A Novel Scheme for Support Identification and Iterative Sampling of Bandlimited Graph Signals

¹Dept. of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA ²Dept. of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

BACKGROUND

- Graph Signal Processing
 - Modeling network processes by exploiting the underlying graph structur
 - > Applications: sensor and social networks, transportation systems, gene regulatory networks
- Sampling and Reconstruction
 - > Selecting a *small representative* subset of graph nodes
 - > Applications: constrained sensing in sensor networks, data summarizatio

Notation and model

 $\mathbf{x} \in \mathbb{R}^N$: signal on graph \mathcal{G} with N nodes, $\mathbf{C} \in \{0,1\}^{k imes N}$ Sampling matrix A: adjacency matrix of \mathcal{G}

- V: basis of the graph signal (here, eigenvectors of the Laplacian matrix **L**) $\bar{\mathbf{x}} = \mathbf{V}^{\top}\mathbf{x}$: graph Fourier transform, k-sparse (bandlimited), support \mathcal{K} $\mathbf{U} \in \mathbb{R}^{N \times k}$: submatrix of \mathbf{V} containing columns indexed by \mathcal{K}
- $\mathbf{y} = \mathbf{x} + \mathbf{n}$: measurement model, **n** bounded noise with $\mathbb{E}[\mathbf{nn}^{\top}] = \mathbf{Q}$
- Goal: finding a *good* sampled signal $\tilde{\mathbf{x}} = \mathbf{C}\mathbf{x}$ for perfect reconstruction:

$$\hat{\mathbf{x}} = \mathbf{U}\bar{\mathbf{x}}_{\mathcal{K}} = \mathbf{U}(\mathbf{C}\mathbf{U})^{-1}\tilde{\mathbf{x}}$$

- Prior work [1] and [2] based on using uniform and leverage score random sampling : nonzero probability of failure, require more than k samples
- Our approach: Iterative scheme based on orthogonal matching pursuit (OMF)
- Support identification from *historical observations* of the graph signal

ITERATIVE SELECTION SAMPLING

- Necessary and sufficient condition for perfect recovery: *invertibility* of \mathbf{CU}
- Make it invertible by construction:
 - > select a *residual node* $\ell \in [N]$ (to be excluded from the sampling set)
 - > suggestion for residual: $\ell = \operatorname{argmin}_{j \in [N]} \|\mathbf{u}_j\|_2$
 - \succ iteratively identify a sampling node and construct sampling set S

$$j_s = \arg\max_{j \in \mathcal{N} \setminus \mathcal{S}} \frac{|\mathbf{r}_{i-1}^{\top} \mathbf{u}_j|^2}{\|\mathbf{u}_j\|_2^2}$$

- $\succ \mathbf{r}_i = \mathbf{P}_{\mathcal{S}}^{\perp} \mathbf{u}_{\ell}$: the residual vector initialized at $\mathbf{r}_0 = \mathbf{u}_{\ell}$
- $\succ \mathbf{P}_{\mathcal{S}}^{\perp} = \mathbf{I}_N \mathbf{U}_{\mathcal{S},r}^{\top} (\mathbf{U}_{\mathcal{S},r}^{\top})^{\dagger}$: the projection operator to complement of the subspace spanned by $\mathbf{U}_{\mathcal{S},r}$ (rows of U indexed by \mathcal{S})

Abolfazl Hashemi¹, Rasoul Shafipour², Haris Vikalo¹, and Gonzalo Mateos²

	PERFORMANCE ANALYSIS
res	 Proposed scheme guarantees perfect recovery in noiseless case for all connected graphs with general structures and with normal adjacency.
	Theorem 1:
	Let S be the sampling set constructed by Algorithm 1 and let be C the corresponding sampling matrix such that $ S = k$. Then, the matrix CU invertible.
on	 Proof's remarks:
	\succ An inductive argument
	> Iterative selection of linearly independent \mathbf{u}_i 's
	Zero residual norm only after the last iteration
	Sampling under bounded noise
	 Assumption: $\ \mathbf{n}\ _2 \le \epsilon_n$ Explicit bound on reconstruction error
	$\ \hat{\mathbf{x}} - \mathbf{x}\ _2 \le \sigma_{\max}((\mathbf{U}_{\mathcal{S},r}^{\top}\mathbf{Q}_{\mathcal{S}}^{-1}\mathbf{U}_{\mathcal{S},r})^{-1}\mathbf{U}_{\mathcal{S},r}^{\top}\mathbf{Q}_{\mathcal{S}}^{-1})\epsilon_{\mathbf{n}}$
	 Guaranteed existence of inverse matrices under Algorithm 1
	 Preserving statistical characteristics (e.g. whiteness) of effective noise
	SUPPORT IDENTIFICATION
P)	• Support recovery given <i>P</i> historical templates $\mathbf{X} = [\mathbf{x}^1, \cdots, \mathbf{x}^P] \in \mathbb{R}^{N \times N}$
	shared support from noisy observations $\mathbf{Y} = \mathbf{X} + \mathbf{N}$
	• Equivalent task: estimating sparse GFTs $\bar{\mathbf{X}} = [\bar{\mathbf{x}}^1, \cdots, \bar{\mathbf{x}}^P] = \mathbf{V}^T \mathbf{X}$
	 Proposed optimization based on <i>block sparsity</i> of X:
	$\min_{\bar{\mathbf{X}}} \ \bar{\mathbf{X}} - \mathbf{V}^T \mathbf{Y}\ _F^2 \text{s.t.} \ \bar{\mathbf{X}}\ _{2,0} \le k,$
	• Closed-form solution via row-wise l_2 norm thresholding on

