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Robust PCA as Bilinear Decomposition
With Outlier-Sparsity Regularization
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Abstract—Principal component analysis (PCA) is widely used
for dimensionality reduction, with well-documented merits in
various applications involving high-dimensional data, including
computer vision, preference measurement, and bioinformatics.
In this context, the fresh look advocated here permeates benefits
from variable selection and compressive sampling, to robustify
PCA against outliers. A least-trimmed squares estimator of a
low-rank bilinear factor analysis model is shown closely related
to that obtained from an -(pseudo)norm-regularized criterion
encouraging sparsity in a matrix explicitly modeling the outliers.
This connection suggests robust PCA schemes based on convex
relaxation, which lead naturally to a family of robust estimators
encompassing Huber’s optimal M-class as a special case. Out-
liers are identified by tuning a regularization parameter, which
amounts to controlling sparsity of the outlier matrix along the
whole robustification path of (group) least-absolute shrinkage
and selection operator (Lasso) solutions. Beyond its ties to robust
statistics, the developed outlier-aware PCA framework is versatile
to accommodate novel and scalable algorithms to: i) track the
low-rank signal subspace robustly, as new data are acquired in
real time; and ii) determine principal components robustly in
(possibly) infinite-dimensional feature spaces. Synthetic and real
data tests corroborate the effectiveness of the proposed robust
PCA schemes, when used to identify aberrant responses in person-
ality assessment surveys, as well as unveil communities in social
networks, and intruders from video surveillance data.

Index Terms—(Group) Lasso, outlier rejection, principal com-
ponent analysis, robust statistics, sparsity.

I. INTRODUCTION

P RINCIPAL component analysis (PCA) is the workhorse
of high-dimensional data analysis and dimensionality re-

duction, with numerous applications in statistics, engineering,
and the biobehavioral sciences; see, e.g., [22]. Nowadays ubiq-
uitous e-commerce sites, the Web, and urban traffic surveil-
lance systems generate massive volumes of data. As a result,
the problem of extracting the most informative, yet low-dimen-
sional structure from high-dimensional datasets is of paramount
importance [17]. To this end, PCA provides least-squares (LS)
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optimal linear approximants in to a data set in , for .
The desired linear subspace is obtained from the dominant
eigenvectors of the sample data covariance matrix [22].
Data obeying postulated low-rank models include also out-

liers, which are samples not adhering to those nominal models.
Unfortunately, LS is known to be very sensitive to outliers
[19], [32], and this undesirable property is inherited by PCA as
well [22]. Early efforts to robustify PCA have relied on robust
estimates of the data covariance matrix; see, e.g., [4]. A fast al-
gorithm for computer vision applications was put forth in [35].
Related approaches are driven from statistical physics [41], and
also from M-estimators [8]. Recently, polynomial-time algo-
rithms with remarkable performance guarantees have emerged
for low-rank matrix recovery in the presence of sparse—but
otherwise arbitrarily large—errors [5], [7]. This pertains to an
“idealized robust” PCA setup, since those entries not affected
by outliers are assumed error free. Stability in reconstructing
the low-rank and sparse matrix components in the presence of
“dense” noise have been reported in [40], [44]. A hierarchical
Bayesian model was proposed to tackle the aforementioned
low-rank plus sparse matrix decomposition problem in [9].
In the present paper, a robust PCA approach is pursued

requiring minimal assumptions on the outlier model. A
natural least-trimmed squares (LTS) PCA estimator is first
shown closely related to an estimator obtained from an
-(pseudo)norm-regularized criterion, adopted to fit a low-rank

bilinear factor analysis model that explicitly incorporates an
unknown sparse vector of outliers per datum (Section II). As in
compressive sampling [37], efficient (approximate) solvers are
obtained in Section III, by surrogating the -norm of the outlier
matrix with its closest convex approximant. This leads naturally
to an M-type PCA estimator, which subsumes Huber’s optimal
choice as a special case [13]. Unlike Huber’s formulation
though, results here are not confined to an outlier contamina-
tion model. A tunable parameter controls the sparsity of the
estimated matrix, and the number of outliers as a byproduct.
Hence, effective data-driven methods to select this parameter
are of paramount importance, and systematic approaches are
pursued by efficiently exploring the entire robustifaction (a.k.a.
homotopy) path of (group-) Lasso solutions [17], [43]. In
this sense, the method here capitalizes on but is not limited
to sparse settings where outliers are sporadic, since one can
examine all sparsity levels along the robustification path. The
outlier-aware generative data model and its sparsity-controlling
estimator are quite general, since minor modifications discussed
in Section III-D enable robustifiying linear regression [14],
dictionary learning [24], [36], and K-means clustering as well
[12], [17]. Section IV deals with further modifications for bias
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reduction through nonconvex regularization, and automatic
determination of the reduced dimension .
Beyond its ties to robust statistics, the developed out-

lier-aware PCA framework is versatile to accommodate
scalable robust algorithms to: i) track the low-rank signal
subspace, as new data are acquired in real time (Section V); and
ii) determine principal components in (possibly) infinite-di-
mensional feature spaces, thus robustifying kernel PCA [34],
and spectral clustering as well [17, p. 544] (Section VI). The
vast literature on non-robust subspace tracking algorithms
includes [24], [42], and [2]; see also [18] for a first-order algo-
rithm that is robust to outliers and incomplete data. Relative
to [18], the online robust (OR-) PCA algorithm of this paper
is a second-order method, which minimizes an outlier-aware
exponentially-weighted LS estimator of the low-rank factor
analysis model. Since the outlier and subspace estimation
tasks decouple nicely in OR-PCA, one can readily devise a
first-order counterpart when minimal computational loads are
at a premium. In terms of performance, online algorithms are
known to be markedly faster than their batch alternatives [2],
[18], e.g., in the timely context of low-rank matrix completion
[29], [30]. While the focus here is not on incomplete data
records, extensions to account for missing data are immediate
and will be reported elsewhere.
In Section VII, numerical tests with synthetic and real data

corroborate the effectiveness of the proposed robust PCA
schemes, when used to identify aberrant responses from a
questionnaire designed to measure the Big-Five dimensions
of personality traits [21], as well as unveil communities in a
(social) network of college football teams [15], and intruders
from video surveillance data [8]. Concluding remarks are given
in Section VIII.
Notation: Bold uppercase (lowercase) letters will denote ma-

trices (column vectors). Operators , , , and
will denote transposition, matrix trace, median, and Hadamard
product, respectively. Vector collects the diagonal en-
tries of , whereas the diagonal matrix has the en-
tries of on its diagonal. The -norm of is

for ; and is the
matrix Frobenius norm. The identity matrix will be repre-
sented by , while will denote the vector of all zeros,
and . Similar notation will be adopted for vec-
tors (matrices) of all ones. The -th vector of the canonical basis
in will be denoted by .

