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a b s t r a c t 

We study the problem of sampling and reconstructing spectrally sparse graph signals where the objec- 

tive is to select a subset of nodes of prespecified cardinality that ensures interpolation of the original 

signal with the lowest possible reconstruction error. This task is of critical importance in Graph signal 

processing (GSP) and while existing methods generally provide satisfactory performance, they typically 

entail a prohibitive computational cost when it comes to the study of large-scale problems. Thus, there 

is a need for accelerated and efficient methods tailored for high-dimensional and large-scale sampling 

and reconstruction tasks. To this end, we first consider a non-Bayesian scenario and propose an efficient 

iterative node sampling procedure that in the noiseless case enables exact recovery of the original signal 

from the set of selected nodes. In the case of noisy measurements, a bound on the reconstruction error 

of the proposed algorithm is established. Then, we consider the Bayesian scenario where we formulate 

the sampling task as the problem of maximizing a monotone weak submodular function, and propose 

a randomized-greedy algorithm to find a sub-optimal subset of informative nodes. We derive worst-case 

performance guarantees on the mean-square error achieved by the randomized-greedy algorithm for gen- 

eral non-stationary graph signals. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Network data that are naturally supported on vertices of a 

raph are becoming increasingly ubiquitous, with examples rang- 

ng from the measurements of neural activities in different regions 

f the brain [3] to vehicle trajectories over road networks [4] . Pred- 

cated on the assumption that the properties of a network process 

elate to the underlying graph, the goal of graph signal processing 

GSP) is to broaden the scope of traditional signal processing tasks 

nd develop algorithms that fruitfully exploit this relational struc- 

ure [5,6] . 

Consider a network represented by a graph G consisting of a 

ode set N of cardinality N and a weighted adjacency matrix A ∈ 

 

N×N whose (i, j) entry, A i j , denotes weight of the edge connecting 
∗ Corresponding author. 
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ode i to node j. A graph signal x ∈ R 

N is a vertex-valued network

rocess that can be represented by a vector of size N supported on 

 , where its i th component denotes the signal value at node i . 

A cornerstone problem in GSP that has drawn considerable at- 

ention in recent years pertains to sampling and reconstruction of 

raph signals [7–15] . The task of selecting a subset of nodes whose 

ignals enable reconstruction of the information in the entire graph 

ith minimal loss is known to be NP-hard. Conditions for exact 

econstruction of graph signals from noiseless samples were put 

orth in [7–10] . Existing approaches for sampling and reconstruc- 

ion of graph signals can be categorized in two main groups – se- 

ection sampling [10] and aggregation sampling [12] . The focus of 

he current paper is on the former. 

.1. Related work 

Sampling of noise-corrupted signals using randomized schemes 

ncluding uniform and leverage score sampling is studied in [16] ; 

here, optimal sampling distributions and performance bounds are 

https://doi.org/10.1016/j.sigpro.2022.108505
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108505&domain=pdf
mailto:abolfazl@purdue.edu
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Table 1 

Properties of sampling schemes for spectrally sparse signals in scenarios where the basis matrix U is known. 

Assumption Optimality criteria Algorithms 

noise-free samples, non-Bayesian full rank U S Gaussian elimination, greedy [7] , random [16,17] 

noisy samples, non-Bayesian min Tr (E [(x − ˆ x )((x − ˆ x ) � ]) Gaussian elimination, greedy [10] , random [16,17] 

noisy samples, Bayesian min Tr (E [(x − ˆ x )((x − ˆ x ) � ]) greedy [15] , convex optimization [31] 
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erived. Building on the ideas of variable density sampling from 

ompressed sensing, [17] derives random sampling schemes and 

roves that O(k log k ) samples are sufficient to recover all k - 

pectrally sparse signals with high probability. Moreover, [17] pro- 

ides a fast technique for accurate estimation of the optimal sam- 

ling distribution. Recent work [18] relies on loop-erased random 

alks on graphs to speed up sampling of bandlimited signals. In 

11,15] , reconstruction of graph signals and their power spectrum 

ensity was studied and schemes based on the greedy sensor se- 

ection algorithm [19,20] were developed. However, the perfor- 

ance guarantees in [15,16] are restricted to the case of stationary 

raph signals, i.e., the covariance matrix in the nodal or spectral 

omains is required to have a certain structure (e.g., diagonal; see 

lso [21–23] ). 

An influential work [24] presents a method that enables re- 

overy of some bandlimited functions on a simple undirected 

nweighted graph using signal values observed on the so-called 

niqueness sets of vertices; see also [25] and [26] . An iterative 

ocal set-based algorithm that relies on graph partitioning to im- 

rove convergence rate of bandlimited graph signals reconstruction 

s proposed in [27] . 

The sampling approach in [12] relies on collecting observations 

t a single node instead of a subset of nodes via successive appli- 

ations of the so-called graph shift operator and aggregating the 

esults. Specifically, shifted versions of the signal are sampled at 

 single node which, under certain conditions, enables recovery of 

he signal at all nodes. While the aggregation sampling in [12] re- 

uces to the classical sampling of time signals, the required inspec- 

ion of the invertibility of the submatrix of eigenvectors is compu- 

ationally expensive. Moreover, the recovery of graph signals from 

heir partial samples collected via the aggregation scheme requires 

he first k components (signal bandwidth) to be distinct, which 

ay not be the case in certain applications. Table 1 summarizes 

roperties of a few 

A main challenge in sampling and reconstruction of spectrally 

parse graph signals is the problem of identifying their support 

9,12,25,28,29] . In [9,26] , support identification of smooth graph 

ignals is studied. However, the techniques in [9,25] rely solely on 

 user-defined sampling strategy and the graph Laplacian, and dis- 

egard the availability of observations of the graph signal. A similar 

cheme is developed in [12] for aggregation sampling where un- 

er established assumptions on the topology of a graph, conditions 

or the exact support identification from noiseless measurements 

re established. In particular, the aggregation sampling method of 

12] requires twice as many samples as the bandwidth of the graph 

ignal (i.e., k ) to guarantee perfect recovery in the noiseless set- 

ing. An alternating minimization approach that jointly recovers 

nknown support of the signal and designs a sampling strategy in 

n iterative fashion is proposed in [28] . However, convergence of 

he alternating scheme in [28] is not guaranteed and the condi- 

ions for exact support identification are unknown [28] . 

.2. Contribution 

Although tremendous effort s have been made to address fun- 

amental theoretical and algorithmic questions in sampling and 

econstruction of bandlimited graph signals, the high computa- 
2 
ional costs of existing methods that deliver competitive recon- 

truction performance typically render their applicability challeng- 

ng, especially in applications dealing with large-scale and high- 

imensional graphs. Therefore, developing scalable, efficient, and 

ccelerated sampling and reconstruction algorithms with provable 

erformance is highly desired. 

In this paper, we consider the task of sampling and reconstruc- 

ion of spectrally sparse graph signals in various settings. We first 

tudy the non-Bayesian scenario where no prior information about 

ignal covariance is available. Based on ideas from compressed 

ensing, we develop a novel and efficient iterative sampling ap- 

roach that exploits the low-cost selection criterion of the orthog- 

nal matching pursuit algorithm [30] to recursively select a sub- 

et of nodes of the graph. We theoretically demonstrate that in 

he noiseless case the original k -spectrally sparse signal can be re- 

overed exactly from the set of selected nodes with cardinality k . 

n the case of � 2 -norm bounded noise, we establish a bound on 

he worst-case reconstruction error of the proposed algorithm that 

urns out to be proportional to the bound on the � 2 -norm of the

oise term. The proposed scheme requires only that the graph ad- 

acency matrix is normal, a typical assumption in prior works on 

he sampling of graph signals. Therefore, the proposed iterative al- 

orithm guarantees recovery for a wide class of graph structures. 

Next, we study a Bayesian scenario where the graph signal is 

 non-stationary network process with a known non-diagonal co- 

ariance matrix. Following [15,19,20] , we formulate the sampling 

ask as the problem of maximizing a monotone weak submod- 

lar function that is directly related to the mean square error 

MSE) of the linear estimator of the original graph signal. To find a 

ub-optimal solution to this combinatorial optimization problem, 

e propose a randomized-greedy algorithm that is significantly 

aster than the greedy sampling method in [15,19,20] . We theo- 

etically analyze performance of the proposed randomized-greedy 

lgorithm and demonstrate that the resulting MSE is a constant 

actor away from the MSE of the optimal sampling set. Unlike the 

rior work in [15] , our results do not require stationarity of the 

raph signal. Furthermore, in contrast to the existing theoretical 

orks, we do not restrict our study to the case of additive white 

oise. Instead, we assume that the noise coefficients are indepen- 

ent and allow the power of noise to vary across individual nodes 

f the graph. 

Simulation studies on both synthetic and real world graphs ver- 

fy our theoretical findings and illustrate that the proposed sam- 

ling framework compares favorably to competing alternatives in 

erms of both accuracy and runtime. 

