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Abstract—Sampling of bandlimited graph signals has well-
documented merits for dimensionality reduction, affordable stor-
age, and online processing of streaming network data. Most
existing sampling methods are designed to minimize the er-
ror incurred when reconstructing the original signal from its
samples. Oftentimes these parsimonious signals serve as inputs
to computationally-intensive linear transformations (e.g., graph
filters). Hence, interest shifts from reconstructing the signal itself
towards instead approximating the output of the prescribed
linear operator efficiently. In this context, we propose a novel
sampling scheme that leverages the bandlimitedness of the
input as well as the transformation whose output we wish to
approximate. We formulate problems to jointly optimize sample
selection and a sketch of the target linear transformation, so
when the latter is affordably applied to the sampled input signal
the result is close to the desired output. The developed sampling
plus reduced-complexity processing pipeline is particularly useful
for streaming data, where the linear transform has to be applied
fast and repeatedly to successive inputs.

Index Terms—Sketching, sampling, graph signal processing,
streaming, linear transforms

I. INTRODUCTION

Propelled by the desire of analyzing and processing network
data supported on irregular domains, there has been a growing
interest in broadening the scope of traditional signal processing
techniques to signals defined on graphs [1], [2]. Noteworthy
representatives include sampling of graph signals, linear graph
filtering and the graph Fourier transform (GFT) [3], [4], all
of them instances of linear problems. This is not surprising
since linear models are ubiquitous in science and engineering,
due in part to their generality, conceptual simplicity, and
mathematical tractability. Along with heterogeneity and lack
of regularity, data are increasingly high dimensional and this
curse of dimensionality not only raises statistical challenges,
but also major computational hurdles even for linear models.
In particular, these limiting factors can hinder processing of
streaming data, where say a massive linear operator has to
be repeatedly and efficiently applied to a sequence of input
(graph) signals [5]. These Big Data challenges motivated
a recent body of work collectively addressing so-termed
sketching problems [6], which seek computationally-efficient
solutions to a subset of (typically inverse) linear problems.
The basic idea is to draw a sketch of the linear model such
that the resulting linear transform is lower dimensional, while
still offering quantifiable approximation error guarantees. To
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Fig. 1. Knowing the linear transformation H and having access to a stream
of noisy inputs, we want to design the sampling matrix C and the reduced
linear transformation (sketch) Hs so that ŷ approximates y.

achieve this, a fat random projection matrix is designed to pre-
multiply and reduce the dimensionality of the linear operator
matrix, in such way that the resulting matrix sketch retains
the most important structure of the model. The input vector
has to be adapted to the sketched operator as well, and to that
end the same random projections are applied to the signal in
a way often agnostic to the input statistics.

Although random projection methods offer an elegant
dimensionality-reduction alternative for several Big Data prob-
lems, they face some shortcomings: i) sketching each new
input signal entails a nontrivial computational cost, which
can be a bottleneck in streaming applications; ii) the design
of the random projection matrix does not take into account
any a priori information on the input; and iii) the guaran-
tees offered are probabilistic. Alternatively one can think of
reducing complexity by simply retaining a few samples of
each input. Different from random sketching, under station-
arity the sampling can remain fixed and it incurs negligible
online complexity. Sampling schemes typically build on a
parsimonious model for the signals of interest, which in the
case of graph signals is either smoothness or bandlimitedness
– i.e., a sparse representation in the graph Fourier domain [7],
[8]. Most existing sampling methods are designed with the
objective of reconstructing the original graph signal, and do
not account for subsequent processing the signal may undergo;
see, e.g., [9] for a recent exception.

In this sketching context and with reference to Fig. 1,
we propose a novel sampling scheme for signals x that are
bandlimited on a graph (Section II), that also leverages the
transformation H whose output we wish to approximate. In
Section III we formulate problems to jointly optimize the
sample selection matrix C and a sketch Hs of H, so when Hs

is applied to the sampled input signal Cx the result is close
to the desired output y. The pragmatic setting where the input
signal is corrupted by noise w is also investigated in Section
III-B. The general premise is to shift all the computational
burden of designing Hs and C to an off-line phase (see Section
III-C for low-complexity heuristics), so that the online stage
only entails acquiring the specific samples and processing
them via Hs. Numerical tests in Section IV corroborate the



effectiveness of the novel methods when adopted to classify
handwritten digits from the MNIST database [10], using as
few as 20 input pixels. Conclusions are drawn in Section V.

