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1.1 Introduction

Principal component analysis (PCA) is the workhorse of high-dimensional data analysis
and dimensionality reduction, with numerous applications in statistics, engineering, and
the biobehavioral sciences; see, e.g., [Jol02]. Nowadays ubiquitous e-commerce sites, the
Web, and urban traffic surveillance systems generate massive volumes of data. As a result,
the problem of extracting the most informative, yet low-dimensional structure from high-
dimensional datasets is of paramount importance [SGM14, HTF09]. To this end, PCA
provides least-squares (LS) optimal linear approximants in Rq to a data set in ambient space
Rp, for q ≤ p. The desired linear subspace is obtained from the q-dominant eigenvectors of
the sample data covariance matrix, or equivalently from the q-dominant singular vectors of
the data matrix [Jol02].

Data obeying postulated low-rank models include also outliers, which are samples not
adhering to those nominal models. Unfortunately, LS is known to be very sensitive to out-
liers [RL87, HR09], and this undesirable property is inherited by PCA as well [Jol02]. Early
efforts to robustify PCA have relied on robust estimates of the data covariance matrix; see,
e.g., [Cam80]. Related approaches are driven from statistical physics [XY95], and also from
M-estimators [dlTB03]. A fast algorithm for computer vision applications was put forth
in [SRUB09]. Recently, polynomial-time algorithms with remarkable performance guaran-
tees have emerged for low-rank matrix recovery in the presence of sparse – but otherwise

1-1



1-2 Book title goes here

arbitrarily large – errors [CLMW11, CSPW11]. This pertains to an ‘idealized robust’ PCA
setup, since those entries not affected by outliers are assumed error free. Stability in recon-
structing the low-rank and sparse matrix components in the presence of ‘dense’ noise have
been reported in [ZLW+10, XCS12]. A hierarchical Bayesian model was proposed to tackle
the aforementioned low-rank plus sparse matrix decomposition problem in [DHC11].

In the present chapter, a robust PCA approach is pursued requiring minimal assump-
tions on the outlier model. A natural least-trimmed squares (LTS) PCA estimator is first
shown closely related to an estimator obtained from an ℓ0-(pseudo)norm-regularized crite-
rion, adopted to fit a low-rank bilinear factor analysis model that explicitly incorporates
an unknown sparse vector of outliers per datum (Section 1.2). As in compressive sam-
pling [Tro06], efficient (approximate) solvers are obtained in Section 1.2.3, by surrogating
the ℓ0-norm of the outlier matrix with its closest convex approximant. This leads natu-
rally to an M-type PCA estimator, which subsumes Huber’s optimal choice as a special
case [Fuc99]. Unlike Huber’s formulation though, results here are not confined to an outlier
contamination model. A tunable parameter controls the sparsity of the estimated matrix,
and the number of outliers as a byproduct. Hence, effective data-driven methods to select
this parameter are of paramount importance, and systematic approaches are pursued by
efficiently exploring the entire robustifaction (a.k.a. homotopy) path of (group-) Lasso so-
lutions [HTF09, YL06]. In this sense, the method here capitalizes on but is not limited to
sparse settings where outliers are sporadic, since one can examine all sparsity levels along the
robustification path. The outlier-aware generative data model and its sparsity-controlling
estimator are quite general, since minor modifications discussed in [MG12, Sec. III-C] en-
able robustifiying linear regression [GMF+11], dictionary learning [TF10, MBPS10], and
K-means clustering as well [HTF09, FKG11]. Section 1.3.2 deals with further modifications
for bias reduction through nonconvex regularization, and automatic determination of the
reduced dimension q is explored in Section 1.4 by drawing connections with nuclear-norm
minimization [CLMW11, CSPW11].

Beyond its ties to robust statistics, the developed outlier-aware PCA framework is versa-
tile to accommodate scalable robust algorithms to: i) track the low-rank signal subspace, as
new data are acquired in real time (Section 1.4.1); and ii) determine principal components
in (possibly) infinite-dimensional feature spaces, thus robustifying kernel PCA [SSM98], and
spectral clustering as well [HTF09, p. 544] (Section 1.5). The vast literature on non-robust
subspace tracking algorithms includes [Yan95, MBPS10], and [BNR10]; see also [HBS12] for
a first-order algorithm that is robust to outliers and incomplete data. Relative to [HBS12],
the online robust (OR)-PCA algorithm of [MMG15, MMG13b] (described in Section 1.4.1)
is a second-order method, which minimizes an outlier-aware exponentially-weighted LS es-
timator of the low-rank factor analysis model. Since the outlier and subspace estimation
tasks decouple nicely in OR-PCA, one can readily devise a first-order counterpart when
minimal computational loads are at a premium. In terms of performance, online algorithms
are known to be markedly faster than their batch alternatives [BNR10, HBS12], e.g., in the
timely context of low-rank matrix completion [RFP10, RR13]. While the focus here is not
on incomplete data records, extensions to account for missing data are immediate and have
been reported in [MMG15].

Numerical tests with real data are presented throughout to corroborate the effective-
ness of the proposed batch and online robust PCA schemes, when used to identify aberrant
responses from a questionnaire designed to measure the Big-Five dimensions of personal-
ity traits [JNS08], as well as unveil communities in a (social) network of college football
teams [GN02], and intruders from video surveillance data [dlTB03]. For additional com-
prehensive tests and comparisons with competing alternatives (omitted here due to lack
of space), the reader is referred to [MG12, Sec. VII-A]. Concluding remarks are given in
Section 1.6.
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Notation: Bold uppercase (lowercase) letters will denote matrices (column vectors). Opera-
tors (·)′ and tr(·), will denote transposition and matrix trace, respectively. Vector diag(M)
collects the diagonal entries of M, whereas the diagonal matrix diag(v) has the entries

of v on its diagonal. The ℓp-norm of x ∈ Rn is ∥x∥p := (
∑n

i=1 |xi|p)
1/p

for p ≥ 1; and

∥M∥F :=
√

tr (MM′) is the matrix Frobenious norm. The n × n identity matrix will be
represented by In, while 0n will denote the n × 1 vector of all zeros, and 0n×m := 0n0

′
m.

Similar notation will be adopted for vectors (matrices) of all ones. The i-th vector of the
canonical basis in Rn will be denoted by bn,i, i = 1, . . . , n.

