equations (3), both U as well as the N × p matrix O :=
[o1, . . . ,oN ]′ are unknown. The percentage of outliers dictates
the degree of sparsity (number of all-zero rows) in O. Sparsity
control will prove instrumental in efficiently estimating O,
rejecting outliers as a byproduct, and consequently arriving

at a robust estimator of U . A natural criterion for controlling
outlier sparsity is to seek the estimator

{Û , Ô} = arg min
U ,O

‖X− 1Nm
′ − SU

′ −O‖2F + λ0‖O‖0

s.t. U′
U = Iq (4)

where S := [s1, . . . , sN ]′ ∈ R
N×q , and ‖O‖0 denotes the

nonconvex �0-(pseudo)norm that is equal to the number of
nonzero rows of O. Vector (group) sparsity in the rows ôn of
Ô can be directly controlled by tuning the parameter λ0 ≥ 0.
As with compressive sampling and sparse modeling

schemes that rely on the �0-norm [14], the robust PCA problem
(4) is NP-hard. In addition, the sparsity-controlling estimator
(4) is intimately related to LTS PCA, as asserted next [11].
Proposition 1: If {Û , Ô} minimizes (4) with λ0 chosen such
that ‖Ô‖0 = N − ν, then ÛLTS = Û in (2).
The importance of Proposition 1 is threefold. First, it

formally justifies model (3) and its estimator (4) for robust
PCA, in light of the well documented merits of LTS [12].
Second, it further solidifies the connection between sparsity-
aware learning and robust estimation. Third, problem (4) lends
itself naturally to efficient (approximate) solvers based on
convex relaxation, the subject dealt with next.

III. SPARSITY CONTROLLING OUTLIER REJECTION
Recall that the row-wise �2-norm sum ‖B‖2,r :=∑N
n=1 ‖bn‖2 of matrix B := [b1, . . . ,bN ]′ ∈ R

N×p is the
closest convex approximation of ‖B‖0. This property provides
the motivation to relax problem (4) to

min
U ,O

‖X− 1Nm
′ − SU

′ −O‖2F + λ2‖O‖2,r

s.t. U′
U = Iq. (5)

The nondifferentiable �2-norm regularization term controls
row-wise (vector) sparsity on the estimator of O, a property
that has been exploited in diverse problems in engineering,
statistics, and machine learning [5]. A noteworthy representa-
tive is the group Lasso [17], a popular tool for joint estimation
and selection of grouped variables in linear regression.
It is pertinent to ponder on whether problem (5) still has

the potential of providing robust estimates Û in the presence
of outliers. The answer is positive, since it is possible to show
that (5) is equivalent to an M-type estimator [11]

min
U

N∑
n=1

ρv(xn −m−Usn) (6)

where ρv : R
p → R is a vector extension to Huber’s convex

loss function [6]; see also [8]

ρv(r) :=

{
‖r‖22, ‖r‖2 ≤ λ2/2

λ1‖r‖2 − λ2
2/4, ‖r‖2 > λ2/2

. (7)

Previous efforts towards robustifying linear regression have
pointed out the equivalence between M-type estimators and
�1-norm regularized regression [4]. However, they have not
recognized the connection to LTS via convex relaxation of
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(4). Here, the treatment goes beyond linear regression by con-
sidering the PCA framework. Linear regression is subsumed
as a special case, when matrix U is not necessarily tall but
assumed known, while sn = s, n = 1, . . . , N .
Remark 1: In computer vision applications where robust

PCA schemes are particularly attractive, one may not want to
discard the entire (vectorized) images xn, but only specific
pixels deemed as outliers [3]. This can be accomplished by
replacing ‖O‖2,r in (5) with ‖O‖1 :=

∑N
n=1 ‖on‖1, a Lasso-

type regularization that encourages entry-wise sparsity in Ô.

