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Abolfazl Hashemi !, Rasoul Shafipour %, Haris Vikalo !, and Gonzalo Mateos 4

TEXAS

The University of Texas at Austin

Graph Signal Processing
Modeling network processes by exploiting the underlying graph structures

Applications: sensor and social networks, transportation systems, gene
regulatory networks

Sampling and Reconstruction
Selecting a small representative subset of graph nodes

Applications: resource-constrained sensing in sensor networks, data
summarization

Notation and model
x € RN: a graph signal with N nodes, non-stationary
A: an adjacency matrix of the graph
V: a basis of the graph signal (here, eigenvectors of the Laplacian matrix L)
x = V ' x: graph Fourier transform, k-sparse (bandlimited), support K, E[fcch] =P
U € RV**: a submatrix of V containing columns indexed by K
Y = X + n: measurement model, n Gaussian noise with E[HHT] = oIy
MSE Formulation of the graph sampling problem

mSin Tr (E_]g) st. SCWN, |S| <k g = (P_1 + J_QA;TAS,T)_I
NP-hard problem!

Prior work [1] based on greedy heuristics: guarantees only in stationary case

Our approaches: SDP relaxation and randomized greedy
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Round z to find the selected subset

[Submodularity] Function f : 2% — R is submodular if forS C T C X,j € X\T

fi(8) = f(SU{i}) = f(S) = f(TU{j}) — f(T) = f;(T)

[Monotonicity] Functionf : 2 — R is monotone if f(S) < f(T)for SC T Cc X

[Curvature] Let X, = {(S,T,9)|SCT C X,i € X\T,|T\S|=1,|X|=n}.

Then, the maximum element-wise curvature is defined as

Cmax — i 1 i S
Lpax,  max fi(T)/ fi(S)
An equivalent formulation of graph sampling:
max f(S)=Tr(P—-Xg) st. SCN, |S|<k. (1)
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Theorem 1:
The objective function f(.S) is a monotonically increasing set function , f(0) =0
and
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Further,
A2 (P) Amax(P) ) *
Cmax < max 1
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Intuition: A well-conditioned P ensures weak submodularity

An accelerated graph sampling scheme, inspired by the algorithm in [2] (only
for submodular objectives and hence not MSE)

Randomized step:
select a random subset R in each iteration with | R| = & log (1/¢)
essentially reducing the number of oracle calls

k

for e =e " we obtain the greedy algorithm in [1]

speed gain of k/log(1/¢) compared to the state-of-the-art scheme in [1]

Algorithm 1 Randomized Greedy Algorithm for Graph Sampling

1: Initialize S =0, g = P.
2: while ’S’ < k
3:  Choose R by sampling s = & log (1/¢) indices uniformly from NM\S
1 Js = argmax;cp 02ﬁuT§—;;uj
J
25[13'11;_25
02—|—u;'_2_33uj

5% ESU{jS} = 23 —
6:  Set S <« SUJ{js)

7: end while

Guarantee on expected MSE of selected nodes:

Theorem 2:

leta=(1—e"* — < )wheree * <e<1,c= max{1,C}, and

C

B =1+ max{0, 5, — 55— } - Let S be the set returned by the randomized

greedy algorithm and let O denote the optimal set of nodes. Then,

E |Tr(Xs)] < aTr(Xo) + (1 — a)Tr(Py).

Intuition: average MSE over ensemble of sampling problem is near optimal

Proof idea: in each iteration, R with high probability contains a node indexed
by O if |R| = %log(l/e).

Next, a probably approximately correct (PAC) view:

Effect of randomization: in it" iteration f;, (Sr4) = n: f;,(S4) where
0 < n; < 1lare random variables.
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Theorem 3:

Instate the notation and hypotheses of Theorem 2. Assume {7; ?:1 are
Independent such that E[n@gjz 1. Then, for all 0<g<1 and for some C>0 with
probability at least 1 — e~ “* it holds that

_ (A=q)p

Tr(S8g, )< (1—e = )Te(So) +e = Tr(P).

Intuition: MSE for a single sampling problem is also near optimal

Proof idea: Applying Bernstein inequality on sum of marginal gains
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Real-world graph: Minnesota road network
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Our contributions:
proved weak submodularity of (1) for non-stationary graph signals
proposed an SDP relaxation framework for sampling and reconstruction
proposed a randomized greedy algorithm with performance guarantees

demonstrated superiority of the proposed methods using simulated and
real-world graphs

Future work:

Handling unknown support, extension to nonlinear models
T
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