Preliminary results of this work is published in [1,2] . In addi- 

ion to providing the details of proofs which were missing from 

ashemi et al. [1] , 2 ] and discussing the computational complex- 

ty of the proposed algorithms, for the Bayesian setting, we extend 

he scope of our study to provide high probability error bounds 

or the achievable mean-square error performance of the proposed 

andomized greedy sampling schemes. Finally, in our extensive ex- 

erimental study, we discuss two new applications of graph sam- 

ling, namely, localization of UAVs under power constraints and 

emi-supervised face clustering via subspace learning. We further 

emonstrate the efficacy of our randomized greedy algorithm on a 

arge-scale preferential attachment graph with 10,0 0 0 nodes. 
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.3. Organization 

The rest of the paper is organized as follows. Section 2 reviews 

he relevant background and concepts. In Section 3 , we formally 

tate the sampling problem and develop the proposed iterative se- 

ection sampling method. In Section 4 , we study the Bayesian set- 

ing, introduce the randomized-greedy algorithm for the sampling 

ask and theoretically analyze its performance. Section 5 presents 

imulation results while the concluding remarks are stated in 

ection 6 . 

. Preliminaries 

In this section, we overview notation, concepts, and definitions 

hat are used in the development of the proposed algorithmic and 

heoretical frameworks. 

.1. Notations 

Bold capital letters denote matrices while bold lowercase letters 

epresent vectors. Sets are denoted by calligraphic letters and |S| 
enotes the cardinality of set S . A i j denotes the (i, j) entry of A ,

 j ( a j ) is the j th row (column) of A , A S,r ( A S,c ) is the submatrix of

 that contains rows (columns) indexed by the set S , and λmax (A ) 

nd λmin (A ) are the largest and smallest eigenvalues of A , respec- 

ively. P 

⊥ 
S = I n − A 

� 
S,r (A 

� 
S,r ) 

† is the projection operator onto the or-

hogonal complement of the subspace spanned by the rows of A S,r , 

here A 

† = 

(
A 

� A 

)−1 
A 

� denotes the Moore-Penrose pseudo-inverse 

f A and I n ∈ R 

n ×n is the identity matrix. Finally, supp (x ) returns

he support of x and [ n ] := { 1 , 2 , . . . , n } . 

.2. Spectrally sparse graph signals 

Let x be a graph signal which is k -spectrally sparse in a 

iven basis V ∈ R 

N×N . This means that the signal’s so-called graph 

ourier transform (GFT) x̄ = V 

−1 x is k -sparse. There are several 

hoices for V in literature with most aiming to decompose a graph 

ignal into different modes of variation with respect to the graph 

opology. For instance, V = [ v 1 , · · · , v N ] can be defined via the Jor-

an decomposition of the adjacency matrix [32,33] , through the 

igenvectors of the Laplacian when G is undirected [5] , or it can be 

btained as the result of an optimization procedure [34,35] . In this 

aper, we assume that the adjacency matrix A = V�V 

−1 is normal 

hich in turn implies V is unitary and V 

−1 = V 

� . 
Recall that since x is spectrally sparse, x̄ is sparse with at most 

 nonzero entries. Let K be the support set of x̄ , where |K| = k .

hen one can write x = U ̄x K , where U = V K,c . In the sequel, with-

ut loss of generality we assume U does not contain all-zero rows; 

therwise, one could omit the all-zero rows of U and their cor- 

esponding nodes from the graph as they provide no meaningful 

nformation about the graph signals. Moreover, we proceed by as- 

uming that the support set K is known. 

Remark 1. As in the prior work on sampling graph signals 

10,12,13,15–17] , our proposed schemes require the graph Fourier 

ransform (GFT) bases (i.e., V ) as input; this involves eigenvalue 

ecomposition of A which may be computationally intensive for 

arge graphs. The focus of this paper, however, is not on the pre- 

rocessing step of finding V but rather on developing efficient 

ampling algorithms with theoretical performance guarantees on 

he achievable reconstruction error in a variety of settings. 

.3. Submodularity and weak submodular functions 

An important concept in contemporary combinatorial optimiza- 

ion is the notion of submodular functions that has recently found 
3 
pplications in many signal processing tasks. Relevant concepts are 

ormally defined below. 

efinition 1 (Submodularity and monotonicity) . Let X be a ground 

et. Set function f : 2 X → R is submodular if 

f (S ∪ { j} ) − f (S) ≥ f (T ∪ { j} ) − f (T ) 
or all subsets S ⊆ T ⊂ X and j ∈ X \T . The term f j (S) := f (S ∪
 j} ) − f (S) is the marginal value of adding element j to set S . Fur-

hermore, f is monotone if f (S) ≤ f (T ) for all S ⊆ T ⊆ X . 

In many applications, the objective function of a combinatorial 

ptimization problem of interest is not submodular. The notion of 

et functions with bounded curvature captures these scenarios by 

eneralizing the concept of submodularity. 

efinition 2 (Curvature) . The maximum element-wise curvature of 

 monotone non-decreasing function f is defined as 

 f = max 
l∈ [ N−1] 

max 
(S, T ,i ) ∈X l 

f i (T ) / f i (S) , 

here X l = { (S, T , i ) |S ⊂ T ⊂ X , i ∈ X \T , |T \S| = l, |X | = N} . 
The maximum element-wise curvature essentially quantifies 

ow close the set function is to being submodular. It is worth not- 

ng that a set function f (S) is submodular if and only if its max- 

mum element-wise curvature satisfies C f ≤ 1 . When C f > 1 , f (S) 

s called a weak submodular function. 

. Sampling of spectrally sparse graph signals 

In this section, we study the problem of sampling spectrally 

parse signals with known support. In particular, we assume that a 

raph signal x is sparse given a basis V and that A = V�V 

� , where

 is the adjacency matrix of the undirected graph G; alternatively, 

e may use the Laplacian matrix L to characterize the undirected 

raph. We can also consider any orthogonal basis for general di- 

ected graphs; see e.g., [34] . We first consider the noise-free sce- 

ario ( Section 3.1 ) and then extend our results to the case of sam-

ling and reconstruction from noisy measurements ( Section 3.3 ). 

.1. Sampling strategy 

In selection sampling (see, e.g. [10] ), sampling a graph signal 

mounts to finding a matrix C ∈ { 0 , 1 } k ×N such that ˜ x = Cx , where

˜ 
 denotes the sampled graph signal. Since x is spectrally sparse 

ith support K and x = U ̄x K , it holds that ˜ x = CU ̄x K . The original

ignal can then be reconstructed as 

ˆ 
 = U ̄x K = U (CU ) −1 ˜ x . (1) 

ccording to (1) , a necessary and sufficient condition for per- 

ect reconstruction (i.e., ˆ x = x ) from noiseless observations is guar- 

nteed by the invertibility of matrix CU . However, as argued in 

7,12] (see, e.g. Section III-A in [12] ), current random selection sam- 

ling approaches cannot construct a sampling matrix to ensure CU 

s invertible for an arbitrary graph; moreover, invertibility of CU 

s checked by inspection which for large graphs requires intensive 

omputational effort. To overcome these issues, motivated by the 

ell-known OMP algorithm in compressed sensing [30] , we pro- 

ose a simple iterative scheme with complexity O(Nk 2 ) that guar- 

ntees perfect recovery of x from the sampled signal ˜ x . OMP is an 

terative scheme that aims to build a full-rank matrix from a set of 

eature vectors by identifying vectors that add a higher expressive- 

ess power to the current selection; the expressiveness is captured 

y the notion of the residual vector r . Therefore, since our aim re- 

ies on invertibility of CU , we can apply OMP to select a subset of

 ’s column, which by construction, will be full-rank. 

The proposed approach (see Algorithm 1 ) works as follows. 

irst, the algorithm chooses a node of the graph with index � as a 
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Algorithm 1 Iterative Selection Sampling. 

1: Input: U , k , number of samples m ≥ k . 

2: Output: Subset S ⊆ N with |S| = m . 

3: Initialize S = ∅ , r 0 = u � for � = arg min j∈ [ N] ‖ u j ‖ , and i = 0 . 

4: while |S| < m do 

5: i ← i + 1 

6: s i = arg max j∈ N\{ � } \S 
| r � 

i −1 
u j | 2 

‖ u j ‖ 2 2 

7: Set S ← S ∪ { s i } 
8: r i = P 

⊥ 
S u � 

9: end while 

10: return S . 
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Table 2 

Computational complexity comparison between the pro- 

posed algorithms and the existing methods. 

Algorithm Setting Complexity 

Proposed Algorithm 1 non-Bayesian O(k 2 N) 

Greedy [10] non-Bayesian O(k 4 N) 

Greedy [15] Bayesian O(Nk 3 ) 

Proposed Algorithm 2 Bayesian O(Nk 2 ) 

N
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esidual node such that � = arg min j∈ [ N] ‖ u j ‖ . Intuitively, this node 

as weaker expressiveness power compared to other point and 

ince in Algorithm 1 the residual node is excluded from the selec- 

ion procedure, this choice empirically leads to smaller reconstruc- 

ion error in noisy scenario. Next, in the i th iteration the algorithm 

dentifies a node – excluding the residual node – with index s j to 

e included in the sampling set S according to 

 j = arg max j∈ N\ � \S 
| r � 

i −1 
u j | 2 

‖ u j ‖ 

2 
2 

, (2) 

here r i = P 

⊥ 
S u � is a residual vector initialized as r 0 = u � , and P 

⊥ 
S =

 n − U 

� 
S,r (U 

� 
S,r ) 

† . Note that (2) is exactly the selection criterion of

he OMP algorithm. This procedure is then repeated for k iterations 

o construct the sampling set S . Once S is found, CU would then be

n invertible matrix, ensuring a necessary and sufficient condition 

or perfect recovery. 