A. Solving the relaxed problem

To optimize (5) iteratively, an alternating minimization
(AM) algorithm is adopted which cyclically updates S(k) →
U(k) → O(k) → m(k) per iteration k = 1, 2, . . .. To update
each of the variable groups, (5) is minimized while fixing the
rest of the variables to their most up-to-date values.
To derive the updates at iteration k, first form the centered

and outlier compensated data matrix Xo(k) := X−1Nm(k−
1)′−O(k−1). The principal components are readily given by
S(k) = Xo(k)U(k − 1). Continuing the cycle, U(k) solves

min
U

‖Xo(k)− S(k)U′‖2F , s.t. U′
U = Iq

a reduced-rank Procrustes rotation [19]. The minimizer is
given in analytical form in terms of the singular vectors of
X
′
o(k)S(k) [19, Thm. 4]; details under Algortihm 1. Next, the

minimization of (5) with respect to O decouples across rows
on, resulting in N orthonormal group Lasso problems with
respective solutions: (rn(k) := xn−m(k− 1)−U(k)sn(k))

on(k) = rn(k)(‖rn(k)‖2 − λ2/2)+/‖rn(k)‖2, n = 1, . . . , N

where (·)+ := max(·, 0). These N parallel vector soft-
thresholded updates are denoted as S(·) under Algorithm 1.
Finally, the mean update is m(k) = (X−O(k))′1N/N .
The entire AM solver is tabulated under Algorithm 1,

indicating also the recommended initialization. Numerical
experiments have shown that few (five to ten) iterations
suffice to attain convergence. Algorithm 1 is also conceptually
interesting, since it explicitly reveals the intertwining between
the outlier identification process, and the PCA low-rank model
fitting based on the appropriate outlier compensated data.
Because each of the optimization problems comprising the

per iteration cycles has a unique minimizer, and the nondiffer-
entiable regularization only affects one of the variable groups
(O); the general convergence results for block-coordinate
descent schemes are applicable to Algorithm 1.
Proposition 2: As k →∞ the sequence of iterates generated
by Algorithm 1 converges to a stationary point of (5).

B. Selection of λ2: robustification paths

Selecting λ2 controls the number of outliers rejected.
But this choice is challenging because existing techniques
such as cross-validation are not effective when outliers are
present [12]. To this end, systematic approaches can be devised
which require either a rough estimate of the percentage of out-
liers, or, robust estimates σ̂2

e of the nominal noise variance that

Algorithm 1 : Batch robust PCA solver
Set U(0) = Ip(:, 1 : q), m(0) = med({xn}

N
n=1), O(0) = 0N×p.

for k = 1, 2, . . . do
Form Xo(k) = X − 1Nm′(k − 1) − O(k − 1).
Update S(k) = Xo(k)U(k − 1).
Obtain L(k)D(k)R(k)′ = svd[X′

o(k)S(k)].
Update U(k) = L(k)R′(k).
Update O(k) = S (X − 1Nm′(k − 1) − S(k)U′(k), λ2/2) .
Update m(k) = (X − O(k))′1N/N

end for

can be obtained using median absolute deviation schemes [6].
These approaches detailed in [11] leverage the robustification
paths of (group-)Lasso solutions available for all values of
λ2 [5] to select the one dictated by the data.

C. Estimator refinements

Nonconvex regularization. Instead of substituting ‖O‖0 in
(4) by its closest convex approximation, namely ‖O‖2,r,
letting the surrogate function to be nonconvex can yield tighter
approximations. To this end, consider approximating (4) by the
nonconvex formulation

min
U ,O

‖X− 1Nm
′ − SU

′ −O‖2F + λ0

N∑
n=1

log(‖on‖2 + δ)

s.t. U′
U = Iq. (8)

where δ ≈ 0 is introduced to avoid numerical instability.
Local methods based on iterative linearization of

log(‖on‖2 + δ) around the current iterate on(k), can
be adopted to minimize (8) [8]. Skipping details that can be
found in [11], this procedure leads to a modified version of
Algorithm 1, whereby λ2 ← λ0wn(k) is used for updating
each of the on(k). The weights wn(k) are given by

wn(k) = (‖on(k − 1)‖2 + δ)−1 , n = 1, . . . , N (9)

which altogether amounts to an iteratively reweighted version
of (5). To avoid getting trapped in local minima, a good initial-
ization for the iteration is the solution of (5). Extensive numeri-
cal tests have shown that even a single iteration of this second
stage refinement suffices to yield improved estimates Û , in
comparison to those obtained from (5). The improvements
can be leveraged to bias reduction, also achieved by similar
weighted norm regularizers proposed for linear regression [18].
Outlier rejection. From the equivalence between problems
(5) and (6), it follows that those data points xn identified as
outliers (ôn �= 0p) are not completely discarded from the
estimation process. Instead, their effect is downweighted as
per Huber’s loss function [cf. (7)]. Nevertheless, explicitly
accounting for the outliers in Ô provides the means of
identifying and removing the contaminated data altogether, and
thus possibly re-running PCA using the outlier-free data.