II. PRELIMINARIES

Let N = (V, E ,W) be a network (graph) described by a set
of n nodes V , a set E of edges (i, j) and a weight function
W : E → R that gives weights to the directed edges. A graph
signal x ∈ R

n is defined on the nodes of such a network where
each element of the vector x = [x1, . . . , xn]

T represents a
real value present at the node [1], [2]. A graph-shift operator
S ∈ R

n×n is introduced in order to describe the impact of the
structure of the network on the signal [11]. Matrix S is such
that [S]i,j = 0 whenever i �= j and (j, i) /∈ E . We will focus
on normal shifts, so that S can be decomposed as

S = VΛVH := Vdiag
(
[λ1, . . . , λn]

T
)
VH . (1)

where the unitary matrix V = [v1, . . . ,vn] ∈ C
n×n con-

tains the eigenvectors of S and the diagonal matrix Λ =
diag

(
[λ1, . . . , λn]

T
) ∈ C

n×n the corresponding eigenvalues.
Examples of commonly used shift operators that are normal
include the Laplacian or the adjacency matrix of symmetric
graphs [4], [12], the adjacency of a directed cycle for time
signals, and the correlation or precision (inverse covariance)
matrix of processes following a graphical model [13].

Bandlimited, stationary graph signals. The eigendecom-
position in (1) can be used to define the Graph Fourier
Transform (GFT) and the inverse GFT (iGFT) as x̃ := VHx
and x = Vx̃, respectively [4]. Vector x̃ = [x̃1, . . . , x̃n]

T

contains the frequency coefficients of x. A key assumption
made throughout this paper is that x is k-bandlimited on S.
This implies that there exists a constant k � n such that
x̃l = 0 for all l > k. Then, the GFT vector x̃ can be rewritten
as x̃ = [x̃k;0n−k], where x̃k := [x̃1, . . . , x̃k]

T contains the
first k elements of x̃. Collecting the k eigenvectors associated
with the active frequencies in the matrix Vk := [v1, . . . ,vk] ∈
C

n×k, the GFT-iGFT pairs can be rewritten as

x̃k = VH
k x, x = Vkx̃k. (2)

Assuming also x is a realization of a zero-mean random pro-
cess, we specify next its covariance matrix Rx := E[xxT ] ∈
R

n×n. Since the realizations are bandlimited, we consider first
the so-called frequency template T ∈ C

k×k defined as

T := E
[
x̃kx̃

H
k

]
. (3)

This results in a singular positive semidefinite covariance
matrix Rx = E[xxH ] = VkE[x̃kx̃

H
k ]VH

k = VkTVH
k with

rank k. If no information is available other than x being
bandlimited, a reasonable choice is to set T = I so that
Rx = VkV

H
k . This type of spectral templates appear when x

is graph stationary with respect to the shift operator S [13].

Sampling and reconstructing bandlimited signals. If the
signal x is k-bandlimited on S and the active frequencies are
known, then the k values in x̃k suffice to describe the n values
in x [cf. (2)]. Hence, it is conceivable that x could be recovered
from p ≥ k properly selected samples. In this context, different
sampling schemes for graph signals have been proposed [7],

[8]. The most relevant for the problem at hand is the so-called
selection sampling [7], where samples correspond to values of
the signal x at a particular set of p ≥ k nodes. Specifically,
the goal is to design a selection matrix C ∈ Cpn, where

Cpn := {C ∈ R
p×n : C1n = 1n, CT1n�1n, Cij ∈{0, 1}},

so that samples xs = Cx contain enough information to
accurately recover x via suitable interpolation. If samples of x
can be acquired perfectly in the absence of noise, then any C
for which CVk is nonsingular yields perfect recovery since

x = Vk(CVk)
−1xs. (4)

When samples are noisy, then there are several methods
and algorithms for obtaining the optimal selection matrix C;
see [7], [8]. Working with xs in lieu of x offers several
advantages. Of particular interest here are the computational
savings of processing xs rather than x, especially when p� n.