II. ROBUSTIFYING PCA

Consider the standard PCA formulation, in which a set of data
in the -dimensional Euclidean input space is

given, and the goal is to find the best -rank linear
approximation to the data in ; see e.g., [22]. Unless otherwise
stated, it is assumed throughout that the value of is given. One
approach to solving this problem, is to adopt a low-rank bilinear
(factor analysis) model

(1)

where is a location (mean) vector; matrix
has orthonormal columns spanning the signal subspace;

are the so-termed principal components, and
are zero-mean i.i.d. random errors. The unknown variables in
(1) can be collected in , and they are
estimated using the LS criterion as

(2)

PCA in (2) is a nonconvex optimization problem due to the bi-
linear terms , yet a global optimum can be shown to exist;
see e.g., [42]. The resulting estimates are and

; while is formed with
columns equal to the -dominant right singular vectors of the

data matrix [17, p. 535]. The prin-
cipal components (entries of) are the projections of the cen-
tered data points onto the signal subspace. Equiv-
alently, PCA can be formulated based onmaximum variance, or,
minimum reconstruction error criteria; see e.g., [22].

A. Least-Trimmed Squares PCA

Given training data possibly contaminated
with outliers, the goal here is to develop a robust estimator of
that requires minimal assumptions on the outlier model. Note

that there is an explicit notational differentiation between: i) the
data in which adhere to the nominal model (1); and ii) the
given data in that may also contain outliers, i.e., those
not adhering to (1). Building on LTS regression [32], the desired
robust estimate for a prescribed

can be obtained via the following LTS PCA estimator
[cf. (2)]

(3)

where is the -th order statistic among the squared
residual norms , and

. The so-termed coverage determines the breakdown
point of the LTS PCA estimator [32], since the largest
residuals are absent from the estimation criterion in (3). Beyond
this universal outlier-rejection property, the LTS-based estima-
tion offers an attractive alternative to robust linear regression
due to its high breakdown point and desirable analytical proper-
ties, namely -consistency and asymptotic normality under
mild assumptions [32].
Remark 1 (Robust Estimation of the Mean): In most applica-

tions of PCA, data in are typically assumed zero mean. This
is without loss of generality, since nonzero-mean training data
can always be rendered zero mean, by subtracting the sample
mean from each . In modeling zero-mean data,
the known vector in (1) can obviously be neglected. When
outliers are present however, data in are not necessarily
zero mean, and it is unwise to center them using the non-robust
sample mean estimator which has a breakdown point equal to
zero [32]. Towards robustifying PCA, a more sensible approach
is to estimate robustly, and jointly with and the principal
components .
Because (3) is a nonconvex optimization problem, a non-

trivial issue pertains to the existence of the proposed LTS PCA
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estimator, i.e., whether or not (3) attains a minimum. Fortu-
nately, the answer is in the affirmative as asserted next.
Property 1: The LTS PCA estimator is well defined, since (3)

has (at least) one solution.
Existence of can be readily established as follows: i)

for each subset of with cardinality (there are such sub-
sets), solve the corresponding PCA problem to obtain a unique
candidate estimator per subset; and ii) pick as the one
among all candidates with the minimum cost.
Albeit conceptually simple, the solution procedure outlined

under Property 1 is combinatorially complex, and thus in-
tractable except for small sample sizes . Algorithms to obtain
approximate LTS solutions in large-scale linear regression
problems are available; see e.g., [32].

B. -Norm Regularization for Robustness

Instead of discarding large residuals, the alternative ap-
proach here explicitly accounts for outliers in the low-rank
data model (1). This becomes possible through the vector
variables one per training datum , which take the
value whenever datum is an outlier, and
otherwise. Thus, the novel outlier-aware factor analysis model
is

(4)

where can be deterministic or random with unspecified dis-
tribution. In the under-determined linear system of equations
(4), both as well as the matrix
are unknown. The percentage of outliers dictates the degree of
sparsity (number of zero rows) in . Sparsity control will prove
instrumental in efficiently estimating , rejecting outliers as a
byproduct, and consequently arriving at a robust estimator of .
To this end, a natural criterion for controlling outlier sparsity is
to seek the estimator [cf. (2)]

(5)

where ,
, and denotes the nonconvex -norm that is equal

to the number of nonzero rows of . Vector (group) sparsity
in the rows of can be directly controlled by tuning the
parameter .
As with compressive sampling and sparse modeling schemes

that rely on the -norm [37], the robust PCA problem (5) is
NP-hard [26]. In addition, the sparsity-controlling estimator (5)
is intimately related to LTS PCA, as asserted next.
Proposition 1: If minimizes (5) with chosen such

that , then .
Proof: Given such that , the goal is to

characterize as well as the positions and values of the nonzero
rows of . Because , the last term in the cost
of (5) is constant, hence inconsequential to the minimization.
Upon defining , the rows of satisfy

(6)

This follows by noting first that (5) is separable across the rows
of . For each , if then the optimal cost
becomes . If on the other hand

, the optimality condition for yields , and
thus the cost reduces to . In conclusion, for the chosen value
of it holds that squared residuals effectively do not
contribute to the cost in (5).
To determine and the row support of , one alternative is

to exhaustively test all admissible row-support
combinations. For each one of these combinations (indexed by
), let be the index set describing the row
support of , i.e., if and only if ; and

. By virtue of (6), the corresponding candidate
solves subject to , while is

the one among all that yields the least cost. Recognizing
the aforementioned solution procedure as the one for LTS PCA
outlined under Property 1, it follows that .
The importance of Proposition 1 is threefold. First, it formally

justifies model (4) and its estimator (5) for robust PCA, in light
of the well documented merits of LTS [32]. Second, it further
solidifies the connection between sparsity-aware learning and
robust estimation. Third, problem (5) lends itself naturally to
efficient (approximate) solvers based on convex relaxation, the
subject dealt with next.