1.2 Robustifying PCA

Consider the standard PCA formulation, in which a set of training data Ty := {yn}Nn=1 in
the p-dimensional Euclidean input space is given, and the goal is to find the best q-rank
(q ≤ p) linear approximation to the data in Ty; see e.g., [Jol02]. Unless otherwise stated, it
is assumed throughout that the value of q is given. One approach to solving this problem,
is to adopt a low-rank bilinear (factor analysis) model

yn = m+Usn + en, n = 1, . . . , N (1.1)

where m ∈ Rp is a location (mean) vector; matrix U ∈ Rp×q has orthonormal columns
spanning the signal subspace; {sn}Nn=1 are the so-termed principal components, and {en}Nn=1

are zero-mean i.i.d. random errors. The unknown variables in (1.1) can be collected in
V := {m,U, {sn}Nn=1}, and they are estimated using the LS criterion as

min
V

N
∑

n=1

∥yn −m−Usn∥22, s. to U′U = Iq. (1.2)

PCA in (1.2) is a nonconvex optimization problem due to the bilinear terms Usn, yet
a global optimum V̂ can be shown to exist; see e.g., [Yan95]. The resulting estimates are

m̂ =
∑N

n=1 yn/N and ŝn = Û′(yn−m̂), n = 1, . . . , N ; while Û is formed with columns equal
to the q-dominant right singular vectors of the N×p data matrixY := [y1, . . . ,yN ]′ [HTF09,
p. 535]. The principal components (entries of) sn are the projections of the centered data
points {yn − m̂}Nn=1 onto the signal subspace. Equivalently, PCA can be formulated based
on maximum variance, or, minimum reconstruction error criteria; see e.g., [Jol02].

1.2.1 Least-Trimmed Squares PCA

Given training data Tx := {xn}Nn=1 possibly contaminated with outliers, the goal here is to
develop a robust estimator of V that requires minimal assumptions on the outlier model.
Note that there is an explicit notational differentiation between: i) the data in Ty which
adhere to the nominal model (1.1); and ii) the given data in Tx that may also contain
outliers, i.e., those xn not adhering to (1.1). Building on LTS regression [RL87], the desired
robust estimate V̂LTS := {m̂, Û, {ŝn}Nn=1} for a prescribed ν < N can be obtained via the
following LTS PCA estimator [cf. (1.2)]

V̂LTS := argmin
V

ν
∑

n=1

r2[n](V), s. to U′U = Iq (1.3)

where r2[n](V) is the n-th order statistic among the squared residual norms r21(V), . . . , r2N (V),
and rn(V) := ∥xn−m−Usn∥2. The so-termed coverage ν determines the breakdown point
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of the LTS PCA estimator [RL87], since the N − ν largest residuals are absent from the
estimation criterion in (1.3). Beyond this universal outlier-rejection property, the LTS-based
estimation offers an attractive alternative to robust linear regression due to its high break-
down point and desirable analytical properties, namely

√
N -consistency and asymptotic

normality under mild assumptions [RL87].
Because (1.3) is a nonconvex optimization problem, a nontrivial issue pertains to the

existence of the proposed LTS PCA estimator, i.e., whether or not (1.3) attains a minimum.
Fortunately, existence of V̂LTS can be readily established as follows: i) for each subset of T
with cardinality ν (there are

(

N
ν

)

such subsets), solve the corresponding PCA problem to

obtain a unique candidate estimator per subset; and ii) pick V̂LTS as the one among all
(

N
ν

)

candidates with the minimum cost. Albeit conceptually simple, the aforementioned solution
procedure is combinatorially complex, and thus intractable except for small sample sizes N .
Algorithms to obtain approximate LTS solutions in large-scale linear regression problems
are available; see e.g., [RL87].

REMARK 1.1 In most PCA formulations data in Ty are typically assumed zero mean.
This is without loss of generality, since nonzero-mean training data can always be ren-
dered zero mean, by subtracting the sample mean

∑N
n=1 yn/N from each yn. In modeling

zero-mean data, the known vector m in (1.1) can obviously be neglected. When outliers
are present however, data in Tx are not necessarily zero mean, and it is unwise to center
them using the non-robust sample mean estimator which has a breakdown point equal to
zero [RL87]. Towards robustifying PCA, a more sensible approach is to estimate m robustly,
and jointly with U and the principal components {sn}Nn=1. For this reason m is kept as a
variable in V and estimated via (1.3).

1.2.2 Robust Statistics Meets Sparse Recovery

Instead of discarding large residuals, the alternative approach here explicitly accounts for
outliers in the low-rank data model (1.1). This becomes possible through the vector variables
{on}Nn=1 one per training datum xn, which take the value on ̸= 0p whenever datum n is an
outlier, and on = 0p otherwise. Thus, the outlier-aware factor analysis model is

xn = yn + on = m+Usn + en + on, n = 1, . . . , N (1.4)

where on can be deterministic or random with unspecified distribution. In the under-
determined linear system of equations (1.4), both V as well as the N × p matrix O :=
[o1, . . . ,oN ]′ are unknown. The percentage of outliers dictates the degree of sparsity (num-
ber of zero rows) in O. Sparsity control will prove instrumental in efficiently estimating O,
rejecting outliers as a byproduct, and consequently arriving at a robust estimator of V . To
this end, a natural criterion for controlling outlier sparsity is to seek the estimator [cf. (1.2)]

{V̂ , Ô} = argmin
V,O
∥X− 1Nm′ − SU′ −O∥2F + λ0∥O∥0, s. to U′U = Iq (1.5)

where X := [x1, . . . ,xN ]′ ∈ RN×p, S := [s1, . . . , sN ]′ ∈ RN×q, and ∥O∥0 denotes the
nonconvex ℓ0-norm that is equal to the number of nonzero rows of O. Vector (group)
sparsity in the rows ôn of Ô can be directly controlled by tuning the parameter λ0 ≥ 0.

As with compressive sampling and sparse modeling schemes that rely on the ℓ0-
norm [Tro06], the robust PCA problem (1.5) is NP-hard [Nat95]. In addition, the sparsity-
controlling estimator (1.5) is intimately related to LTS PCA, as asserted in the following
proposition. (A detailed proof is also included since it is instructive towards revealing the
link between both estimators.)
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PROPOSITION 1.1 If {V̂ , Ô} minimizes (1.5) with λ0 chosen such that ∥Ô∥0 = N − ν,
then V̂LTS = V̂ .