III. SKETCHING AS GRAPH SIGNAL SAMPLING

We consider here linear sketching problems for signals that
are bandlimited on a graph. With reference to Fig. 1, consider
a graph signal x ∈ R

n corrupted by additive noise w ∈ R
n,

and suppose that a stream of inputs z := x +w is available.
Ideally one would like to process each noiseless input x by a
given linear transformation H ∈ R

m×n to generate the output
y ∈ R

m, where n ≥ m and both dimensions are large. Our
goal is to find a fixed sampling scheme C ∈ Cpn and a fixed
sketch Hs ∈ R

m×p of the linear transformation H , such that
with p ≤ n the signal ŷ := Hszs = HsC(x+w) resembles
the desired output y = Hx. The design is performed off-line,
assuming that: i) the linear transformation H is known; ii)
the inputs correspond to realizations of a k-bandlimited graph
signal whose frequency template T (hence its covariance Rx)
is known; and iii) the noise w is zero mean, uncorrelated
with respect to the input x and with known positive-definite
covariance Σw = E[wwT ] 	 0. The design of C and Hs is
performed jointly as the solution of the following minimization

{C∗,H∗s} := argmin
C∈Cpn,Hs

E

[∥∥HsC(x+w)−Hx
∥∥2

2

]
. (5)

We consider a streaming setup where matrix H has to be ap-
plied to a succession of inputs signals. Since (5) minimizes an
ensemble criterion, finding the optimal solution only requires
knowledge of second-order statistics of x . Hence, (5) can be
solved off-line, yielding an optimal sketch H∗s and selection
matrix C∗ that will be the same for all the inputs under the
stationarity assumption. As a result, during the online phase
one must calculate H∗sC

∗(x + w) instead of H(x + w),
reducing the long-run computational cost by a factor of p/n.

We first look at the optimal joint design when noise is not
present (Section III-A) and then address its noisy counterpart
(Section III-B). A number of alternatives to solve approxi-
mately the resultant optimizations are outlined in Section III-C.

A. Noiseless case
First, consider the case where w = 0 in Fig. 1. In this

noiseless scenario, the desired output is y = Hx and the
reduced-complexity approximation is given by ŷ = HsCx.



Proposition 1 Let x ∈ R
n be a k-bandlimited signal with

known spectral template T ∈ C
k×k and let H ∈ R

m×n be
a linear transformation. Let Hs ∈ R

m×p be a reduced-input
dimensionality sketch of H, p ≤ n and C ∈ Cpn be a selection
matrix. If p = k and C∗ is designed such that rank{C∗Vk} =
p = k, then ŷ = H∗sC

∗x = ŷ is equal to the desired output
y = Hx provided that the sketch H∗s is found as

H∗s = HVk(C
∗Vk)

−1. (6)

Proof: The mean-squared error (MSE) criterion [cf. (5)] is

E
[‖y − ŷ‖22

]
= E

[‖Hx−HsCx‖22
]

(7)

= tr
[
HRxH

T − 2HsCRxH
T +HsCRxC

THT
s

]
.

Recall that rank{C} = p for any C ∈ Cpn. Optimizing the
MSE cost over Hs first, results in (recall Rx = VkTVH

k )

HVkTVH
k CT = H∗sCVkTVH

k CT . (8)

Now, if we set p = k and choose C such that rank{CVk} =
p = k, then (VH

k CTCVk)
−1 exists. Thus, by post mul-

tiplying both sides of (8) by the nonsingular p × p matrix
CVk(V

H
k CTCVk)

−1T−1, one arrives at

HVk = H∗sCVk.

Finally, because rank{CVk} = p = k, then (CVk)
−1 exists,

so we obtain the closed-form solution for H∗s given by (6). �
All in all, in the absence of noise it suffices to first set p = k

to find a selection matrix C ∈ Cpn such that rank{CVk} =
p = k, and then obtain Hs as per Proposition 1. This ensures
that y can be formed error-free using p samples of x via
y = ŷ = HsCx. Clearly, selecting p ≥ k will also do the
job, provided that rank{CVk} ≥ k. We close by noting that
rank{CVk} = k is the same condition for exact recovery with
selection sampling [7]. This is expected, since in the noiseless
case here the design of C decouples from that of Hs. As
a result, existing methods to determine the most informative
nodes in sampling scenarios are also applicable here [9].