Remark 2. Optimization (2) is related to the greedy column 

ubset selection approach in [36] . Specifically, both methods at- 

empt to identify a subset of the rows/columns that best represent 

he entire matrix. However, they focus on different applications 

hich in turn results in different definitions of the residuals. In 

36] , the residual is defined as the original matrix itself. Hence the 

omputational complexity of the greedy approach in [36] is signifi- 

antly higher than that of Algorithm 1 where the residual is merely 

 vector. 

Theorem 1 demonstrates that Algorithm 1 returns a sampling 

et which ensures perfect recovery of the graph signal x in the 

oise-free scenario. 

heorem 1. Let S denote the sampling set constructed by Algorithm 

 and let C be the corresponding sampling matrix such that |S| = k .

hen, matrix CU is always invertible. 

roof. See Appendix A . �

Theorem 1 states that as long as the adjacency matrix A is nor- 

al, the proposed selection scheme guarantees perfect reconstruc- 

ion of the original signal from its noiseless samples. Therefore, 

n contrast to existing random selection sampling and aggregation 

ampling schemes [10,12,17] that require strong conditions on A 

e.g., eigenvalues of A to be distinct), Algorithm 1 guarantees re- 

overy for a wider class of graphs. 

.2. Complexity analysis 

The worst-case computational complexity of Algorithm 1 is an- 

lyzed next. In the i th iteration, step 6 costs O(k (N − i )) as one

eeds to search over N − i rows of U and compute inner-products 

f k -dimensional vectors in order to evaluate the selection crite- 

ion. Step 8 is a matrix-vector product whose complexity is O(k 2 ) . 
4 
ote that in our implementation we use the modified Gram- 

chmidt (MGS) algorithm to update the residual vector with a sig- 

ificantly lower complexity of O(ki ) . Thus, the total cost of the 

 th iteration is O(k (N − i ) + ki ) = O(k (N − i )) . Since i ≤ k and there

re k iterations, the overall complexity of Algorithm 1 is O(Nk 2 ) . 

lease refer to Table 2 for a comparison between computational 

osts of proposed schemes in this paper to the existing methods. 

.3. Sampling in the presence of noise 

Here we provide an extension of the proposed selection sam- 

ling scheme to the scenarios where only noisy observations of 

he graph nodes are available. Note that due to noise, perfect re- 

onstruction is no longer possible. Nevertheless, we provide an up- 

er bound on the reconstruction error of the proposed sampling 

cheme as a function of the noise covariance and the sampling 

atrix C . Another distinguishing aspect of sampling and recon- 

truction in the presence of noise is that, to achieve better recon- 

truction accuracy, it may be desirable to select m ≥ k nodes as the 

ampling set. This stands in contrast to the noiseless case where, 

s we proved, m = k sampling nodes are sufficient for perfect re- 

onstruction if the sampling set is constructed by Algorithm 1 . 

Let y = x + n be the noise-corrupted signal, where n ∈ R 

N de-

otes the zero-mean noise vector with covariance matrix E [ nn 

� ] = 

 . We also assume that the support K is known. Therefore, since 

 = U ̄x K , the samples ˜ x and the non-zero frequency components of 

 are related via the linear model 

˜ 
 = y S = U S,r ̄x K + n S , (3) 

here U S,r = CU , y S = Cy , and n S = Cn . The reconstructed signal

n the Fourier domain is found by seeking the least square solution 

nd satisfies the normal equation [37] , 

 

� 
S,r Q 

−1 
S U S,r ̂

 x̄ = U 

� 
S,r Q 

−1 
S ˜ x , (4) 

here Q S = CQC 

� is the covariance of n S . 
If U 

� 
S,r Q 

−1 
S U S,r is invertible, we can recover the original graph 

ignal up to an error term as stated in the following proposition. 

roposition 1. Let S be the sampling set constructed by Algorithm 

 and let C be the corresponding sampling matrix. Moreover, let us 

enote U S,r = CU . Then, with probability one the matrix U 

� 
S,r Q 

−1 
S U S,r 

s invertible. Furthermore, if ‖ n ‖ 2 ≤ εn , the reconstruction error of the 

ignal reconstructed from S satisfies 

 ̂

 x − x ‖ 2 ≤ σmax ((U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S ) εn , (5) 

here σmax (. ) outputs the maximum singular value of its matrix ar- 

ument. 

roof. See Appendix B . �

Compared to the noiseless scenario where the main challenge is 

o ensure that CU is invertible, in the presence of noise we are in- 

erested in finding a sampling scheme with the lowest reconstruc- 

ion error. Although Proposition 1 provides a performance bound 

or any sampling matrix C constructed by Algorithm 1 , our specific 

hoice of the residual node, � = arg min j∈ [ N] u j , is not exploited in 

he proof of Proposition 1 and further analysis along those lines is 

eft as part of the future work. We empirically observed that with 
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he proposed choice of the residual, the matrix product on the 

ight-hand side of (5) has smaller maximum singular value than 

f the residual node is selected uniformly at random. We also note 

hat the statistics of noise is not exploited when constructing C . 

his is similar to state-of-the-art random selection sampling and 

ggregation sampling schemes [10,12,17] where one needs to rely 

n exhaustive search over the space of all sampling matrices to 

nd the one that results in the lowest MSE. In the Bayesian set- 

ing studied in Section 4 where one assumes a prior distribution 

n x , the original signal can be reconstructed up to an error term 

or any C ∈ R 

m ×N with m ≥ k . Therefore, invertibility of CU is not a

oncern in the Bayesian case where we focus on the construction 

f a sampling set S with the lowest reconstruction error. 

Note that the Gaussian elimination scheme also finds a full- 

ank submatrix U S . According to Anis et al. [9] , the sampling 

et found by Gaussian elimination with partial row pivoting cor- 

esponds to indices of the pivot rows. Therefore, in contrast to 

lgorithm 1 that takes into accounts representative power of each 

ode in all frequency components (by considering the � 2 norm of 

 j ’s and their correlation with the residual), Gaussian elimination 

ith partial row pivoting only considers individual frequency com- 

onents when forming the sampling set. Hence, the signal recon- 

tructed by such a scheme may not be robust to noise statistics. 

n the other hand, by choosing the residual node according to 

 = arg min j∈ [ N] u j , Algorithm 1 finds an invertible submatrix and 

urther finds a subset of rows of U with strong representation ca- 

ability. 

. Bayesian sampling of graph signals 

So far we have considered the problem of sampling in scenarios 

here the graph signal is not stochastic. In this section, we con- 

ider the problem of sampling and interpolation in a Bayesian set- 

ing where the graph signal is a non-stationary network process. 

o this end, we adopt the following definition of stationarity, re- 

ently proposed in [22] . 

efinition 3. A stochastic graph signal x is graph wide-sense sta- 

ionary (GWSS) if and only if the matrix 

 [ ̄x ̄x 

� ] = V 

� 
E [ xx 

� ] V (6) 

s diagonal. 

In addition to our novel algorithmic contributions, the setting 

e consider in this section is more general than those consid- 

red in [15,38–40] . Specifically, unlike the prior work [15] , we as- 

ume that the signal in not necessarily stationary with respect to 

and that x̄ is a zero-mean random vector with generally non- 

iagonal covariance matrix E [ ̄x ̄x � ] = W . Furthermore, we do not 

estrict our study to the case of additive white noise. Rather, we 

onsider a more practical setting where the noise terms are in- 

ependent but the noise power varies across individual nodes of 

he graph. That is, if y = x + n denotes the noise-corrupted sig- 

al, n ∈ R 

N is a zero-mean noise vector with covariance matrix 

 [ nn 

� ] = Q = diag (σ 2 
1 , . . . , σ

2 
N ) . Note that this particular scenario

s not explored in [15] or the related sensor selection and experi- 

ental design schemes [38–40] . 