PROOF 1.1 Given λ0 such that ∥Ô∥0 = N − ν, the goal is to characterize V̂ as well as
the positions and values of the nonzero rows of Ô. Because ∥Ô∥0 = N − ν, the last term
in the cost of (1.5) is constant, hence inconsequential to the minimization. Upon defining
r̂n := xn − m̂− Ûŝn, the rows of Ô satisfy

ôn =

{

0p, ∥r̂n∥2 ≤
√
λ0

r̂n, ∥r̂n∥2 >
√
λ0

, n = 1, . . . , N. (1.6)

This follows by noting first that (1.5) is separable across the rows of O. For each n =
1, . . . , N , if ôn = 0p then the optimal cost becomes ∥r̂n − ôn∥22 + λ0∥ôn∥0 = ∥r̂n∥22. If on
the other hand ôn ̸= 0p, the optimality condition for on yields ôn = r̂n, and thus the cost
reduces to λ0. In conclusion, for the chosen value of λ0 it holds that N−ν squared residuals
effectively do not contribute to the cost in (1.5).

To determine V̂ and the row support of Ô, one alternative is to exhaustively test all
(

N
N−ν

)

=
(

N
ν

)

admissible row-support combinations. For each one of these combinations

(indexed by j), let Sj ⊂ {1, . . . , N} be the index set describing the row support of Ô(j),

i.e., ô(j)
n ̸= 0p if and only if n ∈ Sj ; and |Sj | = N − ν. By virtue of (1.6), the corresponding

candidate V̂(j) solves minV
∑

n∈Sj
r2n(V) subject to U′U = Iq, while V̂ is the one among all

{V̂(j)} that yields the least cost. Recognizing the aforementioned solution procedure as the
one for LTS PCA outlined in Section 1.2.1, it follows that V̂LTS = V̂ . !

The importance of Proposition 1.1 is threefold. First, it formally justifies model (1.4) and
its estimator (1.5) for robust PCA, in light of the well documented merits of LTS [RL87].
Second, it establishes a connection between the seemingly unrelated fields of robust statis-
tics and sparsity-aware estimation. Third, problem (1.5) lends itself naturally to efficient
(approximate) solvers based on convex relaxation, the subject dealt with next.

1.2.3 Sparsity-Controlling Outlier Rejection

Recall that the row-wise ℓ2-norm sum ∥B∥2,r :=
∑N

n=1 ∥bn∥2 of matrixB := [b1, . . . ,bN ]′ ∈
RN×p is the closest convex approximation of ∥B∥0 [Tro06]. This property motivates relaxing
problem (1.5) to

min
V,O
∥X− 1Nm′ − SU′ −O∥2F + λ2∥O∥2,r, s. to U′U = Iq. (1.7)

The nondifferentiable ℓ2-norm regularization term encourages row-wise (vector) sparsity on
the estimator of O, a property that has been exploited in diverse problems in engineer-
ing, statistics, and machine learning [HTF09]. A noteworthy representative is the group
Lasso [YL06], a popular tool for joint estimation and selection of grouped variables in linear
regression.

REMARK 1.2 In computer vision applications for instance where robust PCA schemes
are particularly attractive, one may not wish to discard the entire (vectorized) images xn,
but only specific pixels deemed as outliers [dlTB03]. This can be accomplished by replacing
∥O∥2,r in (1.7) with ∥O∥1 :=

∑N
n=1 ∥on∥1, a Lasso-type regularization that encourages

entry-wise sparsity in Ô.
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After the relaxation it is pertinent to ponder on whether problem (1.7) still has the
potential of providing robust estimates V̂ in the presence of outliers. The answer is positive,
since (1.7) is equivalent to an M-type PCA estimator

min
V

N
∑

n=1

ρv(xn −m−Usn), s. to U′U = Iq (1.8)

where ρv : Rp → R is a vector extension to Huber’s convex loss function [HR09]; namely

ρv(r) :=

{

∥r∥22, ∥r∥2 ≤ λ2/2
λ2∥r∥2 − λ2

2/4, ∥r∥2 > λ2/2
. (1.9)

For a detailed proof of the equivalence, see [MG12].
M-type estimators (including Huber’s) adopt a fortiori an ϵ-contaminated probability

distribution for the outliers, and rely on minimizing the asymptotic variance of the resultant
estimator for the least favorable distribution of the ϵ-contaminated class (asymptotic min-
max approach) [HR09]. The assumed degree of contamination specifies the tuning parameter
λ2 in (1.9) (and thus the threshold for deciding the outliers in M-estimators). In contrast,
the present approach is universal in the sense that it is not confined to any assumed class
of outlier distributions, and can afford a data-driven selection of the tuning parameter. In
a nutshell, optimal M-estimators can be viewed as a special case of the present formulation
only for a specific choice of λ2, which is not obtained via a data-driven approach, but from
distributional assumptions instead.

All in all, the sparsity-controlling role of the tuning parameter λ2 ≥ 0 in (1.7) is central,
since model (1.4) and the equivalence of (1.7) with (1.8) suggest that λ2 is a robustness-
controlling constant. Data-driven approaches to select λ2 are described in detail under
Section 1.3.1. Before delving into algorithmic issues to solve (1.7), a remark is in order.

REMARK 1.3 The recent upsurge of research toward compressive sampling and par-
simonious signal representations hinges on signals being sparse, either naturally, or, after
projecting them on a proper basis. Here instead, a neat link is established between sparsity
and a fundamental aspect of statistical inference, namely that of robustness against outliers.
It is argued that key to robust methods is the control of sparsity in model residuals, i.e.,
those entries in matrix O, even when the signals in V are not (necessarily) sparse.

1.3 Algorithms and Real Data Tests

To optimize (1.7) iteratively for a given value of λ2, an alternating minimization (AM)
algorithm is adopted which cyclically updates m(k)→ S(k)→ U(k)→ O(k) per iteration
k = 1, 2, . . .. AM algorithms are also known as block-coordinate-descent methods in the
optimization parlance; see e.g., [Ber99, Tse01]. To update each of the variable groups, (1.7)
is minimized while fixing the rest of the variables to their most up-to-date values. While
the overall problem (1.7) is not jointly convex with respect to (w.r.t.) {S,U,O,m}, fixing
all but one of the variable groups yields subproblems that are efficiently solved, and attain
a unique solution.

