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Motivation and context

» Homophily: tendency of nodes with similar attributes to connect

» underpins key graph learning tasks such as nearest-neighbor prediction,
semi-supervised learning, and topology inference

= Such insights guide better and more tailored model(e.g., GNN) design
= Recent works increasingly target heterophilous data [2], [3]

» Limitation: Often only a of the network is observed

» This work: estimate several homophily metrics from sampled graph data
= We address and validate on real data

Preliminaries and notation

» Let G = (V, &) denote an undirected graph with |V| = N nodes. lts adjacency
matrix is A € RN*N_ Each node i € V is assigned a
feature vector x; € RY, where d is the number of node types. Stacking all
feature vectors yields the feature matrix X € RVxd

» The Laplacian of G is defined as
L .= diag(A1) — A
» The Dirichlet energy of G with respect to node features X is given by
TVg(X) := trace XTLX Z Aj % — sz
(/)€€

= Can be expressed as a total over edges
» Let G" = (V* &%) be a random subgraph of G obtained under a prescribed
sampling scheme. For each edge (/,j) € £, denote by
Tjj = ]P)[(I,_/) S 8*]
its inclusion probability.

Problem formulation

» Setup: Given a weighted graph G = (V, £) with adjacency A and feature matrix
X € RN*9 the Dirichlet energy quantifies homophily

» Many times, the complete graph is not accessible
= Dynamic environments
=- Resource limitations
=- Privacy constraints

» Problem: Given a sample G* = (V*,£*) of G obtained using a sampling design with
edge inclusion probabilities ; = ((/,/) € £7), estimate TVg(X) (and related metrics)
unbiasedly from (G*, X*)

» Other homophily metrics can be considered and estimated with HT estimator:
Z(u,v)eé’ AjI{x; = x;}
2_(ij)ee Ajj
> izi(AD) I{x; = x;}
> ij(AL);

Edge Homophily =

Meta-path based Label Homophily(MLH; ) =

= Here, 1{-} denotes the indicator function

» Challenges:
= Inclusion probabilities may be unequal and hard to compute
= Estimator variance depends on the sampling design
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Network sampling designs

A sampling design produces — V* C V and the corresponding induced edge set
EX={(i,j)e&: i,jeV}.

Inclusion probabilities: m; = P(i € V*), m;; = P((/,]) € ), mjj for pairs of edges.

Bernoulli sampling: Each node is included independently with probability p

» Node inclusion: m; = p

> Edge inclusion: 7;; = p

> Joint edge inclusion: mjy; = p
= Explicit control over expected sample size
= Produces random sample sizes
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Induced subgraph sampling: A fixed number n of vertices is drawn uniformly without

replacement, and only edges between sampled vertices are kept.

> Node inclusion: m; = §

> Edge inclusion: mj; = ﬁgﬁ_%
— Guarantees exact sample size n
= Preserves induced structure among sampled vertices

Horvitz—Thompson (HT) estimator

> HT estimator: Takes into account the inclusion probability 7 of each sampled
edge [1]
= Applies to estimation of network totals (or averages)

__ Aillx; — x4
TVg(X*) = > 11X — %1 |
(i.j)eE Tij
J)e€
=- The HT estimator is unbiased. Variance given by

Var[TVg* Z Z Vk/ ( 1 — L)

(i,))e&* (k,1)e&*
» Variance estimation: {7 = | Var = Tighter histogram

Testability

Tkl Tkl

» Testability of the Dirichlet energy statistic can be established under sampling
» A network statistic 7 is testable if for every ¢ > 0 there exists a sample size n such

that for any graph G with N > n, an estimate # = n(G;) from a sampled G, satisfies
Plln(G) — 0l > el <e

Implications
» Testability & existence of a weakly consistent estimator
» Foundation for studying feasibility of inference tasks on large graphs

Evaluation

» Estimation of homophily metrics under sampling is evaluated across several datasets
= how variance of the measures change
= unbiasedness of the estimation

Dirichlet Meets Horvitz and Thompson: Estimating Homophily S &
in Large Graphs via Sampling
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» p=4{0.2,0.5,0.8}, 200 realizations, datasets = { Cora, Pubmed, Squirrel, Chameleon}
= Higher sampling rate shrinks variance of estimates
= Unbiasedness well supported, even for small samples
= Sampling schemes can be tailored for specific cases

Induced subgraph sampling: Additional metrics and datasets

Size Dirichlet Energy Edge Homophily MLH
Dataset Nodes Edges GT Est Bias GT Est Bias GT Est Bias

Citeseer 3327 4676 0.2575 0.2560 -0.0015 0.7425 0.7598 0.0173 0.7547 0.7545 -0.0002
Cora 2708 5278 0.1900 0.1898 -0.0002 0.8100 0.8102 0.0002 0.7795 0.7732 -0.0063
Cornell 183 280 0.8679 0.8591 -0.0088 0.1321 0.1688 0.0366 0.2586 0.2907 0.0321
Wisconsin 251 466 0.7940 0.8135 0.0195 0.2060 0.2794 0.0734 0.3012 0.3120 0.0108
Amazon 24492 93050 0.6196 0.6193 -0.0003 0.3804 0.3801 -0.0002 0.3988 0.3981 -0.0007
Squirrel 5201 198493 0.7773 0.7817 0.0043 0.2227 0.2234 0.0007 0.2291 0.2287 -0.0004
Chameleon 2277 31421 0.7688 0.7689 0.0001 0.2312 0.2345 0.0034 0.2676 0.2701 0.0024

Table: Sampling: Induced Subgraph Sampling, n = 0.2 x N, 200 realizations

Link to the Github & future directions
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» Testability: explore graph limit models and sampling designs
E » Test unequal probability sampling designs
» Extensive numerical experiments
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