Let S denote a sampling set of m ≥ k graph nodes. Since x = 

 ̄x K , the samples y S and the non-zero frequency components of x 

re related via the Bayesian linear model 

 S = U S,r ̄x K + n S . (7) 

s before, in order to find 

ˆ x it suffices to estimate x̄ K based 

n y S . The least mean-square estimator of x̄ K , denoted by ˆ x̄ K , is

he Bayesian counterparts of the normal equations in the Gauss- 

arkov theorem (see, e.g. [37, Ch. 10] ). In other words, it is given
5 
y 

ˆ ¯
 K = �̄S U 

� 
S,r Q 

−1 
S y S , (8) 

here 

¯ S = 

(
W 

−1 + U 

� 
S,r Q 

−1 
S U S,r 

)−1 

= 

( 

W 

−1 + 

∑ 

j∈S 

1 

σ 2 
j 

u j u 

� 
j 

) −1 

(9) 

s the error covariance matrix of ˆ x̄ K . Therefore, ˆ x = U ̂

 x̄ K and its er-

or covariance matrix is �S = U ̄�S U 

� . 
The problem of sampling for near-optimal reconstruction can 

ow be formulated as the task of choosing S so as to minimize 

he MSE of the estimator ˆ x . Since the MSE is defined as the trace 

f the error covariance matrix, we arrive at the following optimiza- 

ion problem, 

min 

S 
Tr ( �S ) s.t. S ⊆ N , |S| ≤ m. (10) 

sing trace properties and the fact that U 

� U = I m 

, (10) simplifies

o 

min 

S 
Tr 

(
�̄S 

)
s.t. S ⊆ N , |S| ≤ m. (11) 

he optimization problem (11) is NP-hard and evaluating all ( N m ) 
ossibilities to find the exact solution is intractable even for rela- 

ively small graphs. To this end, we propose an alternative to find 

 near-optimal solution in polynomial time. In [15] , similar to the 

reedy sensor selection approach of [19,20] , a greedy algorithm is 

roposed for the described Bayesian setting and its performance is 

nalyzed under the assumption that the graph signal is station- 

ry and the noise is white. The greedy algorithm aims to form 

 sampling set S iteratively, by greedily choosing the nodes one 

t a time, according to a specific selection criterion. Motivated by 

reedy maximization of submodular approach, the selection crite- 

ion is the marginal of gain of adding a new node when the objec- 

ive function of (11) is treated as a submodular function of S . 

In applications dealing with extremely large graphs, the greedy 

lgorithm in [15] might be computationally infeasible. Moreover, 

he graph signal is not necessary stationary and, perhaps more im- 

ortantly, different nodes of a graph may experience different lev- 

ls of noise. To address these challenges, motivated by the algo- 

ithm recently developed in [41] for maximization of strictly sub- 

odular functions, we develop a randomized-greedy algorithm for 

ayesian sampling of graph signals that is significantly faster than 

he greedy algorithm. In addition, by leveraging the notion of weak 

ubmodularity, we establish performance bounds for the general 

etting of non-stationary graph signals. 

.1. Randomized-greedy selection sampling 

Following [15,19,20] , we start by formulating (11) as a set func- 

ion maximization task. Let f (S) = Tr (W − �̄S ) . Then (11) can 

quivalently be written as 

max 
S 

f (S) s.t. S ⊆ N , |S| ≤ m. (12) 

In Proposition 2 below, by applying the matrix inversion lemma 

42] we establish that f (S) is monotone and weakly submodular. 

oreover, we derive an efficient recursion to find the marginal 

ain of adding a new node to the sampling set S . Given that 

e use the marginal gain as the selection criterion, the following 

roposition will greatly reduce the computational cost of evaluat- 

ng the selection criterion. 

roposition 2. f (S) = Tr (W − �̄S ) is a weak submodular, monoton- 

cally increasing set function, f (∅ ) = 0 , and for all j ∈ N \S

f (S ∪ { j} ) − f (S) = 

u 

� 
j 
�̄2 

S u j 

σ 2 
j 

+ u 

� 
j 
�̄S u j 

, and (13) 
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¯ S∪{ j} = �̄S −
�̄S u j u 

� 
j 
�̄S 

σ 2 
j 

+ u 

� 
j 
�̄S u j 

. (14) 

roof. See Appendix C . �

Proposition 2 enables efficient construction of the sampling set 

n an iterative fashion. To further reduce the computational cost, 

e propose a randomized-greedy algorithm for selection sampling 

ith minimal MSE that selects a sampling set iteratively. 

Our aim will be to perform greedy selection in an iterative 

ashion by identifying nodes that maximize the selection criterion, 

.e., the marginal gain given by (13) . However, to reduce the cost 

f greedy search, we incorporate random sampling. In particular 

tarting with S = ∅ , at iteration (i + 1) of the algorithm, a subset R
f size s is sampled uniformly at random and without replacement 

rom N \S , the set of all un-sampled nodes. The marginal gain of 

ach node in R is then found using (13) , and the one correspond-

ng to the highest marginal gain is added to S . Then, the algorithm 

mploys (14) to update �̄S for the subsequent iteration (i.e., to be 

sed in calculating the marginal gain/selection criterion in the next 

teration). This procedure is repeated until some stopping criteria, 

.g., a condition on the cardinality of S is met. Regarding s , the 

ize of the randomly sampled subset R , we follow the suggestion 

n [41] and set s = 

N 
m 

log 1 ε where e −m ≤ ε < 1 is a predetermined 

arameter that controls the trade-off between the computational 

ost and MSE of the reconstructed signal; randomized-greedy algo- 

ithm with smaller ε produces sampling solutions with lower MSE 

hile the one with larger ε requires lower computational cost. 

ote that if ε = e −m , the randomized-greedy algorithm in each it- 

ration considers all the available nodes and hence matches the 

reedy scheme in [15] . However, as we illustrate in our simulation 

tudies, the proposed randomized-greedy algorithm is significantly 

aster than the greedy method in [15] for large ε while returning 

ssentially the same sampling solution. The randomized-greedy al- 

orithm is formalized as Algorithm 2 . 

lgorithm 2 Randomized-greedy Graph Sampling. 

1: Input: ¶ , U , m , ε. 

2: Output: Subset S ⊆ N with | S| = m ≥ k . 

3: Initialize S = ∅ , �̄S = ¶ . 

4: while | S| < m do 

5: Choose R by sampling s = 

N 
m 

log (1 /ε) indices uniformly at 

random from N \S
6: j s = arg max j∈R 

u � 
j 
�̄2 

S u j 
σ 2 

j 
+ u � 

j 
�̄S u j 

7: �̄S∪{ j s } = �̄S −
�̄S u j u 

� 
j 
�̄S 

σ 2 
j 
+ u � 

j 
�̄S u j 

8: Set S ← S ∪ { j s } 
9: end while 

0: return S . 

.2. Complexity analysis 

To take a closer look at computational complexity of 

lgorithm 2 , note that step 6 costs O( N m 

k 2 log ( 1 ε )) since one needs

o compute N 
m 

log ( 1 ε ) marginal gains, each requiring O(k 2 ) oper- 

tions. Furthermore, step 7 requires O(k 2 ) arithmetic operations. 

ince there are m such iterations, running time of Algorithm 2 is 

(Nk 2 log ( 1 ε )) . Please refer to Table 2 for a comparison between 

omputational costs of proposed schemes in this paper to the ex- 

sting methods. 
6 
.3. Theoretical analysis 

In this section, we analyze performance of the proposed 

andomized-greedy algorithm in a range of scenarios. 

Theorem 2 below states that if f (S) is characterized by a 

ounded maximum element-wise curvature, Algorithm 2 returns a 

ampling subset yielding an MSE that is on average within a mul- 

iplicative factor of the MSE associated with the optimal sampling 

et. 

heorem 2. Let C f denote the maximum element-wise curvature 

f f (S) = Tr (W − �̄S ) , the objective function in (12) . Let α =
1 − e −

1 
c − εβ

c ) , where c = max { 1 , C f } , e −m ≤ ε < 1 , and β = 1 +
ax { 0 , s 

2 N − 1 
2(N−s ) 

} . Let S rg be the sampling set returned by the ran-

omized greedy algorithm and let O denote the optimal solution of 

11) . Then 

 

[
Tr ( ̄�S rg 

) 
]

≤ αTr ( ̄�O ) + (1 − α) Tr (W ) . (15) 

roof. The proof of Theorem 2 relies on the argument that if 

 = 

N 
m 

log 1 ε , then with high probability the random set R in each 

teration of Algorithm 2 contains at least one node from O. See 

ppendix D for the complete proof. �

Compared to the results of [41] where the maximization 

f strictly submodular and monotone functions is considered, 

heorem 2 relaxes this assumption and states that submodular- 

ty is not required for near-optimal performance of the random- 

zed greedy algorithm. In particular, if the set function is weak sub- 

odular , Algorithm 2 still selects a sampling set with an MSE near 

hat achieved by the optimal sampling set. In addition, even if the 

unction is submodular (e.g., when the objective is log det (. ) func- 

ion instead of the MSE), the approximation factor in Theorem 2 is 

ighter than that of [41] as the result of the analysis presented in 

he proof of Theorem 2 . Moreover, a major assumption in [41] is 

hat R is constructed by sampling with replacement. In contrast, 

e assume R is constructed by sampling without replacement and 

arry out the analysis in this setting. 