Towards deriving the updates at iteration k and arriving at the desired algorithm, note
first that the mean update ism(k) = (X−O(k))′1N/N . Next, form the centered and outlier-
compensated data matrix Xo(k) := X − 1Nm(k)′ −O(k − 1). The principal components
are readily given by

S(k) = argmin
S
∥Xo(k)− SU(k − 1)′∥2F = Xo(k)U(k − 1).
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Continuing the cycle, U(k) solves

min
U
∥Xo(k)− S(k)U′∥2F , s. to U′U = Iq

a constrained LS problem also known as reduced-rank Procrustes rotation [ZHT06].
The minimizer is given in analytical form in terms of the left and right singular vec-
tors of X′

o(k)S(k) [ZHT06, Thm. 4]. In detail, one computes the SVD of X′
o(k)S(k) =

L(k)D(k)R′(k) and updates U(k) = L(k)R′(k). Next, the minimization of (1.7) w.r.t. O
is an orthonormal group Lasso problem. As such, it decouples across rows on giving rise to
N ℓ2-norm regularized subproblems, namely

on(k) = argmin
o
∥rn(k)− o∥22 + λ2∥o∥2, n = 1, . . . , N

where rn(k) := xn − m(k) − U(k)sn(k). The respective solutions are given by (see
e.g., [PWH11])

on(k) =
rn(k)(∥rn(k)∥2 − λ2/2)+

∥rn(k)∥2
, n = 1, . . . , N (1.10)

where (·)+ := max(·, 0). For notational convenience, these N parallel vector soft-thresholded
updates are denoted as O(k) = S [X− 1Nm′(k − 1)− S(k)U′(k), (λ2/2)IN ] under Algo-
rithm 1, where the thresholding operator S sets the entire outlier vector on(k) to zero
whenever ∥rn(k)∥2 does not exceed λ2/2, in par with the group sparsifying property of
group Lasso. Interestingly, this is the same rule used to decide if datum xn is deemed an
outlier, in the equivalent formulation (1.8) which involves Huber’s loss function. Whenever
an ℓ1-norm regularizer is adopted as discussed in Remark 1.2, the only difference is that
updates (1.10) boil down to soft-thresholding the scalar entries of rn(k).

The entire AM solver is tabulated under Algorithm 1, indicating also the recommended
initialization. Algorithm 1 is conceptually interesting, since it explicitly reveals the inter-
twining between the outlier identification process, and the PCA low-rank model fitting
based on the outlier compensated data Xo(k). The AM solver is also computationally ef-
ficient. Computing the N × q matrix S(k) = Xo(k)U(k − 1) requires Npq operations per
iteration, and equally costly is to obtain X′

o(k)S(k) ∈ Rp×q. The cost of computing the
SVD of X′

o(k)S(k) is of order O(pq2), while the rest of the operations including the row-
wise soft-thresholdings to yield O(k) are linear in both N and p. In summary, the total
cost of Algorithm 1 is roughly kmaxO(Np + pq2), where kmax is the number of iterations
required for convergence (typically kmax = 5 to 10 iterations suffice). Because q ≤ p is
typically small, Algorithm 1 is attractive computationally both under the classic setting
where N > p, and p is not large; as well as in high-dimensional data settings where p≫ N ,
a situation typically arising e.g., in microarray data analysis.

Because each of the optimization problems in the per-iteration cycles has a unique
minimizer, and the nondifferentiable regularization only affects one of the variable groups
(O), the general results of [Tse01] apply to establish convergence of Algorithm 1. Specifically,
as k →∞ the iterates generated by Algorithm 1 converge to a stationary point of (1.7).

1.3.1 Selection of λ2: Robustification Paths

Selecting λ2 controls the number of outliers rejected. But this choice is challenging be-
cause existing techniques such as cross-validation are not effective when outliers are
present [RL87]. To this end, systematic data-driven approaches were devised in [GMF+11],
which e.g., require a rough estimate of the percentage of outliers, or, robust estimates σ̂2

e of
the nominal noise variance that can be obtained using median absolute deviation (MAD)
schemes [HR09]. These approaches can be adapted to the robust PCA setting considered
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Algorithm 1 : Batch robust PCA solver
Set U(0) = Ip(:, 1 : q) and O(0) = 0N×p.
for k = 1, 2, . . . do

Update m(k) = (X−O(k − 1))′1N/N .
Form Xo(k) = X− 1Nm′(k)−O(k − 1).
Update S(k) = Xo(k)U(k − 1).
Obtain L(k)D(k)R(k)′ = svd[X′

o(k)S(k)] and update U(k) = L(k)R′(k).
Update O(k) = S [X− 1Nm′(k)− S(k)U′(k), (λ2/2)IN ] .

end for

here, and leverage the robustification paths of (group-)Lasso solutions [cf. (1.7)], which are
defined as the solution paths corresponding to ∥ôn∥2, n = 1, . . . , N , for all values of λ2. As
λ2 decreases, more vectors ôn enter the model signifying that more of the training data are
deemed to contain outliers.

Consider then a grid of Gλ values of λ2 in the interval [λmin,λmax], evenly spaced on a
logarithmic scale. Typically, λmax is chosen as the minimum λ2 value such that Ô ̸= 0N×p,
while λmin = ϵλmax with ϵ = 10−4, say. Because Algorithm 1 converges quite fast, (1.7) can
be efficiently solved over the grid of Gλ values for λ2. In the order of hundreds of grid points
can be easily handled by initializing each instance of Algorithm 1 (per value of λ2) using
warm starts [HTF09]. This means that multiple instances of (1.7) are solved for a sequence
of decreasing λ2 values, and the initialization of Algorithm 1 per grid point corresponds to
the solution obtained for the immediately preceding value of λ2 in the grid. For sufficiently
close values of λ2, one expects that the respective solutions will also be close (the row
support of Ô will most likely not change), and hence Algorithm 1 will converge after few
iterations.