III. SPARSITY-CONTROLLING OUTLIER REJECTION

Recall that the row-wise -norm sum
of matrix is

the closest convex approximation of [37]. This property
motivates relaxing problem (5) to

(7)
The nondifferentiable -norm regularization term encourages
row-wise (vector) sparsity on the estimator of , a property that
has been exploited in diverse problems in engineering, statis-
tics, and machine learning [17]. A noteworthy representative is
the group Lasso [43], a popular tool for joint estimation and
selection of grouped variables in linear regression. Note that
(7) is only nondifferentiable at the origin, which is a minimal
restriction.
It is pertinent to ponder on whether problem (7) still has the

potential of providing robust estimates in the presence of out-
liers. The answer is positive, since (7) is equivalent to anM-type
estimator

(8)

where is a vector extension to Huber’s convex
loss function [19]; see also [23], and

(9)

Towards establishing the equivalence between problems (7) and
(8), consider the pair that solves (7). Assume that is
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given, and the goal is to determine . Upon defining the resid-
uals and from the row-wise decompos-
ability of , the rows of are separately given by

(10)
For each , because (10) is nondifferentiable at
the origin one should consider two cases: i) if , it
follows that the minimum cost in (10) is ; otherwise, ii)
if , the first-order condition for optimality gives

provided , and the minimum

cost is . Compactly, the solution of (10) is given by

, while the minimum cost in (10) after
minimizing w.r.t. is [cf. (9) and the argument fol-
lowing (10)]. The conclusion is that is the minimizer of (8),
in addition to being the solution of (7) by definition.
M-type estimators (including Huber’s) adopt a fortiori an
-contaminated probability distribution for the outliers, and
rely on minimizing the asymptotic variance of the resultant esti-
mator for the least favorable distribution of the -contaminated
class (asymptotic min-max approach) [19]. The assumed degree
of contamination specifies the tuning parameter in (9) (and
thus the threshold for deciding the outliers in M-estimators). In
contrast, the present approach is universal in the sense that it is
not confined to any assumed class of outlier distributions, and
can afford a data-driven selection of the tuning parameter. In a
nutshell, M-estimators can be viewed as a special case of the
present formulation only for a specific choice of , which is
not obtained via a data-driven approach, but from distributional
assumptions instead.
All in all, the sparsity-controlling role of the tuning param-

eter in (7) is central, since model (4) and the equiva-
lence of (7) with (8) suggest that is a robustness-controlling
constant. Data-driven approaches to select are described in
detail under Section III-C. Before delving into algorithmic is-
sues to solve (7), a couple of remarks are in order.
Remark 2 ( -Norm Regularization for Entry-Wise Outliers):

In computer vision applications where robust PCA schemes are
particularly attractive, one may not wish to discard the entire
(vectorized) images , but only specific pixels deemed as out-
liers [8]. This can be accomplished by replacing in (7)
with , a Lasso-type regularization that
encourages entry-wise sparsity in .
Remark 3 (Outlier Rejection): From the equivalence be-

tween problems (7) and (8), it follows that those data points
deemed as containing outliers are not completely
discarded from the estimation process. Instead, their effect is
downweighted as per Huber’s loss function [cf. (9)]. Never-
theless, explicitly accounting for the outliers in provides
the means of identifying and removing the contaminated data
altogether, and thus possibly re-running PCA on the outlier-free
data.

A. Solving the Relaxed Problem

To optimize (7) iteratively for a given value of , an alter-
nating minimization (AM) algorithm is adopted which cycli-
cally updates per iteration

. AM algorithms are also known as block-coordi-
nate-descent methods in the optimization parlance; see e.g., [3],
[38]. To update each of the variable groups, (7) is minimized
while fixing the rest of the variables to their most up-to-date
values. While the overall problem (7) is not jointly convex with
respect to (w.r.t.) , fixing all but one of the vari-
able groups yields subproblems that are efficiently solved, and
attain a unique solution.
Towards deriving the updates at iteration and arriving at

the desired algorithm, note first that the mean update is
. Next, form the centered and outlier-com-

pensated data matrix . The
principal components are readily given by

Continuing the cycle, solves

a constrained LS problem also known as reduced-rank Pro-
crustes rotation [45]. The minimizer is given in analytical form
in terms of the left and right singular vectors of [45,
Thm. 4]. In detail, one computes the SVD of

and updates . Next, the
minimization of (7) w.r.t. is an orthonormal group Lasso
problem. As such, it decouples across rows giving rise to

-norm regularized subproblems, namely

where . The respective so-
lutions are given by (see e.g., [27])

(11)

where . For notational convenience, these
parallel vector soft-thresholded updates are denoted as

under
Algorithm 1, where the thresholding operator sets the entire
outlier vector to zero whenever does not
exceed , in par with the group sparsifying property of group
Lasso. Interestingly, this is the same rule used to decide if datum
is deemed an outlier, in the equivalent formulation (8) which

involves Huber’s loss function. Whenever an -norm regular-
izer is adopted as discussed in Remark 2, the only difference
is that updates (11) boil down to soft-thresholding the scalar
entries of .
The entire AM solver is tabulated under Algorithm 1, indi-

cating also the recommended initialization. Algorithm 1 is con-
ceptually interesting, since it explicitly reveals the intertwining
between the outlier identification process, and the PCA low-
rank model fitting based on the outlier compensated data .
The AM solver is also computationally efficient. Computing

the matrix requires opera-
tions per iteration, and equally costly is to obtain

. The cost of computing the SVD of is of order
, while the rest of the operations including the row-wise

soft-thresholdings to yield are linear in both and . In
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Algorithm 1: Batch Robust PCA Solver

Set and .

for do

Update .

Form .

Update .

Obtain and update
.

Update .

end for

summary, the total cost of Algorithm 1 is roughly
, where is the number of iterations required for con-

vergence (typically to 10 iterations suffice). Because
is typically small, Algorithm 1 is attractive computa-

tionally both under the classic setting where , and is
not large; as well as in high-dimensional data settings where

, a situation typically arising e.g., in microarray data
analysis.
Because each of the optimization problems in the per-itera-

tion cycles has a unique minimizer, and the nondifferentiable
regularization only affects one of the variable groups , the
general results of [38] apply to establish convergence of Algo-
rithm 1 as follows.
Proposition 2: As , the iterates generated by Algo-

rithm 1 converge to a stationary point of (7).

B. Selection of : Robustification Paths

Selecting controls the number of outliers rejected. But
this choice is challenging because existing techniques such as
cross-validation are not effective when outliers are present [32].
To this end, systematic data-driven approaches were devised in
[14], which e.g., require a rough estimate of the percentage of
outliers, or, robust estimates of the nominal noise variance
that can be obtained using median absolute deviation (MAD)
schemes [19]. These approaches can be adapted to the robust
PCA setting considered here, and leverage the robustification
paths of (group-)Lasso solutions [cf. (7)], which are defined as
the solution paths corresponding to , for
all values of . As decreases, more vectors enter the
model signifying that more of the training data are deemed to
contain outliers.
Consider then a grid of values of in the interval

, evenly spaced on a logarithmic scale. Typically,
is chosen as the minimum value such that ,

while with , say. Because Algorithm 1
converges quite fast, (7) can be efficiently solved over the grid
of values for . In the order of hundreds of grid points can
be easily handled by initializing each instance of Algorithm
1 (per value of ) using warm starts [17]. This means that
multiple instances of (7) are solved for a sequence of decreasing
values, and the initialization of Algorithm 1 per grid point

corresponds to the solution obtained for the immediately pre-
ceding value of in the grid. For sufficiently close values of

, one expects that the respective solutions will also be close
(the row support of will most likely not change), and hence
Algorithm 1 will converge after few iterations.
Based on the samples of the robustification paths and the

prior knowledge available on the outlier model (4), a couple of
alternatives are also possible for selecting the ‘best’ value of
in the grid. A comprehensive survey of options can be found in
[14].
1) Number of Outliers is Known: By direct inspection of

the robustification paths one can determine the range of values
for , such that the number of nonzero rows in equals the
known number of outliers sought. Zooming-in to the interval
of interest, and after discarding the identified outliers, -fold
cross-validation methods can be applied to determine the “best”
.
2) Nominal Noise Covariance Matrix is Known: Given

, one can proceed as follows. Consider the esti-
mates obtained using (7) after sampling the robustification
path for each point . Next, pre-whiten those resid-
uals corresponding to training data not deemed as containing
outliers; i.e., form

, and find the sample covariance matrices
. The winner corresponds to the grid

point minimizing an absolute variance deviation criterion,
namely .

