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Abstract—Sampling and reconstruction of bandlimited graph
signals have well-appreciated merits for dimensionality reduction,
affordable storage, and online processing of streaming network
data. However, these parsimonious signals are oftentimes en-
countered with high-dimensional linear inverse problems. Hence,
interest shifts from reconstructing the signal itself towards
instead approximating the input to a prescribed linear operator
efficiently. In this context, we propose a novel sampling scheme
that leverages the bandlimitedness of the output as well as
the transformation whose input we wish to approximate. We
formulate problems to jointly optimize sample selection and a
sketch of the target inverse mapping, so when the latter is
affordably applied to the sampled output signal, the result is
close to the desired input. The developed sampling plus reduced-
complexity processing pipeline is particularly useful for streaming
data, where the linear transform has to be applied fast and
repeatedly to successive response signals.

Index Terms—Sketching, sampling, graph signal processing,
streaming, linear inverse problems

I. INTRODUCTION

Graph Signal Processing (GSP) has emerged as a field that
generalizes traditional signal processing tools to operate on
signals defined on irregular domains that can be conveniently
represented as a graph [1], [2]. Noteworthy advances in the
context of linear problems include sampling and reconstruction
of bandlimited graph signals, linear shift-invariant graph fil-
tering and computation of the graph Fourier transform (GFT),
just to name a few [3], [4]. Traditionally, linear models and
signal representations have played a central role in science
and engineering mostly because of their conceptual simplicity
and mathematical tractability. However, as signals become
increasingly high dimensional even linear transformations can
be challenging to implement. This is particularly notorious
in streaming contexts, where say this massive linear operator
has to be repeatedly and efficiently applied to a sequence of
signals [5].

These Big Data challenges motivated a recent body of work
collectively addressing so-termed sketching problems [6],
which seek computationally-efficient solutions to a subset of
(typically inverse) linear problems. In a nutshell, the idea is to
draw a sketch of the linear model such that the resulting linear
transform is lower dimensional, while still offering quantifiable
approximation error guarantees. The procedure consists in
designing a fat random projection matrix to pre-multiply and
reduce the dimensionality of the linear operator matrix, so
that the resulting matrix sketch captures the quintessential
structure of the model. Likewise, the input signal vector is
adapted to this smaller sketched linear operator by performing
the same random projection, often ignoring any additional
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Fig. 1. Knowing the linear transformation H and having access to a stream
of noisy measurements of the output, we want to design the sampling matrix
C and the reduced linear transformation (sketch) Hs to form an estimator of
the input x̂ = HsCy, such that the predicted response Hx̂ approximates y.

information about the signal model such as its statistical
structure. A different alternative to look at the problem is
by exploiting results in the context of sampling. Sampling
is, arguably, the simplest dimensionality-reduction tool. The
classical approach for time-varying signals is to assume that
the original signal is bandlimited and then use as information
only a subset of its values. Under the GSP framework, the
concept of bandlimitedness can be generalized to graph signals
living on a low-dimensional subspace, not necessarily given by
the Fourier basis. Using this interpretation, several sampling
schemes have been recently proposed [7]–[10]. Sampling is
particularly attractive in streaming contexts since selecting a
subset of values of a signal entails no computational cost. In
contrast, the cost of sketching each new signal using random
projections is often nontrivial. Another advantage of sampling
schemes is the exploitation of a priori knowledge of the
signal (in particular, its sparse representation in the frequency
domain), whereas the design of the random projection ignores
any structural information on the input. On the other hand,
sampling methods typically focus on reconstruction of the
signal, without accounting for later processing the signal may
be subject to; see [11], [12] for exceptions, the latter dealing
with graph signals.

The contribution in this paper is to bring together the
aforementioned two perspectives, proposing a low-complexity
solution to high-dimensional linear inverse problems. To that
end, we combine a sampling scheme for the observed output
with a matrix sketch for the inverse transformation. To be rig-
orous, consider the scheme in Fig. 1. The postulated sketching
problem is formulated as a joint design of a sampling matrix
C and a matrix sketch Hs that operate on measurements
(y + w) with the objective of providing an estimate x̂ of
the input x. By exploiting the graph-bandlimited structure of
the output y (Section II), the online computational cost can be
significantly reduced by just operating with Hs over a subset
of values of the output C(y + w). The joint design of the
optimal selection scheme and matrix sketch can be solved off
line. To gain insights, Section III-A presents first the problem
formulation for the case where w = 0, and then Section III-B
addresses the general case where observation noise is present.
In Section III-C suboptimal solutions with reduced complexity
are discussed. Finally, in Section IV the proposed joint design
is used to compute efficiently the frequency components of a
graph signal. Conclusions are drawn in Section V.
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II. PRELIMINARIES