Based on the Gλ samples of the robustification paths and the prior knowledge available
on the outlier model (1.4), a couple of alternatives described next are possible for select-
ing the ‘best’ value of λ2 in the grid. A comprehensive survey of options can be found
in [GMF+11].

Number of outliers is known: By direct inspection of the robustification paths one
can determine the range of values for λ2, such that the number of nonzero rows
in Ô equals the known number of outliers sought. Zooming-in to the interval
of interest, and after discarding the identified outliers, K-fold cross-validation
methods can be applied to determine the ‘best’ λ∗

2.

Nominal noise covariance matrix is known: Given Σe := E[ene′n], one can pro-
ceed as follows. Consider the estimates V̂g obtained using (1.7) after sampling
the robustification path for each point {λ2,g}Gg=1. Next, pre-whiten those resid-
uals corresponding to training data not deemed as containing outliers; i.e., form

R̂g := {r̄n,g = Σ
−1/2
e (xn − m̂g − Ûg ŝn,g) : n s. to ôn = 0}, and find the

sample covariance matrices {Σ̂r̄,g}Gg=1. The winner λ∗
2 := λ2,g∗ corresponds

to the grid point minimizing an absolute variance deviation criterion, namely
g∗ := argming |tr[Σ̂r̄,g]− p|.

1.3.2 Bias reduction through nonconvex regularization

Instead of substituting ∥O∥0 in (1.5) by its closest convex approximation, namely ∥O∥2,r,
letting the surrogate function to be nonconvex can yield tighter approximations, and im-
prove the statistical properties of the estimator. In rank minimization problems for instance,
the logarithm of the determinant of the unknown matrix has been proposed as a smooth
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surrogate to the rank [FHB03]; an alternative to the convex nuclear norm in e.g., [RFP10].
Nonconvex penalties such as the smoothly clipped absolute deviation (SCAD) have been
also adopted to reduce bias [FL01], present in uniformly weighted ℓ1-norm regularized es-
timators such as (1.7) [HTF09, p. 92]. In the context of sparse signal reconstruction, the
ℓ0-norm of a vector was surrogated in [CWB08] by the logarithm of the geometric mean of
its elements; see also [RLS09].

Building on this last idea, consider approximating (1.5) by the formulation

min
V,O
∥X− 1Nm′ − SU′ −O∥2F + λ0

N
∑

n=1

log(∥on∥2 + δ), s. to U′U = Iq (1.11)

where the small positive constant δ is introduced to avoid numerical instability. Since the
surrogate term in (1.11) is concave, the overall minimization problem is nonconvex and
admittedly more complex to solve than (1.7). Local methods based on iterative linearization
of log(∥on∥2+δ) around the current iterate on(k), are adopted to minimize (1.11). Skipping
details that can be found in [KG11], application of the majorization-minimization technique
to (1.11) leads to an iteratively-reweighted version of (1.7), whereby λ2 ← λ0wn(k) is used
for updating on(k) in Algorithm 1. Specifically, per k = 1, 2, . . . one updates

O(k) = S [X− 1Nm′(k − 1)− S(k)U′(k), (λ0/2)diag(w1(k), . . . , wN (k))]

where the weights are given by wn(k) = (∥on(k − 1)∥2 + δ)−1 , n = 1, . . . , N. Note that
the thresholds vary both across rows (indexed by n), and across iterations. If the value of
∥on(k − 1)∥2 is small, then in the next iteration the regularization term λ0wn(k)∥on∥2 has
a large weight, thus promoting shrinkage of that entire row vector to zero. If ∥on(k − 1)∥2
is large, the cost in the next iteration downweighs the regularization, and places more
importance to the LS component of the fit.

All in all, the idea is to start from the solution of (1.7) for the ‘best’ λ2, which is
obtained using Algorithm 1. This initial estimate is refined after runnning a few iterations
of the iteratively-reweighted counterpart to Algorithm 1. Extensive numerical tests suggest
that even a couple iterations of this second stage refinement suffices to yield improved
estimates V̂ , in comparison to those obtained from (1.7); see also the detailed numerical
tests in [MG12] . The improvements can be leveraged to bias reduction – and its positive
effect with regards to outlier support estimation – also achieved by similar weighted norm
regularizers proposed for linear regression [HTF09, p. 92].

1.3.3 Video surveillance

To validate the proposed approach to robust PCA, Algorithm 1 was tested to perform back-
ground modeling from a sequence of video frames; an approach that has found widespread
applicability for intrusion detection in video surveillance systems. The experiments were
carried out using the dataset studied in [dlTB03], which consists of N = 520 images
(p = 120 × 160) acquired from a static camera during two days. The illumination changes
considerably over the two day span, while approximately 40% of the training images contain
people in various locations. For q = 10, both standard PCA and the robust PCA (Algo-
rithm 1) were applied to build a low-rank background model of the scenery captured by
the camera. For robust PCA, ℓ1-norm regularization on O was adopted to identify outliers
at a pixel level. The outlier sparsity-controlling parameter was chosen as λ2 = 9.69× 10−4,
whereas a single iteration of the reweighted scheme in Section 1.3.2 was run to reduce the
bias in Ô.

Results are shown in Fig. 1.1, for three representative images. The first column comprises
the original frames from the training set, while the second column shows the corresponding
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FIGURE 1.1 Background modeling for video surveillance. First column: original frames. Second column:

PCA reconstructions, where the presence of undesirable ‘ghostly’ artifacts is apparent. Third column: robust

PCA reconstructions, which recover the illumination changes while successfully subtracting the people.

Fourth column: outliers in ô, which mostly capture the people and abrupt changes in illumination.

PCA image reconstructions. The presence of undesirable ‘ghostly’ artifacts is apparent, since
PCA is unable to completely separate the people from the background. The third column
illustrates the robust PCA reconstructions, which recover the illumination changes while
successfully subtracting the people. The fourth column shows the reshaped outlier vectors
ôn, which mostly capture the people and abrupt changes in illumination. See also [MG12] for
additional comparisons with competing methods, including e.g., the algorithm in [dlTB03].