C. Connections With Robust Linear Regression, Dictionary
Learning, and Clustering

Previous efforts towards robustifying linear regression have
pointed out the equivalence between M-type estimators and
-norm regularized regression [13], and capitalized on this

connection under a Bayesian framework [20]. However, they
have not recognized the link to LTS via convex relaxation of the
-norm in (5). The treatment here goes beyond linear regres-

sion by considering the PCA framework, which entails a more
challenging bilinear factor analysis model. Linear regression is
subsumed as a special case, when matrix is not necessarily
tall but assumed known, while .
As an alternative to PCA, it is possible to device dimension-

ality reduction schemeswhen the data admit a sparse representa-
tion over a perhaps unknown basis. Such sparse representations
comprise only a few elements (atoms) of the overcomplete basis
(a.k.a. dictionary) to reconstruct the original data record. Thus,
each datum is represented by a coefficient vector whose effec-
tive dimensionality (number of nonzero coefficients) is smaller
than that of the original data vector. Recently, the dictionary
learning paradigm offers techniques to design a dictionary over
which the data assume a sparse representation; see e.g., [36] for
a tutorial treatment. Dictionary learning schemes are flexible, in
the sense that they utilize training data to learn an appropriate
overcomplete basis customized for the data at hand [24], [36].
However, as in PCA the criteria adopted typically rely on a

squared-error loss function as a measure of fit, which is known
to be very sensitive to outliers [19], [32]. Interestingly, one can
conceivably think of robustifying dictionary learning via minor
modifications to the framework described so far. For instance,
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with the same matrix notation used in e.g., (5), one seeks to
minimize

(12)

Different from the low-rank outlier-aware model adopted for
PCA [cf. (4)], here the dictionary is fat ,
with column vectors that are no longer orthogonal but still con-
strained to have unit -norm. (This constraint is left implicit in
(12) for simplicity.) Moreover, one seeks a sparse vector to
represent each datum , in terms of a few atoms of the learnt
dictionary . This is why (12) includes an additional sparsity-
promoting -norm regularization on , that is not present in (7).
Sparsity is thus present both in the representation coefficients ,
as well as in the outliers .
Finally, it is shown here that a generative data model for

K-means clustering [17] can share striking similarities with
the bilinear model (1). Consequently, the sparsity-controlling
estimator (7) can be adapted to robustify the K-means clus-
tering task too [12]. Consider for instance that the data in
come from clusters, each of which is represented by a cen-
troid . Moreover, for each input vector
, K-means introduces the unknown membership variables

, where whenever comes
from cluster , and otherwise. Typically, the member-
ship variables are also constrained to satisfy
(no empty clusters), and (single cluster
membership). Upon defining and
the membership vectors , a pertinent
model for hard K-means clustering assumes that input vectors
can be expressed as , where and
are as in (4).
Because the aforementioned constraints imply

, if belongs to cluster , then and in
the absence of outliers one effectively has . Based
on this data model, a natural approach towards robustifying
K-means clustering solves [12]

(13)

Recall that in the robust PCA estimator (7), the subspace ma-
trix is required to be orthonormal and the principal components
are unrestrained. In the clustering context however, the cen-
troid columns of are free optimization variables, whereas the
cluster membership variables adhere to the constraints in (13).
Suitable relaxations to tackle the NP-hard problem (13) have
been investigated in [12].

IV. FURTHER ALGORITHMIC ISSUES

A. Bias Reduction Through Nonconvex Regularization

Instead of substituting in (5) by its closest convex ap-
proximation, namely , letting the surrogate function to
be nonconvex can yield tighter approximations, and improve
the statistical properties of the estimator. In rank minimization

problems for instance, the logarithm of the determinant of the
unknown matrix has been proposed as a smooth surrogate to
the rank [11]; an alternative to the convex nuclear norm in e.g.,
[29]. Nonconvex penalties such as the smoothly clipped abso-
lute deviation (SCAD) have been also adopted to reduce bias
[10], present in uniformly weighted -norm regularized estima-
tors such as (7) [17, p. 92]. In the context of sparse signal recon-
struction, the -norm of a vector was surrogated in [6] by the
logarithm of the geometric mean of its elements; see also [28].
Building on this last idea, consider approximating (5) by the

nonconvex formulation

(14)

where the small positive constant is introduced to avoid nu-
merical instability. Since the surrogate term in (14) is concave,
the overall minimization problem is nonconvex and admittedly
more complex to solve than (7). Local methods based on itera-
tive linearization of around the current iterate

, are adopted to minimize (14). Skipping details that can
be found in [23], application of the majorization-minimization
technique to (14) leads to an iteratively-reweighted version of
(7), whereby is used for updating in Al-
gorithm 1. Specifically, per one updates

where , and the weights are
given by .
Note that the thresholds vary both across rows (indexed by ),
and across iterations. If the value of is small, then
in the next iteration the regularization term has a
large weight, thus promoting shrinkage of that entire row vector
to zero. If is large, the cost in the next iteration
downweighs the regularization, and places more importance to
the LS component of the fit.
All in all, the idea is to start from the solution of (7) for the

“best” , which is obtained using Algorithm 1. This initial es-
timate is refined after running a few iterations of the iteratively-
reweighted counterpart to Algorithm 1. Extensive numerical
tests suggest that even a couple iterations of this second stage
refinement suffices to yield improved estimates , in compar-
ison to those obtained from (7). The improvements can be lever-
aged to bias reduction—and its positive effect with regards to
outlier support estimation—also achieved by similar weighted
norm regularizers proposed for linear regression [22, p. 92].