B. Noisy case
When noise is present, the noise model must be accounted

for in the minimization in (5). To that end, observe first that
if C ∈ Cpn is a p×n selection matrix, then CCT = Ip is the
identity matrix of size p×p. Moreover, CTC = diag(c) where
c ∈ {0, 1}n is a sampling vector containing p ones, located
in the places corresponding to the nodes to be sampled. Now,
define the covariance matrix of the output signal y as Ry :=
E[yyT ] = HRxH

T ∈ R
m×m. Also, define C̄α := diag(c)/α

as the rescaled sampling vector in matrix form, where α > 0
is the rescaling parameter. Finally, define the auxiliary matrix
Σ̄α := Rx +Σw − αIn.

With these definitions, the following proposition asserts that
(5) is equivalent to a mixed-binary optimization problem, with
linear objective and linear matrix inequality (LMI) constraints.

Proposition 2 The solution of (5) is given by C∗ and H∗s =
H∗s(C

∗), where

H∗s(C) = HRxC
T
(
C(Rx +Σw)C

T
)−1

(9)

and C∗ can be obtained as the solution to the problem

min
C∈Cpn

tr
[
Ry −HRxC

T
(
C(Rx +Σw)C

T
)−1

CRxH
T
]
.

(10)
Moreover, (10) is equivalent to

min
c∈{0,1,}n,Y

tr [Y] (11)

s. t. C̄α = diag(c)/α , cT1n = p[
Y −Ry +HRxC̄αRxH

T HRxC̄α

C̄αRxH
T Σ̄

−1
α + C̄α

]
� 0

where Y ∈ R
m×m is an auxiliary variable and α > 0 is any

scalar satisfying Σ̄α = (Rx +Σw − αIn) 	 0.

Proof: The objective function in (5) can be rewritten as

E
[‖y − ŷ‖22

]
= E

[‖Hx−HsC(x+w)‖22
]

(12)

= tr
[
HRxH

T − 2CRxH
THs +HsC(Rx +Σw)C

THT
s

]
since x and w are assumed independent. Solving for Hs yields

H∗s(C) = HRxC
T
(
C(Rx +Σw)C

T
)−1

establishing (9). Matrix C ∈ Cpn is full rank since it selects p
distinct nodes, then C(Rx +Σw)C

T has rank p and thus it
is invertible [14]. Substituting the expression for H∗s(C) into
(12), yields (10). The inverse in the objective of (10) can be
written as [9]

(C(Rx +Σw)C
T )−1 =

(
αIp − αIp +C(Rx +Σw)C

T
)−1

= α−1Ip − α−2C(Σ̄
−1
α + α−1CTC)−1CT , (13)

where α �= 0 is a rescaling parameter, and we used the
Woodbury Matrix Identity. Note that α has to be such that
Σ̄α = (Rx +Σw − αIn) is still invertible. Substituting (13)
into (10) and recalling that CTC = diag(c), we have that

min
c∈{0,1}n,C̄α

tr
[
Ry −HRxC̄αRxH

T (14)

+HRxC̄α

(
Σ̄
−1
α + C̄α

)−1

C̄αRxH
T
]

s. t. C̄α = diag(c)/α , cT1n = p.

Note that in (14) we optimize over a binary vector c ∈ R
n with

exactly p nonzero entries, instead of a binary matrix C ∈ Cpn.
The p nonzero elements in c indicate the nodes to be sampled.
Problem (14) can be reformulated as

min
c∈{0,1}n,Y

tr [Y] (15)

s. t. Ry −HRxC̄αRxH
T

+HRxC̄α

(
Σ̄
−1
α + C̄α

)−1

C̄αRxH
T � Y

C̄α = diag(c)/α , cT1n = p

where Y ∈ R
m×m, Y � 0 is an auxiliary optimization

variable. Using the Schur-complement lemma for positive
definite matrices, problem (15) can be written as (11). Hence,