Next, we study the performance of the randomized greedy al- 

orithm using the tools of probably approximately correct (PAC) 

earning theory [43,44] . That is, not only the sampling set se- 

ected by Algorithm 2 is on expectation near optimal, but the 

SE associated with the selected sampling set is with high prob- 

bility close to the smallest achievable MSE. The randomiza- 

ion of Algorithm 2 can be interpreted as an approximation of 

he marginal gains of the nodes selected by the greedy scheme 

15,19,20] . More specifically, following this interpretation for the 

 th iteration we have f j rg 
(S rg ) := ηi f j g (S g ) , where subscripts rg and

indicate the sampling sets and nodes selected by the random- 

zed greedy ( Algorithm 2 ) and the greedy algorithm in [15] , respec-

ively, and 0 < ηi ≤ 1 for all i ∈ [ m ] are random variables. Following

his argument and by employing the Bernstein inequality [45] , we 

rrive Theorem 3 which states that the randomized greedy algo- 

ithm selects a near-optimal sampling set with high probability. 

heorem 3. Instate the notation and hypotheses of Theorem 2 . As- 

ume { ηi } m 

i =1 
is a collection of random variables such that E [ ηi ] ≥ με ,

or all i ∈ [ m ] . Then, it holds that 

r ( ̄�S rg 
) ≤

(
1 − e −

∑ m 
i =1 

ηi 
mc 

)
Tr ( ̄�O ) + e −

∑ m 
i =1 

ηi 
mc Tr (W ) . (16) 

oreover, if { ηi } m 

i =1 
are independent, for all 0 < q < 1 with probability

t least 1 − e −Cm it holds that 

r ( ̄�S rg 
) ≤

(
1 − e −

(1 −q ) με
c 

)
Tr ( ̄�O ) + e −

(1 −q ) με
c Tr (W ) (17) 

or some C > 0 . 

roof. See Appendix E . �
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3 Dataset from https://www.bea.gov . 
4 Notice that the graph structure in this application is essentially the time- 

varying communication network between the UAVs. In our simulation studies, we 
In our simulation studies (see Section 5 ), we empirically 

erify the results of Theorems 2 and 3 and illustrate that 

lgorithm 2 performs favorably compared to the competing greedy 

cheme both on average and for each individual sampling task. 

Finally, in Theorem 4 we extend the results of [15] derived for 

tationary graph signals and show that the maximum element- 

ise curvature of f (S) = Tr (W − �̄S ) is bounded even for non- 

tationary graph signals and in the scenario where the statistics 

f the noise varies across nodes of the graph. 

heorem 4. Let C f be the maximum element-wise curvature of 

f (S) = Tr (W − �̄S ) . Then it holds that 

 max ≤ max 
j∈N 

λ2 
max (W ) 

λ2 
min 

(W ) 

(
1 + 

λmax (W ) 

σ 2 
j 

)3 

. (18) 

roof. See Appendix F . �

It was shown in [15] that if x is stationary and W = σ 2 
x I N for

ome σ 2 
x > 0 and σ 2 

j 
= σ 2 for all j ∈ N , then the curvature of the

SE objective is bounded. However, Theorem 4 holds even in the 

cenarios where the signal is non-stationary and the noise is not 

hite. 

. Numerical examples 

To assess the proposed support recovery and sampling algo- 

ithms, we study their performance in recovery of signals sup- 

orted on synthetic and real-world graphs. In the first two sub- 

ections, we benchmark the performance of Algorithm 1 , while in 

he rest of the subsections, we focus on evaluating the efficacy of 

he proposed randomized greedy algorithm. 

.1. Synthetic Erd ̋os-Rényi random graphs I 

We first consider the task of sampling and reconstruction of 

oise-corrupted bandlimited graph signals with known support. 

pecifically, we consider undirected Erd ̋os-Rényi random graphs G
f size N = 100 and edge probability 0.2. We generate x = U ̄x K 
y forming U using the first k eigenvectors of the graph adja- 

ency matrix, where k is varied linearly from 2 to 99. The non- 

ero frequency components x̄ K are drawn independently from a 

ero-mean Gaussian distribution with standard deviation 100. The 

ignal is corrupted by a Gaussian noise term with Q = 0 . 02 2 I N .

e compare the recovery performance of the proposed scheme in 

lgorithm 1 with state-of-the-art uniform, leverage score, and op- 

imal random sampling schemes [10,16,17] . We define the recov- 

ry error as the ratio of the error energy to the true signal’s en-

rgy. Furthermore, the success rate [10] is defined as the fraction 

f instances where CU is invertible [cf. (1) ]. The results, averaged 

ver 100 independent instances, are shown in Fig 1 (a). As we can 

ee from Fig 1 (a) (top), the proposed scheme consistently achieves 

ower recovery error than competing schemes. Moreover, as shown 

n Fig 1 (a) (bottom), when the bandwidth increases the success 

ate of random sampling schemes decreases while the success rate 

f the proposed scheme is always one, as formally established 

n Theorem 1 . Additionally, note that the reconstruction error of 

lgorithm 1 is given in Proposition 1 . There, we establish an upper- 

ound on the Reconstruction error. Note that Proposition 1 estab- 

ishes perfect success rate and bounds the reconstruction error in 

he noisy scenario; it does not necessary establish a monotonically 

ecreasing error. Indeed, a signal has a higher bandwidth, then a 

arger sampling set is required to ensure perfect success rate. This 

iscussion then justifies then non-monotonic recovery error of the 

roposed algorithm as well as the benchmarking schemes. 

Next, we compare the proposed sampling algorithm with 

lgorithm 1 of [10] (see Fig 2 ) for undirected Erd ̋os-Rényi random 
7 
raphs where we consider smaller bandwidth here to accommo- 

ate the computational cost of Algorithm 1 of [10] . A that disad- 

antage of Algorithm 1 of [10] compared to our method is that the 

terative method of [10] needs to perform singular value decompo- 

ition in each iteration to identify the sampling operator (see step 

 of Algorithm 1 in [10] ). Additionally, similar to our scheme which 

equires a residual node for initialization, [10] also needs an ini- 

ial node. However, the selection of such an initial node is unclear 

n Algorithm 1 of [10] . One major benefit of our method is that, 

s we show in Theorem 1 , the proposed scheme achieves perfect 

ecovery while Algorithm 1 of [10] does not have this important 

roperty. In terms of the empirical comparison, as Fig 2 shows, the 

roposed iterative algorithm achieves a lower reconstruction error 

hile consistently achieving success rate of one. 

.2. Real graph: interpolation of industrial sectors’ production 

Next, we analyze data from the Bureau of Economic Analysis 

f the U.S. Department of Commerce which publicizes an annual 

able of input and outputs organized by economic sectors. 3 Specif- 

cally, we represent by nodes 62 industrial sectors as defined by 

he North American Industry Classification System, and construct 

eighted edges and the graph signal similar to Marques et al. [12] . 

he (undirected) edge weight between two nodes represents the 

verage total production of the sectors, the first sector being used 

s the input to the other sector, expressed in trillions of dollars per 

ear. This edge weight is averaged over the years 20 08, 20 09, and 

010. Also, two artificial nodes are connected to all 62 nodes as the 

dded value generated and the level of production destined to the 

arket of final users. Thus, the final graph has N = 64 nodes. The 

eights lower than 0.01 are thresholded to zero and the eigenvalue 

ecomposition of the corresponding adjacency matrix A = V�V 

� is 
erformed. A graph signal x ∈ R 

64 can be regarded as a unidimen- 

ional total production – in trillion of dollars – of each sector dur- 

ng the year 2011. Signal x is shown to be approximately (low-pass) 

andlimited in [12 , Fig. 4 (a)(top)] with a bandwidth of 4. 

We interpolate sectors’ production by observing a few nodes 

sing Algorithm 1 and assuming that the signal is low-pass (i.e., 

ith smooth variations over the built network). Then, we vary the 

ample size and compare the recovery performance of the pro- 

osed scheme with state-of-the-art uniform, leverage score, and 

ptimal random sampling schemes [10,16,17] averaged over 10 0 0 

onte-Carlo simulations as shown in Fig. 1 (b) (top). As the fig- 

re indicates, the proposed algorithm outperforms uniform, lever- 

ge score, and optimal random sampling schemes [10,16,17] . How- 

ver, Algorithm 1 does not achieve perfect recovery in this noise- 

ess scenario because the signal is not truly bandlimited. More- 

ver, Fig. 1 (b) (bottom) shows a realization of the graph sig- 

al x superimposed with the reconstructed signal obtained using 

lgorithm 1 with k = 2 for all nodes excluding two artificial ones. 

he recovery error of the reconstructed signal is approximately 

 . 32% ; as Fig. 1 (b) (bottom) illustrates, ˆ x closely approximates x . 

.3. Synthetic graph: localization of UAVs 

We now tackle a UAV localization problem in which the goal is 

o estimate absolute positions of robots from on-board sensor mea- 

urements. Specifically, consider a network of N UAVs moving in a 

D plane and assume that each UAV is equipped with two systems: 

 laser scanner that measures the relative position of other UAVs 

ithin a sensing radius, and a GPS system that finds the absolute 

osition of the UAV. 4 While the laser system can find relative po- 

https://www.bea.gov
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Fig. 1. (a) Recovery error (top) and success rate (bottom) of Algorithm 1 and various random selection sampling schemes versus bandwidth ( k ) for undirected Erd ̋os-Rényi 

random graphs. (b) Top: Recovery error comparison of different selection sampling schemes as a function of the sample size for the economy network. Bottom: Recovered 

and true graph signals for various economic sectors using Algorithm 1 . 