1.3.4 Robust measurement of the Big Five personality factors

The ‘Big Five’ are five factors (q = 5) of personality traits, namely extraversion, agreeable-
ness, conscientiousness, neuroticism, and openness; see e.g., [JNS08]. The Big Five inventory
(BFI) on the other hand, is a brief questionnaire (44 items in total) tailored to measure the
Big Five dimensions. Subjects taking the questionnaire are asked to rate in a scale from 1
(disagree strongly) to 5 (agree strongly), items of the form ‘I see myself as someone who is
talkative’. Each item consists of a short phrase correlating (positively or negatively) with
one factor; see e.g., [JNS08, pp. 157-58] for a copy of the BFI and scoring instructions.

Robust PCA is used to identify aberrant responses from real BFI data comprising the
Eugene-Springfield community sample [Gol08]. The rows of X contain the p = 44 item
responses for each one of the N = 437 subjects under study. For q = 5 and λ2 = 5.6107
corresponding to ∥Ô∥0 = 100, Fig. 1.2 depicts the norm of the 40 largest outliers. There
is an unmistakable break in the scree plot and the 8 largest values are declared as outliers
by robust PCA. As a means of validating these results, the following procedure is adopted.
Based on the BFI scoring key [JNS08], a list of all pairs of items hypothesized to yield
positively correlated responses is formed. For each n, one counts the ‘inconsistencies’ defined
as the number of times that subject n’s ratings for these pairs differ in more than four, in
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FIGURE 1.2 Pseudo scree plot of outlier size (∥ôn∥2); the 40 largest outliers are shown. Robust PCA

declares the largest 8 as aberrant responses.

absolute value. Interestingly, after rank-ordering all subjects in terms of this inconsistency
score, one finds that n = 418 ranks highest with a count of 17, n = 204 ranks second (10),
and overall the eight outliers found rank in the top twenty.

1.4 Connections with Nuclear-Norm Minimization

Recall that q ≤ p is the dimensionality of the subspace where the outlier-free data (1.1)
are assumed to live in, or equivalently, q = rank[Y] in the absence of noise. So far, q was
assumed known and fixed. This is reasonable in e.g., compression/quantization, where a
target distortion-rate tradeoff dictates the maximum q. In other cases, the physics of the
problem may render q known. This is indeed the case in array processing for direction-of-
arrival estimation, where q is the dimensionality of the so-termed signal subspace, and is
given by the number of plane waves impinging on a uniform linear array; see e.g., [Yan95].

Other applications however, call for signal processing tools that can determine the ‘best’
q, as well as robustly estimate the underlying low-dimensional subspace U from data X.
Noteworthy representatives for this last kind of problems include unveiling traffic volume
anomalies in large-scale networks [MMG13b, MMG13a], and automatic intrusion detection
from video surveillance frames [dlTB03, CLMW11], just to name a few. A related approach
in this context is (stable) principal components pursuit (PCP) [ZLW+10, XCS12], which
solves

min
L,O
∥X− L−O∥2F + λ∗∥L∥∗ + λ2∥O∥2,r (1.12)

with the objective of reconstructing the low-rank matrix L ∈ RN×p, as well as the sparse
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matrix of outliers O in the presence of dense noise with known variance.∗ Note that ∥L∥∗
denotes the matrix nuclear norm, a convex surrogate to rank[L] defined as the sum of the
singular values of L. The same way that the ℓ2-norm regularization promotes sparsity in
the rows of Ô, the nuclear norm encourages a low-rank L̂ since it effects sparsity in the
vector of singular values of L. Upon solving the convex optimization problem (1.12), it is
possible to obtain L̂ = ŜÛ′ using the SVD. Interestingly, (1.12) does not fix (or require the
knowledge of) rank[L] a fortiori, but controls it through the tuning parameter λ∗. Adopting
a Bayesian framework, a similar problem was considered in [DHC11].

Instead of assuming that q is known, suppose that only an upper bound q̄ is given.
Then, the class of feasible noise-free low-rank matrix components of Y in (1.1) admit a
factorization L = SU′, where S and U are N × q̄ and p × q̄ matrices, respectively. Build-
ing on the ideas used in the context of finding minimum rank solutions of linear matrix
equations [RFP10], an alternative approach to robustifying PCA is to solve [cf. (1.7)]

min
U,S,O

∥X− SU′ −O∥2F +
λ∗

2
(∥U∥2F + ∥S∥2F ) + λ2∥O∥2,r. (1.13)

Different from (1.12) and (1.7), a Frobenius-norm regularization on both U and S is adopted
to control the dimensionality of the estimated subspace Û. Relative to (1.7), U in (1.13)
is not constrained to be orthonormal. It is certainly possible to include the mean vector m
in the cost of (1.13), as well as an ℓ1-norm regularization for entrywise outliers. The main
motivation behind choosing the Frobenius-norm regularization comes from the equivalence
of (1.12) with (1.13) provided rank[L̂] ≤ q̄, which follows by adapting the results in [RFP10,
Lemma 5.1] to the problem formulation considered here; see also the seminal work in [SRJ04,
SS05].

Even though problem (1.13) is nonconvex, the number of optimization variables is re-
duced from 2Np to Np + (N + p)q̄, which becomes significant when q̄ is small and both
N and p are large. Also note that the dominant Np-term in the variable count of (1.13) is
due to O, which is sparse and can be efficiently handled. While the factorization L = SU′

could have also been introduced in (1.12) to reduce the number of unknowns, the cost in
(1.13) is separable and much simpler to optimize using e.g., an AM solver comprising the
iterations tabulated in [MG12, Alg. 2]; see also the discussion on subspace trackers in the
ensuing section.

Because (1.13) is a nonconvex optimization problem, most solvers one can think of will
at most provide convergence guarantees to a stationary point that may not be globally op-
timum. Interestingly, the ensuing proposition adapted from [MMG13a, Prop. 1] and [BM05]
offers a certificate for stationary points of (1.13), qualifying them as global optima of (1.12).

PROPOSITION 1.2 If {Ū, S̄, Ō} is a stationary point of (1.13) and ∥X− S̄Ū′ − Ō∥2 ≤
λ∗/2, then {L̂ := S̄Ū′, Ô := Ō} is the optimal solution of (1.12).

The usefulness of the separable Frobenius-norm regularization in (1.13) is further illus-
trated next, in the context of robust subspace tracking.