Let N = (V, E ,W) be a network (graph) described by a set
of n nodes V , a set E of edges (i, j) and a weight function
W : E → R that gives weights to the directed edges. A graph
signal x ∈ R

n is defined on the nodes of such a network where
each element of the vector x = [x1, . . . , xn]

T represents a
real value present at the node [1], [2]. A graph-shift operator
S ∈ R

n×n is introduced in order to describe the impact of the
structure of the network on the signal [13]. Matrix S is such
that [S]i,j = 0 whenever i 6= j and (j, i) /∈ E . The focus will
be set on normal shifts, so that S can be decomposed as

S = VΛVH := Vdiag
(

[λ1, . . . , λn]
T
)

VH . (1)

where the unitary matrix V = [v1, . . . ,vn] ∈ C
n×n con-

tains the eigenvectors of S and the diagonal matrix Λ =
diag

(

[λ1, . . . , λn]
T
)

∈ C
n×n the corresponding eigenvalues.

Examples of commonly used normal shift operators include
the Laplacian or the adjacency matrix of symmetric graphs
[4], [14], the adjacency of a directed cycle for time signals,
and the correlation or precision (inverse covariance) matrix of
processes following a graphical model [15].

The eigendecomposition in (1) is used to define the Graph
Fourier Transform (GFT) and the inverse GFT (iGFT) as x̃ :=
VHx and x = Vx̃, respectively [4]. Vector x̃ = [x̃1, . . . , x̃n]

T

contains the frequency coefficients of x. A key assumption
made throughout this paper is that x is k-bandlimited on S.
This implies that there exists a constant k ≪ n such that
x̃l = 0 for all l > k. Then, the GFT vector x̃ can be rewritten
as x̃ = [x̃k;0n−k], where x̃k := [x̃1, . . . , x̃k]

T contains the
first k elements of x̃. Collecting the k eigenvectors associated
with the active frequencies in the matrix Vk := [v1, . . . ,vk] ∈
C

n×k, the GFT-iGFT pairs can be rewritten as

x̃k = VH
k x, x = Vkx̃k. (2)

Assuming also x is a realization of a zero-mean random pro-
cess, we specify next its covariance matrix Rx := E[xxT ] ∈
R

n×n. Since the realizations are bandlimited, we consider first
the so-called frequency template T ∈ C

k×k defined as

T := E
[

x̃kx̃
H
k

]

. (3)

This results in a singular positive semidefinite covariance
matrix Rx = E[xxH ] = VkE[x̃kx̃

H
k ]VH

k = VkTVH
k with

rank k. If no information is available other than x being
bandlimited, a reasonable choice is to set T = I so that
Rx = VkV

H
k . This type of spectral templates appear when x

is graph stationary with respect to the shift operator S [15].
If the signal x is k-bandlimited on S and the active

frequencies are known, then the k values in x̃k suffice to
describe the n values in x [cf. (2)]. Hence, it is possible
to recover the signal x by taking p ≥ k properly selected
samples. In this context, different sampling schemes for graph
signals have been proposed [8], [9]. Herein we consider the
so-called selection sampling method [8], by which samples
correspond to values of the signal x at a particular set of
p ≥ k nodes. Specifically, the goal is to design a selection
matrix C ∈ Cpn, where

Cpn := {C ∈ R
p×n : C1n = 1n, CT1n�1n, Cij ∈{0, 1}},

so that samples xs = Cx contain enough information to
accurately recover x via suitable interpolation. If samples of x

can be acquired perfectly in the absence of noise, then any C
for which CVk is nonsingular yields perfect recovery since

x = Vk(CVk)
−1xs. (4)

When samples are noisy, then there are several methods
and algorithms for obtaining the optimal selection matrix C;
see [8], [9]. Working with xs in lieu of x offers several
advantages. Of particular interest here are the computational
savings of processing xs rather than x, especially when p ≪ n.
This computational saving is particularly notorious when we
realize that computing the least squares (LS) solution [16]
entails O(mn2) operations. Even through the use of sketching
techniques (for each output measurement) this cost can be
reduced to O(pn2) plus the number of operations required to
carry out the random projection [6]. By shifting this burden to
the off-line design phase, we are left with only O(pn) online
operations.

