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BACKGROUND

• Graph Signal Processing

 Modeling network processes by exploiting the underlying graph structures

 Applications: sensor and social networks, transportation systems, gene 

regulatory networks

• Sampling and Reconstruction

 Selecting a small representative subset of graph nodes

 Applications: resource-constrained sensing in sensor networks, data 

summarization

• Notation and model

: a graph signal with N nodes, non-stationary

: an adjacency matrix of the graph

: a basis of the graph signal (here, eigenvectors of the Laplacian matrix L)

: graph Fourier transform, k-sparse (bandlimited), support K,

: a submatrix of      containing columns indexed by K

: measurement model, n Gaussian noise with 

• MSE Formulation of the graph sampling problem

 NP-hard problem!

• Prior work [1] based on greedy heuristics: guarantees only in stationary case

• Our approaches: SDP relaxation and randomized greedy

WEAK SUBMODULARITY OF THE MSE
PERFORMANCE GUARANTEES

CONCLUSION
• Our contributions:

 proved weak submodularity of (1) for non-stationary graph signals

 proposed an SDP relaxation framework for sampling and reconstruction

 proposed a randomized greedy algorithm with performance guarantees

 demonstrated superiority of the proposed methods using simulated and 

real-world graphs

• Future work:

 Handling unknown support, extension to nonlinear models

• An accelerated graph sampling scheme, inspired by the algorithm in [2] (only 

for submodular objectives and hence not MSE)

• Randomized step:

 select a random subset     in each iteration with 

 essentially reducing the number of oracle calls

 for                we obtain the greedy algorithm in [1]

 speed gain of                    compared to the state-of-the-art scheme in [1]
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• [Submodularity] Function                   is submodular if for                  ,

• [Monotonicity] Function                   is monotone if                     for 

• [Curvature] Let                                                                                         .

Then, the maximum element-wise curvature is defined as 

• An equivalent formulation of graph sampling:

• Simulated Erdos-Renyi graph 

• Real-world graph: Minnesota road network 
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RESULTS

PERFORMANCE GUARANTEES

A SDP RELAXATION FORMULATION
• Solve

• Round z to find the selected subset

Theorem 1:

The objective function is a monotonically increasing set function ,             

and

Further, 

 Intuition: A well-conditioned P ensures weak submodularity

Theorem 2:

Let                                where                   ,                       , and 

. Let    be the set returned by the randomized 

greedy algorithm and let     denote the optimal set of nodes. Then,

Theorem 3:

Instate the notation and hypotheses of Theorem 2. Assume                are 

independent such that                .Then, for all 0<q<1 and for some C>0 with 

probability at least     it holds that

Intuition: MSE for a single sampling problem is also near optimal

Proof idea: Applying Bernstein inequality on sum of marginal gains 

• Guarantee on expected MSE of selected nodes:

• Intuition: average MSE over ensemble of sampling problem is near optimal

• Proof idea: in each iteration, R with high probability contains a node indexed 

by O if                            .  

• Next, a probably approximately correct (PAC) view:

 Effect of randomization: in ith iteration                                   where

are random variables.

WEAK SUBMODULARITY OF THE MSE

A RANDOMIZED GREEDY ALGORITHM


