

Dirichlet Meets Horvitz and Thompson: Estimating Homophily in Large Graphs via Sampling

Hamed Ajorlou[†], Gonzalo Mateos[†], and Luana Ruiz^{*}

†Dept. of Electrical and Computer Eng., University of Rochester, Rochester, NY

*Dept. of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD

Motivation and context

- ► Homophily: tendency of nodes with similar attributes to connect
- underpins key graph learning tasks such as nearest-neighbor prediction, semi-supervised learning, and topology inference
 - ⇒ Such insights guide better and more tailored model(e.g., GNN) design
 - ⇒ Recent works increasingly target **heterophilous data** [2], [3]
- ► Limitation: Often only a sample of the network is observed
- ► This work: estimate several homophily metrics from sampled graph data
 - ⇒ We address testability and validate unbiasedness on real data

Preliminaries and notation

- Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ denote an undirected graph with $|\mathcal{V}| = N$ nodes. Its adjacency matrix is $\mathbf{A} \in \mathbb{R}^{N \times N}$. Each node $i \in \mathcal{V}$ is assigned a one-hot encoded feature vector $\mathbf{x}_i \in \mathbb{R}^d$, where d is the number of node types. Stacking all feature vectors yields the **feature matrix** $\mathbf{X} \in \mathbb{R}^{N \times d}$
- ightharpoonup The Laplacian of \mathcal{G} is defined as

$$L := diag(A1) - A$$

ightharpoonup The **Dirichlet energy** of \mathcal{G} with respect to node features **X** is given by

$$\mathrm{TV}_{\mathcal{G}}(\mathbf{X}) := \mathrm{trace}(\mathbf{X}^{\top}\mathbf{L}\mathbf{X}) = \sum_{(i,j)\in\mathcal{E}} \mathbf{A}_{ij} \|\mathbf{x}_i - \mathbf{x}_j\|^2$$

- ⇒ Can be expressed as a total over edges
- Let $\mathcal{G}^* = (\mathcal{V}^*, \mathcal{E}^*)$ be a random subgraph of \mathcal{G} obtained under a **prescribed** sampling scheme. For each edge $(i, j) \in \mathcal{E}$, denote by

$$\pi_{ii} := \mathbb{P}[(i,j) \in \mathcal{E}^*]$$

its inclusion probability.

Problem formulation

- **Setup:** Given a weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with adjacency **A** and feature matrix $\mathbf{X} \in \mathbf{R}^{N \times d}$, the Dirichlet energy quantifies **homophily**
- Many times, the complete graph is not accessible
 - ⇒ Dynamic environments
 - ⇒ Resource limitations
 - ⇒ **Privacy** constraints
- ▶ **Problem:** Given a sample $\mathcal{G}^* = (\mathcal{V}^*, \mathcal{E}^*)$ of \mathcal{G} obtained using a sampling design with edge inclusion probabilities $\pi_{ij} = ((i,j) \in \mathcal{E}^*)$, estimate $\mathrm{TV}_{\mathcal{G}}(\mathbf{X})$ (and related metrics) unbiasedly from $(\mathcal{G}^*, \mathbf{X}^*)$
- ► Other homophily metrics can be considered and estimated with HT estimator:

Edge Homophily =
$$\frac{\sum_{(u,v)\in\mathcal{E}}\mathbf{A}_{ij}\mathbb{I}\{\mathbf{x}_i=\mathbf{x}_j\}}{\sum_{(i,j)\in\mathcal{E}}\mathbf{A}_{ij}}$$

Meta-path based Label Homophily(MLH_L) = $\frac{\sum_{i \neq j} (\mathbf{A}^L)_{ij} \mathbb{I}\{\mathbf{x}_i = \mathbf{x}_j\}}{\sum_{i \neq j} (\mathbf{A}^L)_{ii}}$

 \Rightarrow Here, $\mathbb{I}\{\cdot\}$ denotes the indicator function

- **▶** Challenges:
 - ⇒ Inclusion probabilities may be unequal and hard to compute
 - ⇒ Estimator variance depends on the **sampling design**

Network sampling designs

A sampling design produces $o \mathcal{V}^* \subseteq \mathcal{V}$ and the corresponding induced edge set

$$\mathcal{E}^* = \{(i,j) \in \mathcal{E} : i,j \in \mathcal{V}^*\}.$$

Inclusion probabilities: $\pi_i = \mathbb{P}(i \in \mathcal{V}^*)$, $\pi_{ij} = \mathbb{P}((i,j) \in \mathcal{E}^*)$, π_{ijkl} for pairs of edges. **Bernoulli sampling:** Each node is included independently with probability p

- Node inclusion: $\pi_i = p$
- ► Edge inclusion: $\pi_{ii} = p^2$
- ▶ Joint edge inclusion: $\pi_{iikl} = p^4$
 - ⇒ Explicit control over expected sample size
 - ⇒ Produces random sample sizes

Induced subgraph sampling: A fixed number *n* of vertices is drawn uniformly without replacement, and only edges between sampled vertices are kept.