III. SKETCHING AS GRAPH SIGNAL SAMPLING

The problem of linear sketching is portrayed in Fig. 1,
where the input x ∈ R

n to a linear operator H ∈ R
m×n

results in an output y ∈ R
m, that is y = Hx. We consider

the output y to be a k-bandlimited graph signal corrupted
by additive noise w ∈ R

m, and we further assume that a
stream of outputs z := y + w is available. In this context,
the objective is to estimate the input for each measurement
of the output, given knowledge of the linear transformation
H ∈ R

m×n, where m ≥ n and both dimensions are large.
To that end we wish to design a fixed sampling scheme
C ∈ Cpm and a fixed sketch Hs ∈ R

n×p, such that with
p ≤ m the signal Hx̂ := Hszs = HsC(y + w) resembles
Hx. The design is to be performed off line and applicable
to all output measurements in the stream, assuming that these
are realizations of a stationary graph signal process whose
frequency template T (hence its covariance Ry) is known.
The noise w is zero mean, uncorrelated with respect to y and
with known positive-definite covariance Σw = E[wwT ] ≻ 0.

The design of C and Hs is performed jointly as the solution
of the following minimization

{C∗,H∗
s} := argmin

C∈Cpm,Hs

E

[

∥

∥HHsC(y +w)− y
∥

∥

2

2

]

. (5)

Observe that since (5) minimizes an ensemble mean-squared
error (MSE) criterion of a linear function of y, finding the
optimal solution only requires knowledge of second-order
statistics of y. Hence, (5) can be solved off line, yielding
an optimal sketch H∗

s and selection matrix C∗ that will be
the same for all the inputs under the stationarity assumption.
As a result, during the online phase one must calculate
H∗

sC
∗(y + w) instead of solving the full problem, reducing

the long-run computational cost.
We first look at the optimal joint design when noise is not

present (Section III-A) and then address its noisy counterpart
(Section III-B). A number of alternatives to solve approxi-
mately the resultant optimizations are outlined in Section III-C.

A. Noiseless case

First, consider the case where w = 0 in Fig. 1. In this
noiseless scenario, the reduced-complexity estimate is given
by x̂ = HsCy.
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Proposition 1 Let y ∈ R
m be a k-bandlimited signal with

known spectral template T ∈ C
k×k and let H ∈ R

m×n be
a linear transformation. Let Hs ∈ R

n×p be a reduced-input
dimensionality sketch, p ≤ m and C ∈ Cpm be a selection
matrix. If p = k and C∗ is designed such that rank{C∗Vk} =
p = k, then x̂ = H∗

sC
∗y yields the LS estimate x̂LS =

ALSy = (HTH)−1HTy provided that the sketch H∗
s is given

by

H∗
s = (HTH)−1HTVk(C

∗Vk)
−1. (6)

Proof: The MSE criterion [cf. (5)] is

E
[

‖x− x̂‖2
2

]

= E
[

‖H(HsCy)− y‖2
2

]

(7)

= tr
[

HHsCRyC
THT

s H
T − 2HHsCRy +Ry

]

.

Observe that because C ∈ Cpm then rank{C} = p. Now,
optimizing (7) over Hs first and recalling that Ry = VkTVH

k ,
results in

H∗
sCVkTVH

k CT = (HTH)−1HTVkTVH
k CT . (8)

Now, if we set p = k and choose C such that rank{CVk} =
p = k, then (VH

k CTCVk)
−1 exists. Thus, by post mul-

tiplying both sides of (8) by the nonsingular p × p matrix
CVk(V

H
k CTCVk)

−1T−1, one arrives at

H∗
sCVk = (HTH)−1HTVk.

Finally, because rank{CVk} = p = k, then (CVk)
−1 exists,

so we obtain the closed-form solution for H∗
s given by (6). �

All in all, in the absence of noise it suffices to first set
p = k to find a selection matrix C ∈ Cpm such that
rank{CVk} = p = k, and then obtain Hs as per Proposition
1. This ensures that x̂ equals the LS solution using p samples
of y via x̂ = HsCy. Also note that rank{CVk} = k is the
same condition for exact recovery with selection sampling [8].
This is expected, since in the noiseless case here the design of
C decouples from that of Hs. As a result, existing methods to
determine the most informative nodes in sampling scenarios
are also applicable here [12].

B. Noisy case

In the case when there is additive noise w present in the
model, the noise statistics have to be taken into account in the
minimization of (5). Thus, observe first that if C ∈ Cpm is
a p × m selection matrix, then CCT = Ip is the identity
matrix of size p × p. Moreover, CTC = diag(c) where
c ∈ {0, 1}m is a sampling vector containing p ones, located
in the places corresponding to the nodes to be sampled. Now,
define C̄α := diag(c)/α as the rescaled sampling vector
in matrix form, where α > 0 is the rescaling parameter.
Observe that if H is full rank, then the matrix (HTH) is
nonsingular [17]. Then, we can define the auxiliary matrices
B = H(HTH)−1HTRy ∈ R

m×m and Σ̄α := Ry + Σw −
αIm ∈ R

m×m.
With these definitions, the following proposition shows that

(5) is equivalent to a mixed-binary optimization problem, with
linear objective and linear matrix inequality (LMI) constraints.