∗Actually, [ZLW+10] considers entrywise outliers and adopts an ℓ1-norm regularization on O.
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1.4.1 Robust Subspace Tracking

E-commerce and Internet-based retailing sites, the World Wide Web, and video surveil-
lance systems generate huge volumes of data, which far outweigh the ability of personal
computers to analyze them in real time. Furthermore, observations are oftentimes acquired
sequentially in time, which motivates updating previously obtained ‘analytics’ rather than
re-computing new ones from scratch each time a new datum becomes available [SKMG14].
This calls for low-complexity real-time (adaptive) algorithms for robust subspace tracking;
see e.g., [MMG15].

One possible adaptive counterpart to (1.13) is the exponentially-weighted LS (EWLS)
estimator found by [MMG13b]

min
{V,O}

N
∑

n=1

βN−n

[

∥xn −m−Usn − on∥22 +
λ∗

2
∑N

u=1 β
N−u
∥U∥2F +

λ∗

2
∥sn∥22 + λ2∥on∥2

]

(1.14)
where β ∈ (0, 1] is a forgetting factor. In this context, n should be understood as a temporal
variable, indexing the instants of data acquisition. Note that in forming the EWLS estima-
tor (1.14) at time N , the entire history of data {xn}Nn=1 is incorporated in the real-time
estimation process. Whenever β < 1, past data are exponentially discarded thus enabling
operation in nonstationary environments. For the infinite memory case (β = 1) on the other
hand, the formulation (1.14) coincides with the batch estimator (1.13). This is the reason
for the time-varying weight normalizing ∥U∥2F .

A provably convergent subspace tracker is developed in [MMG13b], based on AM of
(1.14). In a nutshell, each time a new datum is acquired, outlier estimates are formed via
the Lasso [HTF09, p. 68], and the low-rank subspace is refined using recursive LS. For
situations were reducing computational complexity is critical, an online stochastic gradient
algorithm based on Nesterov’s acceleration technique is developed as well [MMG13b]. In a
stationary setting, the asymptotic subspace estimates obtained offer the well-documented
performance guarantees of the batch stable PCP estimator [cf. (1.12) and Proposition 1.2].

Subspace tracking has a long history in signal processing. An early noteworthy rep-
resentative is the projection approximation subspace tracking (PAST) algorithm [Yan95];
see also [YK88]. Recently, an algorithm (termed GROUSE) for tracking subspaces from
incomplete observations was put forth in [BNR10], based on incremental gradient descent
iterations on the Grassmannian manifold of subspaces. Recent analysis has shown that
GROUSE can converge locally at an expected linear rate [BW13], and that it is tightly
related to the incremental SVD algorithm [Bal13]. PETRELS is a second-order recursive
least-squares (RLS)-type algorithm, that extends the seminal PAST iterations to handle
missing data [CEC13]. As noted in [DMK11], the performance of GROUSE is limited by
the existence of barriers in the search path on the Grassmanian, which may lead to GROUSE
iterations being trapped at local minima; see also [CEC13]. Lack of regularization in PE-
TRELS can also lead to unstable (even divergent) behaviors, especially when the amount
of missing data is large. Accordingly, the convergence results for PETRELS are confined to
the full-data setting where the algorithm boils down to PAST [CEC13]. When outliers are
present, robust counterparts can be found in [QV11, HBS12, QVLH14].

REMARK 1.4 Towards addressing the scalability issue outlined at the beginning of this
section, the decomposability of the Frobenius-norm regularizer in (1.13) has also been re-
cently exploited for parallel processing across multiple processors when solving large-scale
matrix completion problems [RR13], or to unveil network anomalies [MMG13a]. Specifi-
cally, [MMG13a] puts forth a general framework for decentralized sparsity-regularized rank
minimization adopting the alternating-direction method of multipliers [BPC+10].
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FIGURE 1.3 Online estimated (dashed gray) versus true (solid black) OD flow traffic for 75% missing

data, and three representative flows measured from the operation of Internet2.

1.4.2 Tracking Internet Traffic Flows

Accurate estimation of origin-to-destination (OD) flow traffic in the backbone of large-scale
Internet Protocol (IP) networks is of paramount importance for proactive network security
and management tasks [Kol09]. Several experimental studies have demonstrated that OD
flow traffic exhibits a low-intrinsic dimensionality, mainly due to common temporal patterns
across OD flows, and periodic trends across time [LPC+04]. However, due to the massive
number of OD pairs and the high volume of traffic, measuring the traffic of all possible OD
flows is impossible for all practical purposes [LPC+04, Kol09]. Only the traffic level for a
small fraction of OD flows can be measured via the NetFlow protocol [LPC+04].

Here, aggregate OD-flow traffic is collected from the operation of the Internet2 net-
work (Internet backbone across USA) during December 8-28, 2003 containing 121 OD pairs.
The measured OD flows contain spikes (anomalies or outliers), yielding the data stream
{xn} ∈ R121. The detailed description of the considered dataset can be found in [MMG13b].
When only 25% of the total OD flows are sampled by Netflow, Fig. 1.3 depicts how the
OR-PCA algorithm in [MMG15] accurately tracks three representative OD flows.

1.5 Robustifying Kernel PCA

Kernel (K)PCA is a generalization to (linear) PCA, seeking principal components in a fea-
ture space nonlinearly related to the input space where the data in Tx live [SSM98]. KPCA
has been shown effective in performing nonlinear feature extraction for pattern recogni-
tion [SSM98]. In addition, connections between KPCA and spectral clustering [HTF09, p.
548] motivate well the KPCA method developed in this section, to robustly identify cohesive
subgroups (communities) from social network data.

Consider a nonlinear function φ : Rp → H, that maps elements from the input space
Rp to a feature space H of arbitrarily large – possibly infinite – dimensionality. Given
transformed data TH := {φ(xn)}Nn=1, the proposed approach to robust KPCA fits the
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Algorithm 2 : Robust KPCA solver

Initialize Ω(0) = 0N×N , S(0) randomly, and form K = Φ′Φ.
for k = 1, 2, . . . do

Update µ(k) = [In −Ω(k − 1)]1N/N.
Form Φo(k) = IN − µ(k)1′

N −Ω(k − 1).
Update Υ(k) = Φo(k)S(k − 1)[S′(k − 1)S(k − 1) + (λ∗/2)Iq̄ ]

−1.
Update S(k) = Φ′

o(k)KΥ(k)[Υ(k)′KΥ(k) + (λ∗/2)Iq̄ ]
−1.