Fig. 2. (a) Recovery error and (b) success rate (bottom) of Algorithm 1 and the Greedy method of [10] versus bandwidth ( k ) for undirected Erd ̋os-Rényi random graphs. 
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itions of the nearby UAVs with minimal power consumption, the 

PS system requires intensive power to receive the location of the 

AV from the control unit located potentially far from the network 

f UAVs. We consider the scenario where such inherent energy 

onstraints prevent some UAVs to collect GPS data, i.e., only a sub- 

et of the UAVs can use the GPS. The objective is to compute the 

ost representative subset of the UAVs so to minimize the MSE 

f the estimated global positions of all UAVs. To this end, we em- 

loy the proposed randomized-greedy scheme in Algorithm 2 with 

arious values of ε to find a sampling set (a subset of UAVs) and 

ompare its recovery error to that of the greedy sampling scheme 

15] . Note that two graph signals, namely the x and y coordinates 

f UAVs, are supported on the network. Further, since UAVs that 

re close to each other have similar locations, both of these graph 

ignals are smooth and hence bandlimited. It is worth to note that 

he collection of UAVs, typically referred to as UAV swarm, has a 

warm leader that is task with handling costlier computations and 

s capable of communicating with the control unit that guides the 

warm in moving in the environment. 
onsider the localization task for only a single time-step. Nonetheless, the proposed 

ampling scheme can be employed in every time step where identification UAVs 

ith GPS turned-on is required. 

5

v

t

8 
We run Monte Carlo simulations with 10 0 0 instances where we 

onsider 10 0 0 UAVs distributed uniformly on a 10 × 10 grid; the 

ange of the laser system is set to 0.3 and the power of noise af-

ecting laser measurements is set to 10 −2 . The recovery error and 

unning time results as a function of signals’ bandwidth – which 

s also the size of the sampling set – are shown in Fig. 4 (a) and

b), respectively. As we see in Fig. 4 (a), performance of the pro- 

osed scheme and the greedy algorithm are fairly similar; as band- 

idth increases, the recovery error decreases. Furthermore, as ε
ets smaller, the gap between the performance of the proposed 

cheme and the greedy algorithm reduces until becoming negli- 

ible. The running time comparison illustrated in Fig. 4 (b) reveals 

hat for the largest sampling set considered (i.e. k = 50 ), the pro- 

osed scheme is more than 2x faster than the greedy method. Ad- 

itionally, the complexity of the proposed scheme is linear in k , 

hile that of the greedy method is quadratic, as predicted by our 

heoretical results; see also [1] for additional MSE performance and 

untime comparisons with the greedy sampling algorithm in [15] . 

.4. Real graph: semi-supervised face clustering 

Clustering faces of individuals is an important task in computer 

ision [46–49] . In real-world settings, labeling all images is prac- 

ically infeasible. However, acquiring labels even for a small sub- 
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Fig. 3. Face clustering: given images of multiple subjects, the goal is to find images that belong to the same subject (examples from the EYaleB dataset [46] ). 

Fig. 4. (a) Recovery error comparison of the greedy scheme [15] and Algorithm 2 as a function of bandwidth for the UAV localization problem. (b) Running time comparison 

of the greedy scheme [15] and Algorithm 2 as a function of bandwidth for the UAV localization problem. (c) Clustering accuracy of greedy [15] , Algorithm 2 , random 

sampling, and unsupervised methods as a function of the sampling ratio for the face clustering application. 
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5 https://sparse.tamu.edu/Gleich/minnesota 
et of data that can represent all images may drastically improve 

he clustering accuracy. The proposed randomized-greedy selection 

ampling framework can be employed in this setting to acquire la- 

els for a small number of images to achieve improved cluster- 

ng accuracy. To this end, we test the randomized-greedy algo- 

ithm on EYaleB dataset [46] (see Fig. 3 ) which contains frontal 

ace images of 38 individuals under 64 different illumination con- 

itions. Similar to the prior works (see, e.g., [47–49] ), in our stud- 

es the images are down-sampled to 48 × 42 from the original size 

f 192 × 168 . In each of 100 independent instances of the Monte 

arlo simulation we randomly pick 8 subjects and all of their im- 

ges as the data points to be clustered; this results in a cluster- 

ng problem with N = 512 data points. To construct the underlying 

raph signal and capture similarity of the data points, we employ 

he sparse subspace clustering (SSC) scheme recently proposed in 

47] to find the adjacency matrix A and the Laplacian matrix L . The 

raph signal support on the constructed similarity graph is dis- 

rete valued, i.e., the value of each node is an integer in { 1 , . . . , 8 } .
ote that the graph signal supported on the constructed similar- 

ty graph is smooth and bandlimited as similar images are unlikely 

o correspond to different individuals. The performance compar- 

son of Algorithm 2 with various values for ε, greedy sampling 

ethod, random sampling schemes, and the unsupervised cluster- 

ng method are illustrated in Fig. 4 (c) as a function of the sam-

ling ratio ( k/N). For the sake of clarity of presentation, we only 

how the result of the best method among uniform, leverage score, 

nd optimal random sampling approaches [10,17] . As we see in 

ig. 4 (c), the greedy and randomized-greedy schemes deliver the 

est clustering performance; as we increase size of the sampling 

et, the accuracy of semi-supervised schemes improves and the 

ap between the performance of random sampling methods and 

he proposed scheme decreases. Furthermore, our simulation stud- 

es reveal that acquiring labels of only 8 data points using the pro- 

osed scheme results in more than 12% improvements in clustering 

ccuracy as compared to the unsupervised method. 

.5. Synthetic Erd ̋os-Rényi random graphs II 

Since Algorithm 2 is a randomized scheme, in this section we 

tudy the performance of Algorithm 2 for each individual sam- 

ling tasks (i.e. each Monte-Carlo realizations). To this end, we 

gain consider the Erd ̋os-Rényi random graphs, similar to those in 

ection 5.1 . Here, we study the setting where N = 10 and k = 4 .

andlimited graph signals are generated as before except that this 
9 
ime we take U as the first 4 eigenvectors of the adjacency matrix. 

ig. 5 (a) depicts superimposed MSE histograms of Algorithm 2 and 

he greedy sampling scheme [15] for 100 realizations per method 

nd fixed | S| = 4 . As the figure illustrates, the proposed random- 

zed greedy schemes performs well and is comparable with the 

reedy approach, not just on average but also for majority of in- 

ividual sampling tasks. 

.6. Real graph: minnesota road network 

Next, we consider the Minnesota road network 5 with N = 2642 

odes in order to showcase scalability of the proposed graph sam- 

ling method. To that end, Bandlimited graph signals are generated 

y taking the first k = 600 eigenvectors of the graph Laplacian ma- 

rix, where the non-zero frequency components are drawn from a 

ero-mean, multivariate Gaussian distribution with randomly cho- 

en PSD covariance matrix W . The signals are corrupted with addi- 

ive white Gaussian noise with σ 2 = 10 −2 I N . As expected, Fig. 5 (b)

nd (c) depict trends of decreasing MSE and increasing running 

ime versus | S| , respectively. The results are averaged over 10 0 0 

onte-Carlo simulations run. Remarkably, the proposed random- 

zed greedy procedure achieves an order-of-magnitude speedup 

ver the state-of-the-art algorithm in [15] while showing only a 

arginal degradation in the MSE performance. Note that the time 

f performing eigenvalue decomposition to find the graph shift op- 

rator U in MATLAB was less than 2 s on a typical laptop. Fig. 5 (d)

epicts the runtime comparison of the proposed scheme versus the 

enchmark by accounting for the time of computing the eigenvalue 

ecomposition. 

.7. Synthetic graph: large-scale preferential attachment random 

raph 

Finally, we consider a large-scale preferential attachment ran- 

om graph [50] with N = 10 , 0 0 0 nodes to show the superiority of

he proposed Algorithm 2 over existing methods. In particular, sim- 

lar to the previous random graph simulations, we generate ran- 

om band-limited Gaussian graph signals using the first 500 eigen- 

ectors of the preferential attachment graph adjacency matrix (see 

ig. 6 (c) for the structure of the sparse adjacency matrix). The re- 

ults are illustrated in Fig. 6 where as we see, Algorithm 2 achieves 

https://sparse.tamu.edu/Gleich/minnesota
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Fig. 5. (a) Histogram of MSE values for 100 realizations and fixed sampling set size in simulated Erd ̋os-Rényi graphs. (b) MSE comparison of greedy [15] , Algorithm 2 , and 

random sampling schemes on Minnesota road network. (c) Running time comparison of the greedy scheme [15] and Algorithm 2 on Minnesota road network, excluding the 

time of eigenvalue decomposition. (d) Running time comparison of the greedy scheme [15] and Algorithm 2 on Minnesota road network, including the time of eigenvalue 

decomposition. 

Fig. 6. Performance comparison of greedy scheme [15] and Algorithm 2 on a large-scale preferential attachment random graph with N = 10 , 0 0 0 nodes. 
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he same performance as that of the greedy scheme [15] while in- 

urring orders of magnitude lower running time. 