- Node inclusion: $\pi_i = \frac{n}{N}$
- ► Edge inclusion: $\pi_{ij} = \frac{n(n-1)}{N(N-1)}$
 - \Rightarrow Guarantees exact sample size *n*
 - ⇒ Preserves induced structure among sampled vertices

Horvitz–Thompson (HT) estimator

- ▶ **HT estimator**: Takes into account the inclusion probability π_{ij} of each sampled edge [1]
 - ⇒ Applies to estimation of network totals (or averages)

$$\widehat{\mathrm{TV}}_{\mathcal{G}^*}(\mathbf{X}^*) := \sum_{(i,j) \in \mathcal{E}^*} \frac{A_{ij} \|\mathbf{x}_i - \mathbf{x}_j\|^2}{\pi_{ij}},$$

⇒ The HT estimator is **unbiased**. **Variance** given by

$$\operatorname{Var}[\widehat{\operatorname{TV}}_{\mathcal{G}^*}(\mathbf{X}^*)] = \sum_{(i,j)\in\mathcal{E}^*} \sum_{(k,l)\in\mathcal{E}^*} V_{ij} V_{kl} \left(\frac{1}{\pi_{ij}\pi_{kl}} - \frac{1}{\pi_{ijkl}} \right)$$

▶ Variance estimation: $\uparrow \pi \Rightarrow \downarrow Var \Rightarrow Tighter histogram$

Testability

- Testability of the Dirichlet energy statistic can be established under sampling
- A network statistic η is **testable** if for every $\epsilon > 0$ there exists a sample size n such that for any graph \mathcal{G} with $N \geq n$, an estimate $\hat{\eta} = \eta(\mathcal{G}_n^*)$ from a sampled \mathcal{G}_n^* satisfies