to complete the proof we need to show that Σ̄
−1
α +C̄α � 0 so

that the aforementioned lemma can be invoked. To that end,
suppose first that α < 0. Then we have that Σ̄α 	 0 and
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Fig. 2. (a) Averaged image of all digits in the test set. (b)–(h) Selected pixels to use for classification of the digits according to each strategy. It is observed
how the methods for reconstruction (b)–(d) tend to select pixels around the annulus that determine the digit 0, especially on top and bottom, which also help
in reconstructing the digit 1. On the other hand, methods for classification (e)–(f) tend to distribute the pixel selection both in the center and in the annulus
on the sides, which are the pixels that best help distinguish a zero (no pixels in the center) and a one (no pixels on the sides of the annulus).

C̄α = α−1diag(c) � 0, so that Σ̄
−1
α + C̄α � 0 may not

be positive definite. Suppose now that α > 0. Then C̄α � 0
and there always exists a sufficiently small positive α such
that Σ̄α 	 0 since Σw 	 0. This implies that if α is chosen
such that α > 0 and Σ̄α = Rx +Σw − αIn 	 0 (which are

the conditions stated in the proposition), then Σ̄
−1
α + C̄α is

positive definite and problems (14) and (11) are equivalent. �
In words, the problem in (5) can be solved in two steps.

First the optimal sketch H∗s is found as a function of C via
(9), and then this H∗s(C) is substituted into (5) to formulate
the optimization in (11), which depends only on C. From an
algorithmic perspective, the order is reversed. First, we find
C by “solving” the binary optimization in either (10) or (11),
and then the resulting C∗ is substituted into (9) to find H∗s in
O(nmp)+O(p3) complexity. Different heuristics to tackle the
non-convex binary optimization over C are discussed next.

C. Heuristic Approaches
A natural first alternative is to relax the binary constraint

c ∈ {0, 1}n ⇒
Relaxation

0n � c � 1n (16)

so that problem (11) becomes convex, and is thus efficiently
solved. Once a solution to the relaxation is obtained, two
ways of recovering a binary vector c are considered. The
first one is a deterministic method referred to as thresholding,
which simply consists of setting the largest p elements to 1
and the rest to 0. The second one consists on normalizing
the solution so that it sums to 1, which can be viewed as a
probability distribution over the nodes. The sampled nodes
are then drawn at random from this distribution, see [15].
Although not pursued here, also pertinent are formulations
that penalize the objective with ‖c‖1 and leverage �1-norm
minimization advances to promote sparsity on c.

A second method is to ignore the noise altogether, and select

node so that HR
1/2
x diag(c)R

1/2
x HT is as close as possible

to HRxH
T = Ry [cf. (10)]. This implies that the samples

chosen correspond to the rows of R
1/2
x HT with highest �2

norm, a scheme referred to as the noise-blind heuristic.
The last approach relies on a greedy iterative scheme.

Specifically, instead of searching over all possible
(
n
p

)
sam-

pling configurations, we run p iterations and in each of them
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Fig. 3. Average number of classification errors (out of 200 images to classify)
as a function of the noise coefficient σ2

coeff that determines the noise power.
For each noise coefficient, 500 realizations were carried out. It is observed that
the proposed methods in this work yield better performance than traditional
sampling methods.

we try nodes individually and retain the one yielding the best
solution. This way only n(n − 1) · · · (n − (p − 1)) < np

evaluations of the objective function (10) are required. Greedy
algorithms have well-documented merits for sample selection,
even for non-submodular objectives like the one in (10).

IV. NUMERICAL EXPERIMENTS

The problem of classifying handwritten digits from the
MNIST database [10] is considered here to validate the meth-
ods proposed. This particular classification task is typically
carried out in two steps: first the images are transformed to
the PCA domain and then a linear classifier on the principal
components is implemented [16]. However, the first step can
often be computationally expensive. Since the PCA transfor-
mation is linear, our approach is to subsume both the linear
classifier and the PCA transform into a single linear operator
H, which is then approximated by sampling pixels directly –
hence, boosting the online classification speed.