 $\bar{\mathbf{Y}} = \mathbf{V}^T \mathbf{Y}$

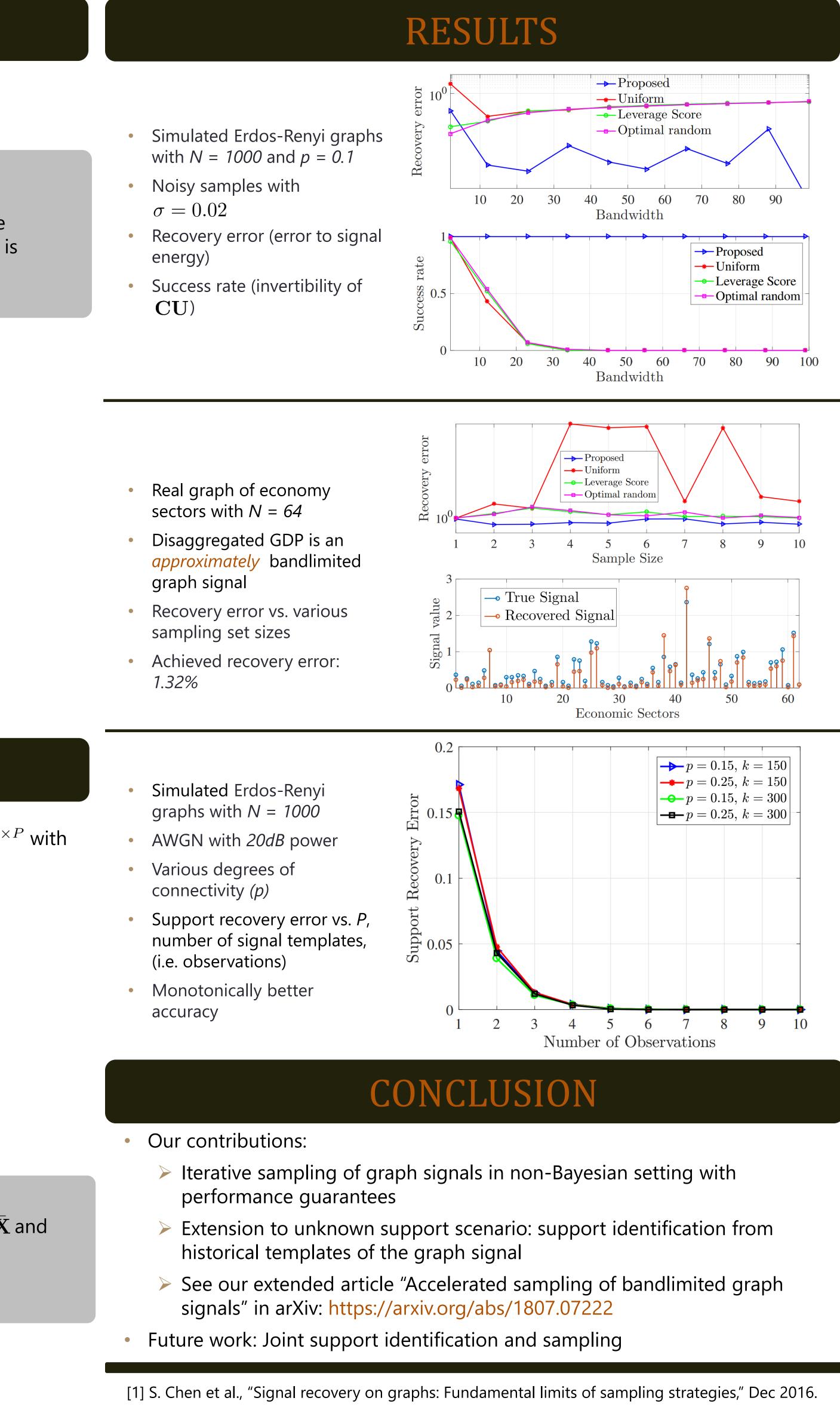
$$\bar{\mathbf{X}}(i,:)^{\star} = \begin{cases} \bar{\mathbf{Y}}(i,:) & \|\bar{\mathbf{Y}}(i,:)\|_2 \ge k^{\text{th}} \text{ largest } \ell_2 \text{ norm} \\ \mathbf{0} & \text{o.w.} \end{cases}$$

Theorem 2

Assume V is *orthogonal*. Under bounded noise assumption, the GFTs X and support \mathcal{K} are identifiable if

$$\min_{i \in \mathcal{K}} \quad \|\bar{\mathbf{X}}(i,:)\|_2 > 2\epsilon_{\mathbf{n}}\sqrt{P}.$$

- Perfect support identification *in the absence of noise* with P = 1
- Easier satisfiability of the established sufficient condition for larger P



[2] G. Puy et al., "Random sampling of bandlimited signals on graphs," Mar. 2018.