. Conclusion 

We considered the task of sampling and reconstruction of spec- 

rally sparse graph signals. where the goal is to interpolate a (non- 

tationary) graph signal from a small subset of the nodes with the 

owest reconstruction error. First, we studied the non-Bayesian sce- 

ario and proposed an efficient iterative sampling approach that 

xploits the low-cost selection criterion of the orthogonal match- 
10 
ng pursuit algorithm to recursively select a subset of nodes of the 

raph. We then theoretically showed that in the noiseless case the 

riginal k -spectrally sparse signal is perfectly recovered from the 

et of selected nodes with cardinality k . In the case of noisy mea- 

urements, we established a worst-case performance bound on the 

econstruction error of the proposed algorithm. In the Bayesian 

cenario where the graph signal is a non-stationary random pro- 

ess, we formulated the sampling task as the problem of maxi- 

izing a monotone weak submodular function that is directly re- 

ated to the mean square error (MSE) of the linear estimator of 
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he original signal. We proposed a randomized-greedy algorithm 

o find a sub-optimal subset of sampling nodes. By analyzing the 

erformance of the randomized-greedy algorithm, we showed that 

he resulting MSE is a constant factor away from the MSE of the 

ptimal sampling set. Unlike prior work, our guarantees do not 

equire stationarity of the graph signal and the study is not re- 

tricted to the case of additive white noise. Instead, the noise co- 

fficients are assumed to be independent but the power of noise 

aries across individual nodes of the graph. Extensive simulations 

n synthetic and real-world graphs with applications in economics, 

ocalization, and clustering showed that the proposed iterative and 

andomized-greedy selection sampling algorithms outperform the 

ompeting alternatives in terms of accuracy and runtime. 
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ppendix A. Proof of Theorem 1 

To prove the theorem, it suffices to show that Algorithm 1 se- 

ects a subset of rows of U which are linearly independent. Con- 

ider the i th iteration where u s i is identified and assume that until 

his iteration S contains indices of a collection of linearly indepen- 

ent vectors { u s 1 , . . . , u s (i −1) 
} . If | r � 

i −1 
u s i | � = 0 , since r i −1 is orthogo-

al to the span of { u s 1 , . . . , u s (i −1) 
} , u s i is not in the span of these

ectors. Hence, { u s 1 , . . . , u s i } is also a collection of linearly inde-

endent vectors and by an inductive argument we conclude that 

ows of U S,r are linearly independent. Now assume | r � 
i −1 

u s i | = 0 for

ome i ≤ k . Since U does not have all-zero rows, this condition im- 

lies r i −1 = 0 . 6 Therefore, all the remaining rows of U which are

ot selected lie in the span of { u s 1 , . . . , u s (i −1) 
} . Since by assump-

ion i ≤ k , this condition implies that the rank of U is at most k − 1

hich contradicts the fact that V is a basis and U has full column- 

ank. Therefore, r i −1 = 0 holds only for i > k and thus rows of U S,r 

re linearly independent. This completes the proof. 

ppendix B. Proof of Proposition 1 

According to Theorem 1 , if m = k , U S,r = CU is invertible. There-

ore, since Q S is positive definite and invertible it is easy to see 

hat U 

� 
S,r Q 

−1 
S U S,r is also invertible. Now consider the case m ≥ k 
6 We note that if | r T 
i −1 

u s i | = 0 for i ≤ k , r i −1 � = 0 , and r i −1 and u s i are orthogonal, 

hen since s i is the optimizer of the selection criterion in step 6, r i −1 is orthogonal 

o all u j with j ∈ N\{ � }\S . Now, since by definition r i −1 is orthogonal to the sub- 

pace spanned by nodes indexed by S , we conclude that r i −1 ∈ R k is orthogonal to 

he subspace spanned by all u j , i.e. R k . However, this can only hold for r i −1 = 0 . 

L

m

s

11 
here U S,r ∈ R 

m ×k is a tall full rank matrix. Let Q 

−1 
S = LL � be the

holesky decomposition of Q 

−1 
S . Since Q 

−1 
S is a positive definite 

atrix, L ∈ R 

m ×m is full rank and invertible. Therefore, L u = L � U S,r 

s also a full rank matrix. Thus, U 

� 
S,r Q 

−1 
S U S,r = L � u L u ∈ R 

k ×k is full

ank and invertible. Hence, for any m ≥ k given a C constructed by 

lgorithm 1 , (4) simplifies to 

ˆ ¯
 = (U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S ˜ x . (19) 

ince x = U ̄x K , the reconstructed signal ˆ x can be obtained accord- 

ng to 

ˆ 
 = U (U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S ˜ x 

= U (U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S (U S,r ̄x K + n S ) 

= U ̄x K + U (U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S Cn 

= x + U (U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S n S . (20) 

herefore, 

 ̂

 x − x ‖ 2 ≤ ‖ U (U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S n S ‖ 2 

(a ) ≤ ‖ U (U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S n ‖ 2 

(b) ≤ σmax (U (U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S ) εn 

(c) ≤ σmax (U ) σmax ((U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S ) εn 

(d) ≤ σmax ((U 

� 
S,r Q 

−1 
S U S,r ) 

−1 U 

� 
S,r Q 

−1 
S ) εn (21) 

here (a ) and (b) follow by the assumption ‖ n S ‖ 2 ≤ ‖ n ‖ 2 ≤ εn ,

c) stems from submultiplicative property of � 2 -norm, and (d) is 

y the fact that σmax (U ) = 1 as it is a submatrix of an orthogonal

atrix. 

ppendix C. Proof of Proposition 2 

We first verify that 

f (∅ ) = Tr 
(
W − �̄∅ 

)
= Tr ( W − W ) = 0 . 

ext, to show monotonicity, we establish a recursive relation for 

he marginal gain of selecting a new node on graph. More specifi- 

ally, for j ∈ [ n ] \S it holds that 

f j (S) = Tr 
(
W − �̄S∪{ j} 

)
− Tr 

(
W − �̄S 

)
= Tr 

(
�̄S 

)
− Tr 

(
�̄S∪{ j} 

)
= Tr 

(
�̄S 

)
− Tr 

((
�̄−1 

S + σ−2 
j 

u j u 

� 
j 

)−1 
)

(a ) = Tr 

( 

�̄S u j u 

� 
j 
�̄S 

σ 2 
j 

+ u 

� 
j 
�̄S u j 

) 

(b) = 

u 

� 
j 
�̄2 

S u j 

σ 2 
j 

+ u 

� 
j 
�̄S u j 

(22) 

here (a ) easily follows by applying Sherman-Morrison formula 

42] on matrix ( ̄�−1 
S + σ−2 

j 
u j u 

� 
j 
) −1 , and (b) is due to properties of

he trace of a matrix. Finally, since �̄S is the error covariance ma- 

rix, it is symmetric and positive definite. Hence, f j (S) > 0 , which

n turn implies monotonicity. 

ppendix D. Proof of Theorem 2 

To prove the stated results, we first we state Lemma 1 [51] that 

pper-bounds the difference between the values of the objective 

orresponding to two sets having different cardinalities. 

emma 1. [51] Let f denote a monotone set function with the maxi- 

um element-wise curvatures C max . Let S and T be any two sampling 

ets such that S ⊂ T ⊆ N with |T \S| = r. Then, it holds that 

f (T ) − f (S) ≤ C(r) 
∑ 

j∈T \S 
f j (S) , (23) 
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here C(r) = 

1 
r (1 + (r − 1) C f ) . Moreover, C(r) is decreasing (increas-

ng) with respect to R if C f < 1 ( C f > 1 ). 

To prove the theorem, we first establish a bound on the ex- 

ected value of the marginal gains of adding new nodes to the 

ampling set. Then, using the results of Lemma 1 , we reduce the 

roof of approximation factor to that of the classical greedy algo- 

ithm introduced in [52] . More specifically, consider the i th itera- 

ion of Algorithm 2 and let S and (i + 1) s denote the current sam-

ling set and the index of node selected at the (i + 1) st iteration

f Algorithm 2 . A necessary condition to achieve the optimal MSE 

s that set R at each iteration must contain at least one node from 

he optimal sampling set O. Let 	 = R ∩ (O\S) . Since R is gener-

ted via sampling without replacement, it holds that 

r { 	 = ∅} = 

s −1 ∏ 

l=0 

(
1 − |O\S| 

|N \S| − l 

)

(a ) ≤
( 

1 − |O\S| 
s 

s −1 ∑ 

l=0 

1 

N − l 

) s 

(b) ≤ (1 − |O\S| 
s 

(H N − H N−s )) 
s (24) 

here (a ) is by the inequality between arithmetic and geometric 

eans and the fact that |N \S| ≤ N, and 

 p = 

p ∑ 

l=1 

1 

p 
= log p + γ + ζp (25) 

n (b) is the p th harmonic number. The object γ in (25) is the 

uler-Mascheroni constant, and ζp = 

1 
2 p − O( 1 

p 4 
) is a monotoni- 

ally decreasing sequence related to Hurwitz zeta function that 

atisfies ζp − ζp−q = 

1 
2 p − 1 

2(p−q ) 
+ O( 1 

(p−q ) 4 
) for all integers p > q 

53] . Therefore, using the identity (25) and the fact that (1 + x ) y ≤
 

xy for any real number y > 0 , we obtain 

r { 	 = ∅} ≤ (
(1 − s 

N 
) e 

s 
2 N (N −s ) 