We will constrain ourselves to the classification of the
black and white images of digits 0 and 1. The images have
size 28 × 28 and by taking 5000 images of each digit from
the training set and vectorizing them, estimates of the mean
and the covariance matrix of the images are obtained. These
estimates are used to compute the PCA transform. Images



are assumed k-bandlimited with k = 20, since this is the
number of principal components needed to achieve perfect
classification in the PCA domain. The total number of pixels
is n = 784. The linear classifier is an SVM applied directly
to the PCA domain, thus m = 1. The total number of
images to be classified are 100 for each digit. The result of
averaging all the 0s and 1s considered is shown in Fig. 2(a).
The methods proposed in this work are compared to three
experimental design sampling methods (EDS) proposed in
[17]. Specifically, we implement sampling with replacement
with weights according to the: 1) �∞ norm of the rows of V;
2) �1 norm of the rows of V; and 3) �2 norm of the rows of
V. This latter case is the method proposed in [15].

For the first simulation, we consider that p = k = 20
pixels are sampled and add a fixed noise with covariance
Σw = σ2In, where σ2 = σ2

coeff · ‖μ̂‖2 with σ2
coeff = 10−4,

and μ̂ is the estimated mean. Selected pixels are illustrated
in Fig. 2(b)–(h). The estimated error rate is the average
error across 500 realizations. It yields an error rate of 0%
for the SVM classifier using the full image. For the EDS
reconstruction techniques with norm-1, norm-2 and norm-∞
weights the error rates are 0%, 4.81% and 1.2%, respectively.
For the noise-blind heuristic there is an error rate of 0.5%
and for the convex relaxation thresholding technique, the
convex relaxation random technique and the iterative heuristic,
the error is 0%, 0.3% and 0%, respectively. All in all, this
first example gives rise to the following findings: f1) the
classification performance using only p = 20 pixels is very
close to that using the full image (n = 784 pixels) but with
only a 2.55% of the online computational cost; and f2) the
proposed schemes (especially the most sophisticated ones)
tend to work better than existing alternatives. To confirm these
findings we run two additional set of experiments.

The second simulation fixes the number of samples p =
k = 20 and considers different noise values σ2

coeff. Again, 500
realizations are carried out for each value of σ2

coeff. The number
of errors (out of 200 images) averaged across the realizations
is plotted in Fig. 3. It confirms that the methods proposed in
this work yield a reconstruction performance better than that
of traditional methods [cf. f2)]. Finally, the third simulation
fixes the noise to σ2

coeff = 10−4 and varies the number of
samples p from 16 to 35. The results, averaged across 500
noise realizations, are shown in Fig. 4. In general, the proposed
methods work better than traditional sampling methods [cf.
f2)], exhibiting an error rate below 0.5% for all p.

V. CONCLUSIONS

We studied a class of linear sketching problems for stream-
ing signals that are bandlimited on a graph. To effect com-
putational savings during online operation, we formulated an
optimization problem to jointly design the sampling scheme to
reduce the dimensionality of the input, as well as a sketch of
the desired transformation to affordably process the resulting
samples. Since the resultant problem was non-convex, different
suboptimal schemes were proposed and their performance
compared in the context of handwritten digit classification.
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Fig. 4. Number of classification errors (out of 200 images to classify) as a
function of the number of samples p. It is observed that the proposed methods
in this work yield better performance than traditional sampling methods.
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[11] M. Püschel and J. M. F. Moura, “Algebraic Signal Processing Theory:
Foundation and 1-D Time,” IEEE Trans. Signal Process., vol. 56, no. 8,
pp. 3575–3585, August 2008.

[12] A. Sandryhaila and J. M. F. Moura, “Discrete Signal Processing on
Graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
April 2013.

[13] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” arXiv preprint arXiv:1603.04667,
2016.

[14] R. A. Horn and C. R. Johnson, Matrix Analysis, 1st ed. Cambridge,
UK: Cambridge University Press, 1985.

[15] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random
Sampling of Bandlimited Graph Signals,” eprint arXiv:1511.05118,
November 2015.

[16] J. E. Jackson, A User’s Guide to Principal Components. New York,
NY: John Wiley and Sons, 1991.

[17] R. Varma, S. Chen, and J. Kovačević, “Spectrum-Blind Signal Recovery
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