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Motivation and context

▶ Homophily: tendency of nodes with similar attributes to connect
▶ underpins key graph learning tasks such as nearest-neighbor prediction,

semi-supervised learning, and topology inference
⇒ Such insights guide better and more tailored model(e.g., GNN) design
⇒ Recent works increasingly target heterophilous data [2], [3]

▶ Limitation: Often only a sample of the network is observed
▶ This work: estimate several homophily metrics from sampled graph data

⇒ We address testability and validate unbiasedness on real data

Preliminaries and notation

▶ Let G = (V , E) denote an undirected graph with |V| = N nodes. Its adjacency
matrix is A ∈ RN×N . Each node i ∈ V is assigned a one–hot encoded
feature vector xi ∈ Rd , where d is the number of node types. Stacking all
feature vectors yields the feature matrix X ∈ RN×d

▶ The Laplacian of G is defined as

L := diag(A1)− A

▶ The Dirichlet energy of G with respect to node features X is given by

TVG(X) := trace(X⊤LX) =
∑

(i ,j)∈E
Aij ∥xi − xj∥2

⇒ Can be expressed as a total over edges
▶ Let G∗ = (V∗, E∗) be a random subgraph of G obtained under a prescribed

sampling scheme. For each edge (i , j) ∈ E , denote by

πij := P
[
(i , j) ∈ E∗

]
its inclusion probability.

Problem formulation

▶ Setup: Given a weighted graph G = (V , E) with adjacency A and feature matrix
X ∈ RN×d , the Dirichlet energy quantifies homophily

▶ Many times, the complete graph is not accessible
⇒ Dynamic environments
⇒ Resource limitations
⇒ Privacy constraints

▶ Problem: Given a sample G∗ = (V∗, E∗) of G obtained using a sampling design with
edge inclusion probabilities πij = ((i , j) ∈ E∗), estimate TVG(X) (and related metrics)
unbiasedly from (G∗,X∗)

▶ Other homophily metrics can be considered and estimated with HT estimator:

Edge Homophily =

∑
(u,v)∈E Aij I{xi = xj}∑

(i ,j)∈E Aij

Meta-path based Label Homophily(MLHL) =

∑
i ̸=j(A

L)ij I{xi = xj}∑
i ̸=j(AL)ij

⇒ Here, I{·} denotes the indicator function
▶ Challenges:

⇒ Inclusion probabilities may be unequal and hard to compute
⇒ Estimator variance depends on the sampling design

Network sampling designs

A sampling design produces → V∗ ⊆ V and the corresponding induced edge set

E∗ = {(i , j) ∈ E : i , j ∈ V∗}.
Inclusion probabilities: πi = P(i ∈ V∗), πij = P((i , j) ∈ E∗), πijkl for pairs of edges.
Bernoulli sampling: Each node is included independently with probability p

▶ Node inclusion: πi = p
▶ Edge inclusion: πij = p2

▶ Joint edge inclusion: πijkl = p4

⇒ Explicit control over expected sample size
⇒ Produces random sample sizes

Induced subgraph sampling: A fixed number n of vertices is drawn uniformly without
replacement, and only edges between sampled vertices are kept.
▶ Node inclusion: πi =

n
N

▶ Edge inclusion: πij =
n(n−1)
N(N−1)

⇒ Guarantees exact sample size n
⇒ Preserves induced structure among sampled vertices

Horvitz–Thompson (HT) estimator

▶ HT estimator: Takes into account the inclusion probability πij of each sampled
edge [1]

⇒ Applies to estimation of network totals (or averages)

T̂VG∗(X∗) :=
∑

(i ,j)∈E∗

Aij∥xi − xj∥2

πij
,

⇒ The HT estimator is unbiased. Variance given by

Var[T̂VG∗(X∗)] =
∑

(i ,j)∈E∗

∑
(k ,l)∈E∗

VijVkl

(
1

πijπkl
− 1

πijkl

)
▶ Variance estimation: ↑ π ⇒ ↓ Var ⇒ Tighter histogram

Testability

▶ Testability of the Dirichlet energy statistic can be established under sampling
▶ A network statistic η is testable if for every ϵ > 0 there exists a sample size n such

that for any graph G with N ≥ n, an estimate η̂ = η(G∗
n) from a sampled G∗

n satisfies

P[|η(G)− η̂| > ε] ≤ ε

Implications
▶ Testability ⇔ existence of a weakly consistent estimator
▶ Foundation for studying feasibility of inference tasks on large graphs

Evaluation

▶ Estimation of homophily metrics under sampling is evaluated across several datasets
⇒ how variance of the measures change
⇒ unbiasedness of the estimation

Estimation of Dirichlet energy under Bernoulli sampling

▶ p = {0.2,0.5,0.8}, 200 realizations, datasets = {Cora,Pubmed ,Squirrel ,Chameleon}
⇒ Higher sampling rate shrinks variance of estimates
⇒ Unbiasedness well supported, even for small samples
⇒ Sampling schemes can be tailored for specific cases

Induced subgraph sampling: Additional metrics and datasets

Size Dirichlet Energy Edge Homophily MLH

Dataset Nodes Edges GT Est Bias GT Est Bias GT Est Bias

Citeseer 3327 4676 0.2575 0.2560 -0.0015 0.7425 0.7598 0.0173 0.7547 0.7545 -0.0002
Cora 2708 5278 0.1900 0.1898 -0.0002 0.8100 0.8102 0.0002 0.7795 0.7732 -0.0063
Cornell 183 280 0.8679 0.8591 -0.0088 0.1321 0.1688 0.0366 0.2586 0.2907 0.0321
Wisconsin 251 466 0.7940 0.8135 0.0195 0.2060 0.2794 0.0734 0.3012 0.3120 0.0108
Amazon 24492 93050 0.6196 0.6193 -0.0003 0.3804 0.3801 -0.0002 0.3988 0.3981 -0.0007
Squirrel 5201 198493 0.7773 0.7817 0.0043 0.2227 0.2234 0.0007 0.2291 0.2287 -0.0004
Chameleon 2277 31421 0.7688 0.7689 0.0001 0.2312 0.2345 0.0034 0.2676 0.2701 0.0024

Table: Sampling: Induced Subgraph Sampling, n = 0.2 × N, 200 realizations

Link to the Github & future directions

▶ Testability: explore graph limit models and sampling designs
▶ Test unequal probability sampling designs
▶ Extensive numerical experiments
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