B. Automatic Rank Determination: From Nuclear- to
Frobenius-Norm Regularization

Recall that is the dimensionality of the subspace where
the outlier-free data (1) are assumed to live in, or equivalently,

in the absence of noise. So far, was assumed
known and fixed. This is reasonable in e.g., compression/quan-
tization, where a target distortion-rate tradeoff dictates the max-
imum . In other cases, the physics of the problem may render
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known. This is indeed the case in array processing for direc-
tion-of-arrival estimation, where is the dimensionality of the
so-termed signal subspace, and is given by the number of plane
waves impinging on a uniform linear array; see e.g., [42].
Other applications however, call for signal processing tools

that can determine the “best” , as well as robustly estimate the
underlying low-dimensional subspace from data . Note-
worthy representatives for this last kind of problems include
unveiling traffic volume anomalies in large-scale networks
[25], and automatic intrusion detection from video surveillance
frames [5], [8], just to name a few. A related approach in this
context is (stable) principal components pursuit (PCP) [40],
[44], which solves

(15)

with the objective of reconstructing the low-rank matrix
, as well as the sparse matrix of outliers in the pres-

ence of dense noise with known variance.1 Note that de-
notes the matrix nuclear norm, defined as the sum of the sin-
gular values of . The same way that the -norm regulariza-
tion promotes sparsity in the rows of , the nuclear norm en-
courages a low-rank since it effects sparsity in the vector
of singular values of . Upon solving the convex optimiza-
tion problem (15), it is possible to obtain using the
SVD. Interestingly, (15) does not fix (or require the knowledge
of) a fortiori, but controls it through the tuning param-
eter . Adopting a Bayesian framework, a similar problem was
considered in [9].
Instead of assuming that is known, suppose that only an

upper bound is given. Then, the class of feasible noise-free
low-rank matrix components of in (1) admit a factorization

, where and are and matrices,
respectively. Building on the ideas used in the context of finding
minimum rank solutions of linear matrix equations [29], a novel
alternative approach to robustifying PCA is to solve

(16)
Different from (15) and (7), a Frobenius-norm regularization on
both and is adopted to control the dimensionality of the es-
timated subspace . Relative to (7), in (16) is not constrained
to be orthonormal. It is certainly possible to include the mean
vector in the cost of (16), as well as an -norm regularization
for entrywise outliers. The main motivation behind choosing the
Frobenius-norm regularization comes from the equivalence of
(15) with (16), as asserted in the ensuing result which adapts
[29, Lemma 5.1] to the problem formulation considered here.
Lemma 1: If minimizes (15) and , then

(15) and (16) are equivalent.
Proof: Because , the relevant feasible subset

of (15) can be re-parametrized as , where and
are and matrices, respectively. For every triplet

the objective of (16) is no smaller than the one of
(15), since it holds that [29]

(17)

1Actually, [44] considers entrywise outliers and adopts an -norm regular-
ization on .

Algorithm 2: Batch Robust PCA Solver With Controllable
Rank

Set , and randomly initialize .

for do

Update .

Form .

Update
.

Update .

Update

end for

One can show that the gap between the objectives of (15) and
(16) vanishes at , , and ;
where is the SVD of . Therefore, from the
previous arguments it follows that (15) and (16) attain the same
global minimum objective, which completes the proof.
Even though problem (16) is nonconvex, the number of op-

timization variables is reduced from to ,
which becomes significant when is small and both and
are large. Also note that the dominant -term in the variable
count of (16) is due to , which is sparse and can be efficiently
handled. While the factorization could have also been
introduced in (15) to reduce the number of unknowns, the cost
in (16) is separable and much simpler to optimize using e.g.,
an AM solver comprising the iterations tabulated as Algorithm
2. The decomposability of the Frobenius-norm regularizer has
been recently exploited for parallel processing across multiple
processors when solving large-scale matrix completion prob-
lems [30], or to unveil network anomalies [25].
Because (16) is a nonconvex optimization problem, most

solvers one can think of will at most provide convergence guar-
antees to a stationary point that may not be globally optimum.
Nevertheless, simulation results in Section VII demonstrate
that Algorithm 2 is effective in providing good solutions most
of the time, which is somehow expected since there is quite a
bit of structure in (16). Formally, the next proposition adapted
from [25, Prop. 1] provides a sufficient condition under which
Algorithm 2 yields an optimal solution of (15). For a proof of a
slightly more general result, see [25].
Proposition 3: If is a stationary point of (16) and

, then is the
optimal solution of (15).

V. ROBUST SUBSPACE TRACKING

E-commerce and Internet-based retailing sites, the World
Wide Web, and video surveillance systems generate huge
volumes of data, which far outweigh the ability of modern
computers to analyze them in real time. Towards addressing
this scalability issue, [25] puts forth a general framework for
distributed sparsity-regularized rank minimization. In [25],
adoption of the alternating-direction method of multipliers
gives rise to distributed iterations that can be run on a cluster,
and efficiently solve e.g., robust PCA formulations such as
(16). Furthermore, data are generated sequentially in time,
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which motivates updating previously obtained learning results
rather than re-computing new ones from scratch each time a
new datum becomes available. This calls for low-complexity
real-time (adaptive) algorithms for robust subspace tracking.
One possible adaptive counterpart to (7) is the exponentially-

weighted LS (EWLS) estimator found by

(18)

where is a forgetting factor. In this context, should
be understood as a temporal variable, indexing the instants of
data acquisition. Note that in forming the EWLS estimator (18)
at time , the entire history of data is incorporated
in the real-time estimation process. Whenever , past data
are exponentially discarded thus enabling operation in nonsta-
tionary environments. Adaptive estimation of sparse signals has
been considered in e.g., [1] and [24].
Towards deriving a real-time, computationally efficient, and

recursive (approximate) solver of (18), an AM scheme will be
adopted in which iterations coincide with the time scale

of data acquisition. Per time instant , a new datum
is drawn and the corresponding pair of decision variables

are updated via

(19)

As per (19), only is updated at time , rather than the whole
(growing with time) matrix that minimization of (18) would
dictate; see also [24] for a similar approximation.
Because (19) is a smooth optimization problem w.r.t. , from

the first-order optimality condition the principal component up-
date is . Interestingly,
this resembles the projection approximation adopted in [42], and
can only be evaluated after is obtained. To this end, plug

in (19) to obtain via a particular instance of the group
Lasso estimator

(20)

with a single group of size equal to . The cost in (20) is non-dif-
ferentiable at the origin, and different from e.g., ridge regres-
sion, it does not admit a closed-form solution. Upon defining

(21)

(22)

one can recognize (20) as the multidimensional shrinkage-
thresholding operator introduced in [27]. In
particular, as per [27, Corollary 2] it follows that

if
otherwise

(23)

Algorithm 3: Online Robust (OR-)PCA

\*

Determine and from , as in Section III-C.
Initialize and .

\*

for do

Form and using (21) and (22).

Update via (23).

Update .

\*

Update .

Update .