Form ρn(k) = bN,n − µ(k)−Υ(k)sn(k), n = 1, . . . , N .

Form Λ(k) = diag

(

(ρ′

1(k)Kρ1(k)−
λ2
2

)+
ρ′

1
(k)Kρ1(k)

, . . . ,
(ρ′

N (k)KρN (k)−
λ2
2

)+
ρ′

N
(k)KρN (k)

)

.

Update Ω(k) = [IN − µ(k)1′

N −Υ(k)S′(k)]Λ(k).
end for

model
φ(xn) = m+Usn + en + on, n = 1, . . . , N (1.15)

by solving (Φ := [φ(x1), . . . ,φ(xN )])

min
U,S,O

∥Φ′ − 1Nm′ − SU′ −O∥2F +
λ∗

2
(∥U∥2F + ∥S∥2F ) + λ2∥O∥2,r. (1.16)

It is certainly possible to adopt the criterion (1.7) as well, but (1.16) is chosen here for
simplicity in exposition. Except for the principal components’ matrix S ∈ RN×q̄, both the
data and the unknowns in (1.16) are now vectors/matrices of generally infinite dimension.
In principle, this challenges the optimization task since it is impossible to store, or, perform
updates of such quantities directly.

Interestingly, this hurdle can be overcome by endowing H with the structure of a re-
producing kernel Hilbert space (RKHS), where inner products between any two mem-
bers of H boil down to evaluations of the reproducing kernel KH : Rp × Rp → R,
i.e., ⟨φ(xi),φ(xj)⟩H = KH(xi,xj). Specifically, it is possible to form the kernel matrix
K := Φ′Φ ∈ RN×N , without directly working with the vectors in H. This so-termed kernel
trick is the crux of most kernel methods in machine learning [HTF09], including kernel
PCA [SSM98]. The problem of selecting KH (and φ indirectly) will not be considered here.

Building on these ideas, it is asserted next that Algorithm 1 can be kernelized, to solve
(1.16) at affordable computational complexity and memory storage requirements that do
not depend on the dimensionality of H. A proof of Proposition 1.3 is available in [MG12].

PROPOSITION 1.3 For k ≥ 1, the sequence of iterates generated by Algorithm 1 when
applied to solve (1.16) can be written as m(k) = Φµ(k), U(k) = ΦΥ(k), and O′(k) =
ΦΩ(k). The quantities µ(k) ∈ RN , Υ(k) ∈ RN×q̄, and Ω(k) ∈ RN×N are recursively
updated as in Algorithm 2, without the need of operating with vectors in H.

Proposition 1.3 asserts that if the iterates are initialized with outlier estimates in the
range space of Φ, then all subsequent iterates will admit a similar expansion in terms of
feature vectors. This is weaker than claiming that each minimizer of (1.16) admits such
an expansion – the latter would require checking whether the regularization term in (1.16)
satisfies the conditions of the Representer Theorem [SHS01].

In order to run the robust KPCA algorithm (tabulated as Algorithm 2), one does not
have to store or process the quantities m(k), U(k), and O(k). As per Proposition 1.3, the
iterations of a provably convergent AM solver can be equivalently carried out by cycling
through finite-dimensional ‘sufficient statistics’ µ(k) → Υ(k) → S(k) → Ω(k). In other
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FIGURE 1.4 Entries of K after removing the outliers, where rows and columns are permuted to reveal

the clustering structure found by robust KPCA. The eleven-conference (community) structure is apparent.

words, the iterations of the robust kernel PCA algorithm are devoid of algebraic operations
among vectors in H. Recall that the size of matrix S is independent of the dimensionality
of H.

BecauseO′(k) = ΦΩ(k) and upon convergence of the algorithm, the outlier vector norms
are computable in terms of K, i.e., [∥o1(∞)∥22, . . . , ∥oN(∞)∥22]′ = diag[Ω′(∞)KΩ(∞)].
These are critical to determine the robustification paths needed to carry out the outlier spar-
sity control methods in Section 1.3.1. Moreover, the principal component corresponding to
any given new data point x is obtained through the projection s = U(∞)′[φ(x)−m(∞)] =
Υ′(∞)Φ′φ(x) −Υ′(∞)Kµ(∞), which is again computable after N evaluations the kernel
function KH.

1.5.1 Unveiling communities in social networks

Next, robust KPCA is used to identify communities and outliers in a social network of
N = 115 college football teams, by capitalizing on the connection between KPCA and spec-
tral clustering [HTF09, p. 548]. Nodes in the network graph represent teams belonging to
eleven conferences (plus five independent teams), whereas (unweighted) edges joining pairs
of nodes indicate that both teams played against each other during the Fall 2000 Division I
season [GN02]. The kernel matrix used to run robust KPCA is K = ζIN +D−1/2AD−1/2,
where A and D denote the graph adjacency and degree matrices, respectively; while ζ > 0 is
chosen to render K positive semi-definite. The tuning parameters are chosen as λ2 = 1.297
so that ∥Ô∥0 = 10, while λ∗ = 1, and q̄ = 3. Fig. 1.4 shows the entries of K, where rows
and columns are permuted to reveal the clustering structure found by robust KPCA (after
removing the outliers); see also [MG12, Fig. 6 (top)] for a depiction of the partitioned net-
work. The quality of the clustering is assessed through the adjusted rand index (ARI) after
excluding outliers [FKG11], which yielded the value 0.8967. Four of the teams deemed as
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outliers are Connecticut, Central Florida, Navy, and Notre Dame, which are indeed teams
not belonging to any major conference. The community structure of traditional powerhouse
conferences such as Big Ten, Big 12, ACC, Big East, and SEC was identified exactly.

1.6 Closing Summary

Outlier-robust PCA methods were developed in this chapter, to obtain low-dimensional rep-
resentations of (corrupted) data. Bringing together the seemingly unrelated fields of robust
statistics and sparse recovery, the surveyed robust PCA framework was found rooted at the
crossroads of outlier-resilient estimation, learning via (group-) Lasso and kernel methods,
and decentralized as well as real-time adaptive signal processing. Social network analysis,
video surveillance, and psychometrics, were highlighted as relevant application domains.
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