IV. ROBUST SUBSPACE TRACKING
Online retailing sites, the World Wide Web, and video

surveillance systems generate huge volumes of data, which
far outweigh the ability of modern computers to analyze them
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Algorithm 2 : Online robust PCA solver
Initialize U(0) = Ip(:, 1 : q) and s(0) = 0q.
for n = 1, 2, . . . do
Update o(n) = S (xn − U(n − 1)s(n − 1), λ2/2) .
Update s(n) = U′(n − 1)[xn − o(n)].
Update g(n) = P(n − 1)s(n)/[β + s′(n)P(n − 1)s(n)].
Update P(n) = (1/β)[P(n − 1) − g(n)(P(n − 1)s(n))′].
Update U(n) = U(n−1)+[xn−U(n−1)s(n)−o(n)]g′(n).

end for

in real time. Furthermore, data are generated incrementally in
time, which motivates updating previously obtained learning
results rather than re-computing new ones from scratch each
time a new datum becomes available. This calls for low-
complexity real-time (adaptive) algorithms for robust subspace
tracking. One possible adaptive counterpart to (5) is the
exponentially-weighted LS (EWLS) estimator found by

min
{U ,O}

N∑
n=1

βN−n
[
‖xn −m−Usn − on‖

2
2 + λ2‖on‖2

]
(10)

where β ∈ (0, 1] is a forgetting factor. Note that in forming
the EWLS estimator (10) at time N , the entire history of
data {xn}

N
n=1 is incorporated in the online estimation process.

Whenever β < 1, past data are exponentially discarded thus
enabling operation in nonstationary environments.
Towards deriving a real-time, computationally efficient, and

recursive (approximate) solver of (10), an AM scheme will
be adopted in which iterations k coincide with the time scale
n = 1, 2, . . . of data acquisition. Per time instant n, a new
datum xn is drawn and the corresponding o(n) is updated via
soft-thresholding of the residual r(n) := xn −m(n − 1) −
U(n−1)s(n−1). Only o(n) is updated at time n, rather than
the whole (growing with time) matrix O that minimization
of (10) would dictate. A similar approximate sparse coding
step was adopted for online dictionary learning in [10]. Next,
the principal component update is s(n) = U

′(n − 1)[xn −
m(n−1)−o(n)], and resembles the projection approximation
adopted in [16]. The subspace update is given by

U(n) = arg min
U

n∑
i=1

βn−i‖xi −m(i− 1)−Us(i)− o(i)‖22

and can be efficiently obtained from U(n−1), via a recursive
LS update that capitalizes on the matrix inversion lemma [11].
Note that the orthonormality constraint on the columns of U

is not enforced here, yet the deviation from orthonormality
is typically small as observed in [16]. Still, if orthonormal
principal directions are required, then an extra orthonormal-
ization step can be carried out per iteration, or, once at the end
of the whole process. Finally, m(n) is obtained recursively as
the exponentially-weighted average of the outlier compensated
data {xi−o(i)}n

i=1. The online robust PCA algorithm and its
initialization are summarized under Algorithm 2, wherem and
its update have been omitted for notational simplicity.
Convergence analysis of Algorithm 2 is beyond the scope of

the present paper, and is only supported based on simulations.

Algorithm 3 : Robust KPCA solver
Initialize Ω(0) = 0N×N and form K = Φ′Φ.
for k = 1, 2, . . . do
Update μ(k) = [IN −Ω(k − 1)]1N /N.
Form ΦΩ(k) = IN − μ(k)1′

N − Ω(k − 1).
Form K̃(k) = Φ′

Ω(k)KΦΩ(k).
Update Υ(k) as the q-dominant eigenvectors of K̃(k).
Update Σ(k) = Υ′(k)K̃(k).
UpdateΩ(k) = S (IN − μ(k)1′

N − ΦΩ(k)Υ(k)Σ(k), λ2/2) .
end for

The numerical tests in Section VI also show that in the
presence of outliers, the novel adaptive algorithm outperforms
existing nonrobust alternatives for subspace tracking.

V. ROBUSTIFYING KERNEL PCA

Kernel (K)PCA is a generalization to (linear) PCA, seeking
principal components in a feature space nonlinearly related to
the input space where the data in T live [13]. KPCA has been
shown effective in performing nonlinear feature extraction
for pattern recognition [13]. In addition, connections between
KPCA and spectral clustering [5] motivate well the novel
KPCA method developed in this section, to robustly identify
cohesive subgroups (communities) from social network data.
Consider a nonlinear function φ : R

p → H, that maps
elements from the input space R

p to a feature space H
of arbitrarily large – possibly infinite – dimensionality. The
proposed approach to robust KPCA fits the model

φ(xn) = m + Usn + on + en, n = 1, . . . , N (11)

by minimizing (5), given transformed data TH = {φ(xn)}N
n=1.