Update
.

end for

where parameter is such that solves the scalar
optimization

(24)

Remarkably, one can easily determine if , by forming
and checking whether . This will be the

computational burden incurred to solve (20) for most , since
outliers are typically sporadic and one would expect to obtain

most of the time. When datum is deemed an
outlier, , and one needs to carry out the extra line
search in (24) to determine as per (23); further details can
be found in [27]. Whenever an -norm outlier regularization is
adopted, the resulting counterpart of (20) can be solved using
e.g., coordinate descent [1], or, the Lasso variant of least-angle
regression (LARS) [24].
Moving on, the subspace update is given by

and can be efficiently obtained from , via a recursive
LS update leveraging the matrix inversion lemma; see e.g., [42].
Note that the orthonormality constraint on is not enforced
here, yet the deviation from orthonormality is typically small as
observed in [42]. Still, if orthonormal principal directions are re-
quired, an extra orthonormalization step can be carried out per
iteration, or, once at the end of the process. Finally, is
obtained recursively as the exponentially-weighted average of
the outlier-compensated data . The resulting on-
line robust (OR-)PCA algorithm and its initialization are sum-
marized under Algorithm 3, where and its update have been
omitted for brevity.
For the batch case where all data in are available for joint

processing, two data-driven criteria to select have been out-
lined in Section III-C. However, none of these sparsity-control-
ling mechanisms can be run in real-time, and selecting for
subspace tracking via OR-PCA is challenging. One possibility
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to circumvent this problem is to select once during a short ini-
tialization (batch) phase of OR-PCA, and retain its value for the
subsequent time instants. Specifically, the initialization phase
of OR-PCA entails solving (7) using Algorithm 1, with a typ-
ically small batch of data . At time , the criteria in
Section III-C are adopted to find the “best” , and thus obtain
the subspace estimate required to initialize the OR-PCA
iterations.
Convergence analysis of OR-PCA algorithm is beyond the

scope of the present paper, and is only confirmed via simula-
tions. The numerical tests in Section VII also show that in the
presence of outliers, the novel adaptive algorithm outperforms
existing non-robust alternatives for subspace tracking.

VI. ROBUSTIFYING KERNEL PCA

Kernel (K)PCA is a generalization to (linear) PCA, seeking
principal components in a feature space nonlinearly related to
the input space where the data in live [34]. KPCA has been
shown effective in performing nonlinear feature extraction
for pattern recognition [34]. In addition, connections between
KPCA and spectral clustering [17, p. 548] motivate well the
novel KPCA method developed in this section, to robustly
identify cohesive subgroups (communities) from social net-
work data.
Consider a nonlinear function , that maps el-

ements from the input space to a feature space of ar-
bitrarily large—possibly infinite—dimensionality. Given trans-
formed data , the proposed approach to ro-
bust KPCA fits the model

(25)

by solving

(26)

It is certainly possible to adopt the criterion (7) as well, but (26)
is chosen here for simplicity in exposition. Except for the prin-
cipal components’ matrix , both the data and the
unknowns in (26) are now vectors/matrices of generally infi-
nite dimension. In principle, this challenges the optimization
task since it is impossible to store, or, perform updates of such
quantities directly. For these reasons, assuming zero-mean data

, or, the possibility of mean compensation for that matter,
cannot be taken for granted here [cf. Remark 1]. Thus, it is im-
portant to explicitly consider the estimation of .
Interestingly, this hurdle can be overcome by endowing
with the structure of a reproducing kernel Hilbert space

(RKHS), where inner products between any two members
of boil down to evaluations of the reproducing kernel

, i.e., .
Specifically, it is possible to form the kernel matrix

, without directly working with the
vectors in . This so-termed kernel trick is the crux of most
kernel methods in machine learning [17], including kernel PCA

[34]. The problem of selecting (and indirectly) will not
be considered here.
Building on these ideas, it is shown in the sequel that Algo-

rithm 2 can be kernelized, to solve (26) at affordable computa-
tional complexity and memory storage requirements that do not
depend on the dimensionality of .
Proposition 4: For , the sequence of iterates generated

by Algorithm 2 when applied to solve (26) can be written as
, , and . The

quantities , , and
are recursively updated as in Algorithm 4, without the need of
operating with vectors in .

Proof: The proof relies on an inductive argument. Sup-
pose that at iteration , there exists a matrix

such that the outliers can be expressed as
. From Algorithm 2, the update for the mean vector is

where . Likewise,
so that one can write the subspace

update as , upon defining

With regards to the principal components, it follows that (cf.
Algorithm 2)

(27)

which is expressible in terms of the kernel matrix .
Finally, the columns are given by the vector soft-thresh-
olding operation (11), where the residuals are

Upon stacking all columns , one readily
obtains [cf. (11)]

(28)

where .

Interestingly, the diagonal elements of can be
computed using the kernel matrix, since

. From (28) it is apparent
that one can write , after defining

The proof is concluded by noting that for , Algorithm
2 is initialized with . One can thus satisfy the
inductive base case , by letting .

Proposition 4 asserts that if Algorithm 2 is initialized with
outlier estimates in the range space of , then all subsequent



MATEOS AND GIANNAKIS: ROBUST PCA AS BILINEAR DECOMPOSITION WITH OUTLIER-SPARSITY REGULARIZATION 5185

Algorithm 4: Robust KPCA Solver

Initialize , randomly, and form .

for do

Update .

Form .

Update
.

Update .

Form ,
and update .

Update

end for

iterates will admit a similar expansion in terms of feature vec-
tors. This is weaker than claiming that each minimizer of (26)
admits such an expansion—the latter would require checking
whether the regularization term in (26) satisfies the conditions
of the Representer Theorem [33].
In order to run the novel robust KPCA algorithm (tabulated

as Algorithm 4), one does not have to store or process the quan-
tities , , and . As per Proposition 4, the iter-
ations of the provably convergent AM solver in Section IV-B
can be equivalently carried out by cycling through finite-dimen-
sional “sufficient statistics” . In
other words, the iterations of the robust kernel PCA algorithm
are devoid of algebraic operations among vectors in . Recall
that the size of matrix is independent of the dimensionality
of . Nevertheless, its update in Algorithm 2 cannot be carried
out verbatim in the high-dimensional setting here, and is instead
kernelized to yield the update rule (27).
Because and upon convergence of the

algorithm, the outlier vector norms are computable in terms of
, i.e., .

These are critical to determine the robustification paths needed
to carry out the outlier sparsity control methods in Section III-C.
Moreover, the principal component corresponding to any
given new data point is obtained through the projection

,
which is again computable after evaluations the kernel func-
tion .