)|O\S| 
. (26) 

et β1 = 1 + ( s 
2 N − 1 

2(N−s ) 
) . Employing the inequality log (1 − x ) ≤

x − x 2 

2 for 0 < x < 1 yields Pr { 	 = ∅} ≤ e −
β1 s 

N 
|O\S| . Following a

imilar argument one can obtain Pr { 	 = ∅} ≤ e −
s 
N 

|O\S| . 
Let β = max { 1 , β1 } . Then 

r { 	 � = ∅} ≥ 1 − e −
βs 
N |O\S| ≥ 1 − εβ

m 

(|O\S| ) (27) 

rom the definition of s = 

N 
m 

log (1 /ε) and the fact that 1 − e −
βs 
N 

x is

 concave function. According to Lemma 2 in [41] , 

 [ f (i +1) s (S ) |S ] ≥ Pr { 	 � = ∅} 
|O\S| 

∑ 

j∈O\S 
f o (S) . (28) 

ence, 

 

[
f (i +1) s (S ) |S 

]
≥ 1 − εβ

m 

∑ 

j∈O\S 
f j (S) . (29) 

On the other hand, employing Lemma 1 with T = O ∪ S and 

nvoking monotonicity of f yields 

f (O) − f (S) 

C(r) 
≤ f (O ∪ S) − f (S) 

C(r) 
≤

∑ 

j∈O\S 
f j (S) 

≤ m 

1 − εβ
E 

[
f (i +1) s (S ) |S 

]
, (30) 

here |O\S| = r. Let c = max {C f , 1 } . Applying the law of total ex-

ectation and the fact that C(r) ≤ c yields 

 [ f (S ∪ { (i + 1) s } ) − f (S) ] ≥ 1 − εβ

( f (O) − E [ f (S) ] ) . (31) 

mc 

12 
ith the established result, the proof simplifies to that of the clas- 

ical greedy algorithm [52] . Therefore, by using a simple inductive 

rgument, 

 [ f (S rg )] ≥
(

1 −
(

1 − 1 − εβ

mc 

)m 

)
f (O) 

≥
(

1 − e −
1 
c − εβ

c 

)
f (O) = α f (O) , (32) 

here the last inequality is due to the facts that (1 + x ) y ≤ e xy for

 > 0 and e ax ≤ 1 + axe a for 0 < x < 1 . Finally, the stated result fol-

ows by using the definition of f (S) . This completes the proof. 

ppendix E. Proof of Theorem 3 

Consider the i th iteration of Algorithm 2 . Let S denote the cur- 

ent sampling set and let (i + 1) g and (i + 1) rg denote indices of

he nodes selected at the (i + 1) st iteration of the greedy sampling 

lgorithm [15,19,20] and Algorithm 2 , respectively. Similar to the 

roof of Theorem (2) , we start by reducing the proof to that of the

lassical greedy algorithm. To this end, we employ Lemma 1 with 

 = O ∪ S and use monotonicity of f to obtain 

f (O) − f (S) ≤ f (O ∪ S) − f (S) ≤ c 
∑ 

j∈O\S 
f j (S) . (33) 

ote that given the current sampling set S , from the selection cri- 

eria of greedy and randomized-greedy algorithms for all j it fol- 

ows that 

f (O) − f (S) ≤ cm f (i +1) g (S) , (34) 

here we used the fact that |O\S| ≤ m . On the other hand, 

f (S ∪ { (i + 1) rg } ) − f (S) = f (i +1) rg 
(S) 

= ηi +1 f (i +1) g (S) . (35) 

ombining (34) and (35) yields 

f (S ∪ { (i + 1) rg } ) − f (S) ≥ ηi +1 

mc 
( f (O) − f (S) ) . (36) 

sing a similar inductive argument as we did in the proof of 

heorem 2 and due to the fact that (1 + x ) y ≤ e xy for y > 0 , it fol-

ows that 

f (S rg ) ≥
( 

1 −
( 

1 −
m ∑ 

i =1 

ηi 

mc 

) ) 

f (O) 

≥
(

1 − e −
∑ m 

i =1 

ηi 
mc 

)
f (O) . (37) 

ote that if we assume { ηi } are independent, the term 

∑ m 

i =1 ηi is 

 sum of independent bounded random variables. Since { ηi } are 

ounded random variables, by Popoviciu’s inequality [54] for all 

 ∈ [ m ] it holds that Var [ ηi ] ≤ 1 
4 . Therefore, using Bernstein’s in-

quality [54] it holds that for all 0 < q < 1 

r { 
m ∑ 

i =1 

ηi < (1 − q ) mμε} ≤ e 
− m (1 −q ) 2 μ2 

ε
1 −q 

3 
με+ 1 

4 = e −C(ε,q ) m . (38) 

mploying this results in (37) yields 

f (S rg ) ≥
(

1 − e −
(1 −q ) με

c 

)
f (O) , (39) 

ith probability at least 1 − e C(ε,q ) m . Recalling the definition of 

f (S) leads to the stated bound which in turn completes the proof. 
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ppendix F. Proof of Theorem 4 

To prove the stated result, we begin by exploiting the recursive 

ormulation of the marginal gain derived in Proposition 2 to estab- 

ish a sufficient condition for weak submodularity of f (S) . More 

pecifically, from the definition of the maximum element-wise cur- 

ature and (13) , for all (S, T , j) ∈ X l we have 

f j (T ) 
f j (S) 

= 

(u 

� 
j 
�̄2 

T u j )(σ
2 
j 

+ u 

� 
j 
�̄S u j ) 

(u 

� 
j 
�̄2 

S u j )(σ
2 
j 

+ u 

� 
j 
�̄T u j ) 

. (40) 

ext, we employ Courant-Fischer min-max theorem [42] to ob- 

ain 

f j (T ) 
f j (S) 

≤
λmax ( ̄�2 

T )(σ
2 
j 

+ λmax ( ̄�S ) ‖ u j ‖ 

2 
2 ) 

λmin ( ̄�
2 
S )(σ

2 
j 

+ λmin ( ̄�T ) ‖ u j ‖ 

2 
2 
) 

(a ) ≤
λmax ( ̄�2 

T )(σ
2 
j 

+ λmax ( ̄�S )) 

λmin ( ̄�
2 
S )(σ

2 
j 

+ λmin ( ̄�T )) 
, (41) 

here (a ) holds since 

(x ) = 

σ 2 
j 

+ λmax ( ̄�S ) x 

σ 2 
j 

+ λmin ( ̄�T ) x 
(42) 

s a monotonically increasing function for x > 0 and ‖ u ‖ 2 2 ≤ 1 .

iven the fact that λmax ( ̄�S ) = λmin ( ̄�
−1 
S ) −1 , (41) simplifies to 

f j (T ) 
f j (S) 

≤
λmin ( ̄�

−1 
T ) −2 (σ 2 

j 
+ λmin ( ̄�

−1 
S ) −1 ) 

λmax ( ̄�
−1 
S ) −2 (σ 2 

j 
+ λmax ( ̄�

−1 
T ) −1 ) 

. (43) 

y Weyl’s inequality [42] , for all (S, T , j) ∈ X l it holds

hat λmin ( ̄�
−1 
N ) ≥ λmin ( ̄�

−1 
T ) ≥ λmin ( ̄�

−1 
S ) ≥ λmin (W 

−1 ) and 

max ( ̄�
−1 
N ) ≥ λmax ( ̄�

−1 
T ) ≥ λmax ( ̄�

−1 
S ) ≥ λmax (W 

−1 ) . Hence, by 

efinition of maximum element-wise curvature we have 

 max ≤ max 
j∈N 

λmax (W ) 2 (σ 2 
j 

+ λmax (W )) 

λmax ( ̄�
−1 
N ) 

−2 (σ 2 
j 

+ λmax ( ̄�
−1 
N ) 

−1 ) 

(a ) ≤ max 
j∈N 

(σ 2 
j 

+ λmax (W ))(λmin (W ) −1 + σ−2 
j 

) 2 

λmax (W ) −2 (σ 2 
j 

+ (λmin (W ) −1 + σ−2 
j 

) −1 ) 
, (44) 

here (a ) follows since λmax ( ̄�
−1 
N ) ≤ λmax (W 

−1 + σ−2 
j 

I N ) and be- 

ause the maximum eigenvalue of a positive definite matrix satis- 

es the triangle inequality. Note that the denominator of the last 

nequality is always strictly larger than σ 2 
j 

, and that λmax (W ) ≥
min (W ) . Following some straight-forward algebra, we obtain 

 max ≤ max 
j∈N 

λ2 
max (W ) 

λ2 
min 

(W ) 

(
1 + 

λmax (W ) 

σ 2 
j 

)3 

(45) 

hich is the stated result. This completes the proof. 
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