Except for S, the data as well as the unknowns in (5) are
now vectors/matrices of infinite dimension. In principle, this
challenges the optimization task since it is not possible to
store, or, perform updates of such quantities directly. This
hurdle can be overcome by endowing H with the structure
of a reproducing kernel Hilbert space (RKHS), where inner
products between any two members of H boil down to
evaluations of the reproducing kernelKH : Rp×R

p → R, i.e.,
〈φ(xi), φ(xj)〉H = K(xi,xj). This so-termed kernel trick
is the crux of most kernel methods in machine learning [5],
including kernel PCA [13]. The problem of selecting a suitable
kernel KH (and φ indirectly) will not be considered here.
Building on these ideas, a main result in [11] states that

the iterations of a provably convergent AM solver of (5)
cycling through m(k) → U(k) → S(k) → O(k), can
be equivalently carried out in terms of finite-dimensional
‘sufficient statistics’ μ(k) → Υ(k) → Σ(k) → Ω(k).
The latter updates are tabulated as Algorithm 3, where
K := Φ

′
Φ ∈ R

N×N is the kernel matrix to be computed
offline, and Φ := [φ(x1), . . . ,φ(xN )]. Because O(k) =
ΦΩ(k) [11], the outlier vector norms required to perform
outlier sparsity control are computable in terms of K, i.e.,
[‖o1(∞)‖22, . . . , ‖oN(∞)‖22]

′ = diag[Ω′(∞)KΩ(∞)]. More-
over, for any given new data point x, its principal component
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Fig. 1. Background modeling for video surveillance. First column: original
frame xn; Second column: PCA reconstruction; Third column: robust PCA
reconstruction; Fourth column: outliers in ôn.

in feature space is given by s = Υ
′(∞)Φ′Ω(∞)Φ′φ(x), which

is again computable in terms of the kernel function KH.

VI. NUMERICAL TESTS
Video surveillance. To validate the proposed approach to
robust PCA, Algorithm 1 was tested to perform background
modeling from a sequence of video frames; an approach that
has found widespread applicability for intrusion detection in
video surveillance systems. The experiments were carried out
using the dataset studied in [3], which consists of N = 520
images (p = 120 × 160) acquired from a static camera
during two days. The illumination changes considerably over
the two day span, while approximately 40% of the training
images contain people in various locations. For q = 10,
both standard PCA and the robust PCA of Section III were
applied to build a low-rank background model of the envi-
ronment captured by the camera. For robust PCA, �1-norm
regularization on O was adopted to identify outliers at a pixel
level. The outlier sparsity-controlling parameter was chosen as
λ2 = 9.69×10−4, whereas a single iteration of the reweighted
scheme in Section III-C was run to the reduce the bias in Ô.
The results are shown in Fig. 1, for three representa-

tive images. The first column comprises the original frames
from the training set, while the second column shows the
corresponding (nonrobust) PCA image reconstructions. The
presence of undesirable ‘ghostly’ artifacts is apparent, since
PCA is not able to completely separate the people from
the background. The third column illustrates the robust PCA
reconstructions, which recover the illumination changes while
successfully subtracting the people. The fourth column shows
the reshaped outlier vectors ôn, which mostly capture the
people and abrupt changes in illumination.
Robust subspace tracking. A simulated test is carried out
here to corroborate the convergence and effectiveness of the
robust online PCA algorithm in Section IV. For N = 1000,
p = 100, and q = 30, nominal data in T are generated
according to model (1), where en ∼ N (0p, 10−3

Ip). The first
ten entries of x201, . . . ,x205 are outliers, uniformly distributed
in [−100, 100] and i.i.d.. Fig. 2 depicts the evolution of the
angle formed between the learnt subspace (spanned by the
columns of) U(n) and the true subspace U generating T .

Fig. 2. Time evolution of the angle between the learnt subspace U(n), and
the true U used to generate the data (β = 0.999 and λ2 = 3.3).

Convergence of Algorithm 2 to U is apparent, and it markedly
outperforms the nonrobust subspace tracking method in [16].
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