VII. NUMERICAL TESTS

A. Synthetic Data Tests

To corroborate the effectiveness of the proposed robust
methods, experiments with computer generated data are carried
out first. These are important since they provide a “ground
truth”, against which performance can be assessed by evalu-
ating suitable figures of merit.
1) Outlier-Sparsity Control: To generate the data (4), a sim-

ilar setting as in [4, Sec. V] is considered here with and
. For , the errors are

TABLE I

(multivariate normal distribution) and i.i.d. The entries of and
are i.i.d. zero-mean Gaussian distributed, with vari-

ance . Outliers are generated as ,
where the entries of are i.i.d. Bernoulli distributed with pa-
rameter , and has i.i.d. entries drawn from a uniform dis-
tribution supported on . The chosen values of the param-
eters are , , , and varying noise
levels .
In this setup, the ability to recover the low-rank component of

the data is tested for the sparsity-controlling robust
PCAmethod of this paper [cf. (7)], stable PCP (15), and (non-ro-
bust) PCA. The -norm regularized counterparts of (7) and (15)
are adopted to deal with entry-wise outliers. Both values of
and are assumed known to obtain and via
(7). This way, is chosen using the sparsity-controlling algo-
rithm of Section III-C, searching over a grid where ,

, and . In addition, the solutions
of (7) are refined by running two iterations of the iteratively
reweighted algorithm in Section IV-A, where . Re-
garding PCP, only the knowledge of is required to select the
tuning parameters and in (15), as
suggested in [44]. Finally, the best rank approximation to the
data is obtained using standard PCA.
The results are summarized in Table I, which shows the es-

timation errors attained by the aforementioned
schemes, averaged over 15 runs of the experiment. The “best”
tuning parameters used in (7) are also shown. Both robust
schemes attain an error which is approximately an order of mag-
nitude smaller than PCA. With the additional knowledge of
the true data rank , the sparsity-controlling algorithm of this
paper outperforms stable PCP in terms of . This numerical
test is used to corroborate Proposition 3 as well. For the same
values of the tuning parameters chosen for (15) and the rank
upper-bound set to , Algorithm 2 is run to obtain the
solution of the nonconvex problem (16). The av-
erage (across realizations and values of ) errors obtained are

and , where
is the solution of stable PCP [cf. (15)]. Thus, the solu-

tions are identical for all practical purposes.
2) Identification of Invalid Survey Protocols: Robust PCA

is tested here to identify invalid or otherwise aberrant item re-
sponse (questionnaire) data in surveys, that is, to flag and hold
in abeyance data that may negatively influence (i.e., bias) sub-
sequent data summaries and statistical analyses. In recent years,
item response theory (IRT) has become the dominant paradigm
for constructing and evaluating questionnaires in the biobehav-
ioral and health sciences and in high-stakes testing (e.g., in the
development of college admission tests); see e.g., [39]. IRT en-
tails a class of nonlinear models characterizing an individual’s
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Fig. 1. Pseudo scree plot of outlier size ; the 100 largest outliers are
shown.

item response behavior by one or more latent traits, and one or
more item parameters. An increasingly popular IRT model for
survey data is the 2-parameter logistic IRT model (2PLM) [31].
2PLM characterizes the probability of a keyed (endorsed) re-
sponse , as a nonlinear function of a weighted difference
between a person parameter and an item parameter

(29)

where is a latent trait value for individual ; is an
item discrimination parameter (similar to a factor loading) for
item ; and is an item difficulty (or extremity) parameter
for item .
Binary item responses (“agree/disagree” response format)

were generated for hypothetical subjects who were
administered items (questions). The 2PLM function
(29) was used to generate the underlying item response prob-
abilities, which were converted into binary item responses as
follows: a response was coded 1 if ,
and coded 0 otherwise, where denotes a uniform
random deviate over . Model parameters were randomly
drawn as , , and

). Each of the 200 items loaded on one
of latent factors. To simulate random responding—a
prevalent form of aberrancy in e.g., web-collected data—rows
101–120 of the item response matrix were modified by
(re)drawing each of the entries from a Bernoulli distribution
with parameter 0.5, thus yielding the corrupted matrix .
Robust PCA in (7) was adopted to identify invalid survey

data, with , and chosen such that , a safe
overestimate of the number of outliers. Results of this study are
summarized in Fig. 1, which displays the 100 largest outliers

from the robust PCA analysis of the sim-
ulated response vectors. When the outliers are plotted against
their ranks, there is an unmistakable break between the 20th and
21st ordered value indicating that the method correctly iden-
tified the number of aberrant response patterns in . Perhaps

Fig. 2. (Top) Time evolution of the angle between the learnt subspace ,
and the true used to generate the data ( and ). Outlier
contaminated data is introduced at time . (Bottom) Time evolution of
the reconstruction error.

more impressively, the method also correctly identified rows
101-to-120 as containing the invalid data.
3) Online Robust Subspace Estimation: A simulated

test is carried out here to corroborate the convergence and
effectiveness of the OR-PCA algorithm in Section V. For

, , and , nominal data in
are generated according to the stationary model (1), where

. Vectors are outliers,
uniformly i.i.d. over . The results depicted in Fig. 2
are obtained after averaging over 50 runs. Fig. 2 (top) depicts
the time evolution of the angle between the learnt subspace
(spanned by the columns of) and the true subspace
generating , where and . The convergent
trend of Algorithm 3 to is apparent; and markedly outper-
forms the non-robust subspace tracking method in [42], and the
first-order GROUSE algorithm in [2]. Note that even though
is time-invariant, it is meaningful to select to

quickly “forget” and recover from the outliers. A similar trend
can be observed in Fig. 2 (bottom), which depicts the time

evolution of the reconstruction error .
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Fig. 3. (Top) Data in three concentric clusters, in addition to five outliers shown
in black. (Bottom) Coordinates of the first two columns of , obtained by run-
ning Algorithm 4. The five outlying points are correctly identified, and thus can
be discarded. Non-robust methods will assign them to the green cluster.

4) Robust Spectral Clustering: The following simulated
test demonstrates that robust KPCA in Section VI can be
effectively used to robustify spectral clustering (cf. the connec-
tion between both non-robust methods in e.g., [17, p. 548]).
Adopting the data setting from [17, p. 546]), points
in are generated from three circular concentric clusters,
with respective radii of 1, 2.8, and 5. The points are uniformly
distributed in angle, and additive noise
is added to each datum. Five outliers uniformly
distributed in the square complete the training data
; see Fig. 3 (top). To unveil the cluster structure from the

data, Algorithm 4 is run using the Gaussian radial kernel
, with . The spar-

sity-controlling parameter is set to so that ,
while , and . Upon convergence, the vector of
estimated outlier norms is

,
which shows that the outliers are correctly identified. Estimates
of the (rotated) first two dominant eigenvectors of the kernel
matrix are obtained as the columns of , and are depicted in
Fig. 3 (bottom). After removing the rows of corresponding
to the outliers [black points in Fig. 3 (bottom)], e.g., K-means
clustering of the remaining points in Fig. 3 (bottom) will easily
reveal the three clusters sought. From Fig. 3 (bottom) it is ap-
parent that a non-robust KPCA method will incorrectly assign
the outliers to the outer (green) cluster.