$$\mathbb{P}[|\eta(\mathcal{G}) - \hat{\eta}| > \varepsilon] \le \varepsilon$$

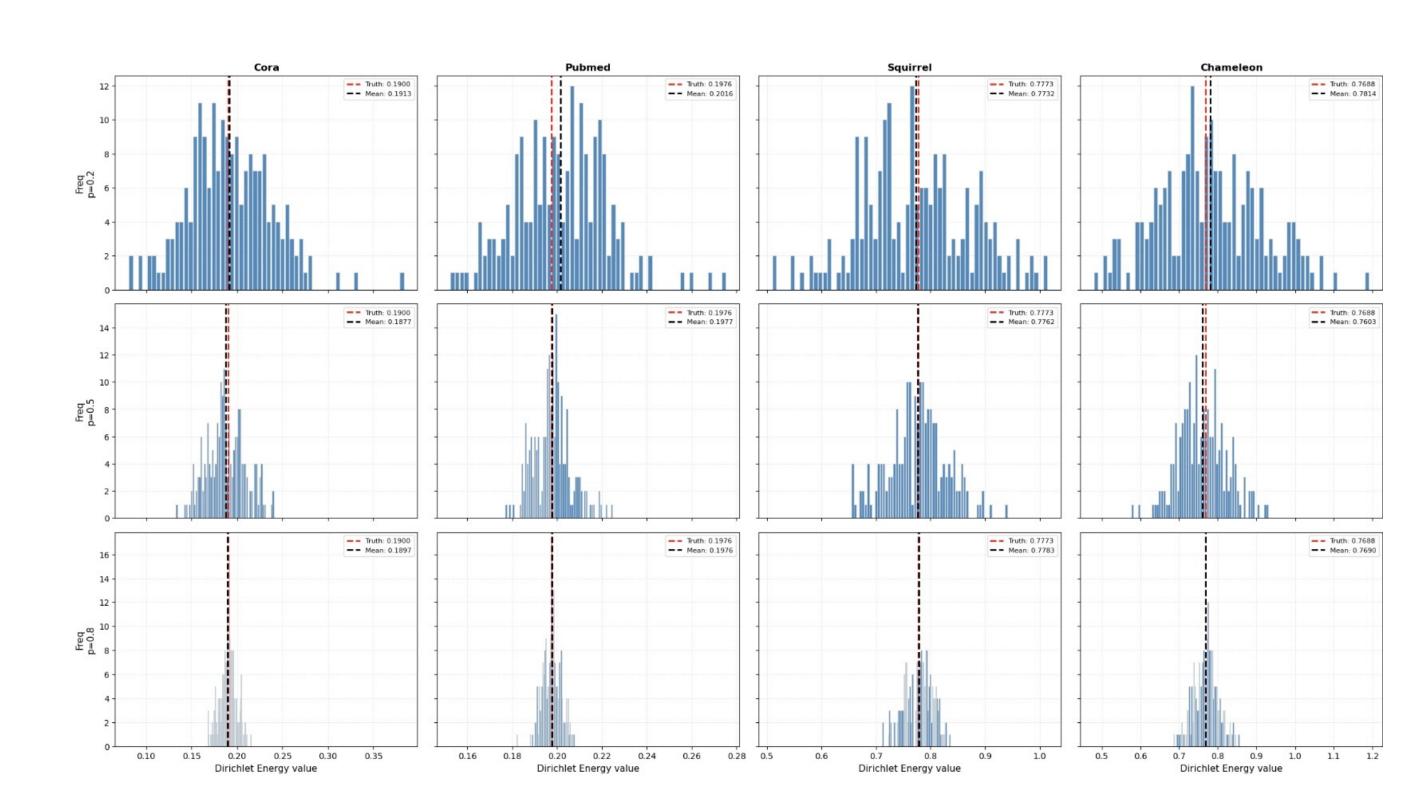
Implications

- ► Testability ⇔ existence of a **weakly consistent** estimator
- Foundation for studying feasibility of inference tasks on large graphs

Evaluation

- Estimation of homophily metrics under sampling is evaluated across several datasets
 - ⇒ how variance of the measures change
 - ⇒ unbiasedness of the estimation

Estimation of Dirichlet energy under Bernoulli sampling



- ▶ p = {0.2, 0.5, 0.8}, 200 realizations, datasets = { Cora, Pubmed, Squirrel, Chameleon}
 - ⇒ Higher sampling rate shrinks variance of estimates
 - ⇒ Unbiasedness well supported, even for small samples
 - ⇒ Sampling schemes can be tailored for specific cases

Induced subgraph sampling: Additional metrics and datasets

	Size		Dirichlet Energy			Edge Homophily			MLH		
Dataset	Nodes	Edges	GT	Est	Bias	GT	Est	Bias	GT	Est	Bias
Citeseer	3327	4676	0.2575	0.2560	-0.0015	0.7425	0.7598	0.0173	0.7547	0.7545	-0.0002
Cora	2708	5278	0.1900	0.1898	-0.0002	0.8100	0.8102	0.0002	0.7795	0.7732	-0.0063
Cornell	183	280	0.8679	0.8591	-0.0088	0.1321	0.1688	0.0366	0.2586	0.2907	0.0321
Wisconsin	251	466	0.7940	0.8135	0.0195	0.2060	0.2794	0.0734	0.3012	0.3120	0.0108
Amazon	24492	93050	0.6196	0.6193	-0.0003	0.3804	0.3801	-0.0002	0.3988	0.3981	-0.0007
Squirrel	5201	198493	0.7773	0.7817	0.0043	0.2227	0.2234	0.0007	0.2291	0.2287	-0.0004
Chameleon	2277	31421	0.7688	0.7689	0.0001	0.2312	0.2345	0.0034	0.2676	0.2701	0.0024

Table: Sampling: Induced Subgraph Sampling, $n = 0.2 \times N$, 200 realizations

Link to the Github & future directions

- Testability: explore graph limit models and sampling designs
- Test unequal probability sampling designs
- Extensive numerical experiments

References

- [1] C. Borgs, J. Chayes, L. Lovász, V. Sós, and K. Vesztergombi, "Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing," *Advances in Mathematics*, vol. 219, no. 6, pp. 1801–1851, 2008.
- [2] L. Liang, X. Hu, Z. Xu, Z. Song, and I. King, "Predicting global label relationship matrix for graph neural networks under heterophily," in *Adv. Neural. Inf. Process. Syst. (NeurIPS)*, vol. 36, 2023.
- [3] S. Luan *et al.*, The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and challenges, 2024. arXiv: 2407.09618 [cs.LG].