Fig. 4. Background modeling for video surveillance. First column: original
frames. Second column: PCA reconstructions, where the presence of undesir-
able ‘ghostly’ artifacts is apparent, since PCA is not able to completely sep-
arate the people from the background. Third column: robust PCA reconstruc-
tions, which recover the illumination changes while successfully subtracting
the people. Fourth column: outliers in , which mostly capture the people and
abrupt changes in illumination.

B. Real Data Tests

1) Video Surveillance: To validate the proposed approach
to robust PCA, Algorithm 1 was tested to perform background
modeling from a sequence of video frames; an approach that has
found widespread applicability for intrusion detection in video
surveillance systems. The experiments were carried out using
the dataset studied in [8], which consists of images

acquired from a static camera during two
days. The illumination changes considerably over the two day
span, while approximately 40% of the training images contain
people in various locations. For , both standard PCA and
the robust PCA of Section III were applied to build a low-rank
background model of the environment captured by the camera.
For robust PCA, -norm regularization on was adopted to
identify outliers at a pixel level. The outlier sparsity-controlling
parameter was chosen as , whereas a single
iteration of the reweighted scheme in Section IV-A was run to
reduce the bias in .
Results are shown in Fig. 4, for three representative images.

The first column comprises the original frames from the training
set, while the second column shows the corresponding PCA
image reconstructions. The presence of undesirable “ghostly”
artifacts is apparent, since PCA is unable to completely separate
the people from the background. The third column illustrates
the robust PCA reconstructions, which recover the illumination
changes while successfully subtracting the people. The fourth
column shows the reshaped outlier vectors , which mostly
capture the people and abrupt changes in illumination. For stan-
dard PCA, robust PCA in Section III, and the robust algorithm
of [8], the average reconstruction errors for 90 images without
people was computed yielding values of 0.0583, 0.0328, and
0.0360, respectively. While both robust schemes are compa-
rable and considerably outperform PCA, the proposed algorithm
is markedly faster in processing all images than its counterpart
in [8] (45.25 sec. compared to 1479.82 sec.)2.

2The software package available at http://www.salleurl.edu/~ft orre/papers/
rpca/rpca.zip was utilized to run [8].
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2) Robust Measurement of the Big Five Personality Factors:
The “Big Five” are five factors of personality traits,
namely extraversion, agreeableness, conscientiousness, neuroti-
cism, and openness; see e.g., [21]. The Big Five inventory (BFI)
on the other hand, is a brief questionnaire (44 items in total)
tailored to measure the Big Five dimensions. Subjects taking
the questionnaire are asked to rate in a scale from 1 (disagree
strongly) to 5 (agree strongly), items of the form “I see my-
self as someone who is talkative”. Each item consists of a short
phrase correlating (positively or negatively) with one factor; see
e.g., [21, pp. 157–58] for a copy of the BFI and scoring in-
structions. Robust PCA is used to identify aberrant responses
from real BFI data comprising the Eugene-Springfield commu-
nity sample [16]. The rows of contain the item re-
sponses for each one of the subjects under study.
For , (7) is solved over grid of values of ,
where , and . The first plot of
Fig. 5 (top) shows the evolution of ’s row support as a func-
tion of with black pixels along the row indicating that

, and white ones reflecting that the responses from
subject are deemed as outliers for the given . For example
subjects and 204 are strong outlier candidates due to
random responding, since they enter the model
for relatively large values of . The responses of e.g., subjects

(all items rated “3”) and 249 (41 items rated “3 and
3 items rated “4”) are also undesirable, but are well modeled
by (1) and are only deemed as outliers when is quite small.
These two observations are corroborated by the second plot of
Fig. 5 (top), which shows the robust PCA results on a corrupted
dataset, obtained from by overwriting: (i) rows
with random item responses drawn from a uniform distribution
over ; and (ii) rows with constant item
responses of value 3.
For corresponding to , Fig. 5

(bottom) depicts the norm of the 40 largest outliers. Following
the methodology outlined in Section VII-A, 8 subjects including

and 204 are declared as outliers by robust PCA. As
a means of validating these results, the following procedure is
adopted. Based on the BFI scoring key [21], a list of all pairs of
items hypothesized to yield positively correlated responses is
formed. For each , one counts the “inconsistencies” defined as
the number of times that subject ’s ratings for these pairs differ
in more than four, in absolute value. Interestingly, after rank-or-
dering all subjects in terms of this inconsistency score, one finds
that ranks highest with a count of 17, ranks
second (10), and overall the eight outliers found rank in the top
twenty.
3) Unveiling Communities in Social Networks: Next, robust

KPCA is used to identify communities and outliers in a net-
work of college football teams, by capitalizing on
the connection between KPCA and spectral clustering [17, p.
548]. Nodes in the network graph represent teams belonging
to eleven conferences (plus five independent teams), whereas
(unweighted) edges joining pairs of nodes indicate that both
teams played against each other during the Fall 2000 Division
I season [15]. The kernel matrix used to run robust KPCA is

, where and denote the graph
adjacency and degree matrices, respectively; while is

Fig. 5. (Top) Evolution of ’s row support as a function of —black pixels
along the row indicate that , whereas white ones reflect that
the responses from subject are deemed as outliers for given . The results
for both the original and modified (introducing random and constant item re-
sponses) BFI datasets are shown. (Bottom) Pseudo scree plot of outlier size

; the 40 largest outliers are shown. Robust PCA declares the largest 8
as aberrant responses.

chosen to render positive semi-definite. The tuning parame-
ters are chosen as so that , while ,
and . Fig. 6 (top) shows the entries of , where rows and
columns are permuted to reveal the clustering structure found
by robust KPCA (after removing the outliers); see also Fig. 6
(bottom). The quality of the clustering is assessed through the
adjusted rand index (ARI) after excluding outliers [12], which
yielded the value 0.8967. Four of the teams deemed as out-
liers are Connecticut, Central Florida, Navy, and Notre Dame,
which are indeed teams not belonging to any major conference.
The community structure of traditional powerhouse conferences
such as Big Ten, Big 12, ACC, Big East, and SECwas identified
exactly.

VIII. CONCLUDING SUMMARY

Outlier-robust PCA methods were developed in this paper,
to obtain low-dimensional representations of (corrupted) data.
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Fig. 6. (Top) Entries of after removing the outliers, where rows and
columns are permuted to reveal the clustering structure found by robust KPCA.
(Bottom) Graph depiction of the clustered network. Teams belonging to the
same estimated conference (cluster) are colored identically. The outliers are
represented as diamond-shaped nodes.

Bringing together the seemingly unrelated fields of robust sta-
tistics and sparse regression, the novel robust PCA framework
was found rooted at the crossroads of outlier-resilient estima-
tion, learning via (group-) Lasso and kernel methods, and real-
time adaptive signal processing. Social network analysis, video
surveillance, and psychometrics, were highlighted as relevant
application domains.
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