Proposition 2 The solution of (5) is given by C∗ and H∗
s =

H∗
s(C

∗), where

H∗
s(C) = (HTH)−1HTRyC

T
(

C(Ry +Σw)C
T
)−1

(9)

and C∗ can be obtained as the solution to the problem

min
C∈Cpm

tr
[

Ry −BCT
(

C(Ry +Σw)C
T
)−1

CBT
]

. (10)

Furthermore, (10) is equivalent to

min
c∈{0,1}m,Y

tr [Y] (11)

s. t.C̄α = diag(c)/α , cT1m = p
[

Y −Ry +BC̄αB
T BC̄α

C̄αB
T Σ̄

−1

α + C̄α

]

� 0

where Y ∈ R
m×m is an auxiliary variable and α > 0 is any

scalar satisfying Σ̄α = (Ry +Σw − αIm) ≻ 0.

Proof: Due to the assumption of independence between x and
w, the objective function in (5) can be rewritten as

E
[

‖HHsC(y +w)− y‖2
2

]

(12)

= tr
[

Ry − 2HHsCRy +HHsC(Ry +Σw)C
THT

s H
T
]

.

Solving for Hs for a given fixed C yields (9). Matrix C ∈ Cpm
is full rank since it selects p distinct nodes, then C(Ry +
Σw)C

T has rank p and thus it is invertible [17]. Substituting
the expression for H∗

s(C) into (12), yields (10). The inverse
in the objective of (10) can be written as [12]

(C(Ry +Σw)C
T )−1 =

(

αIp − αIp +C(Ry +Σw)C
T
)−1

= α−1Ip − α−2C(Σ̄
−1

α + α−1CTC)−1CT , (13)

where α 6= 0 is a rescaling parameter, and we used the
Woodbury Matrix Identity [18]. Note that α has to be such
that Σ̄α = (Ry +Σw − αIm) is still invertible. Substituting
(13) into (10) and recalling that CTC = diag(c), we have that

min
c,C̄α

tr
[

Ry −BC̄αB
T +BC̄α

(

Σ̄
−1

α + C̄α

)−1

C̄αB
T
]

s. t. C̄α = diag(c)/α , cT1m = p , c ∈ {0, 1}m. (14)

Note that in (14) we optimize over a binary vector c ∈ R
m

with exactly p nonzero entries, instead of a binary matrix C ∈
Cpm. The p nonzero elements in c indicate the nodes to be
sampled. Problem (14) can be reformulated as

min
c∈{0,1}m,Y

tr [Y] (15)

s. t. Ry−BC̄αB
T +BC̄α

(

Σ̄
−1

α + C̄α

)−1

C̄αB
T � Y

C̄α =diag(c)/α , cT1m = p

where Y ∈ R
m×m, Y � 0 is an auxiliary optimization

variable. Using the Schur-complement lemma for positive
definite matrices [17, Thm. 7.7.6], problem (15) can be written
as (11). Hence, to complete the proof we need to show that

Σ̄
−1

α + C̄α � 0 so that the aforementioned lemma can
be invoked. To that end, suppose first that α < 0. Then
we have that Σ̄α ≻ 0 and C̄α = α−1diag(c) � 0, so

that Σ̄
−1

α + C̄α � 0 may not be positive definite. Suppose
now that α > 0. Then C̄α � 0 and there always exists
a sufficiently small positive α such that Σ̄α ≻ 0 since
Σw ≻ 0. This implies that if α is chosen such that α > 0
and Σ̄α = Ry + Σw − αIn ≻ 0 (which are the conditions
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Fig. 2. Estimated MSE over 500 realizations as a function of noise for
computing the GFT of a graph signal defined on an Erdős-Renyi graph of
m = 100 nodes that has bandwidth k = 10.

stated in the proposition), then Σ̄
−1

α + C̄α is positive definite
and problems (14) and (11) are equivalent. �

In words, the problem in (5) can be solved in two steps.
First the optimal sketch H∗

s is found as a function of C via
(9), and then this H∗

s(C) is substituted into (5) to formulate
the optimization in (11), which depends only on C. From an
algorithmic perspective, the order is reversed. First, we find
C by “solving” the binary optimization in either (10) or (11),
and then the resulting C∗ is substituted into (9) to find the
globally optimum H∗

s as H∗
s(C

∗). Different heuristics to tackle
the non-convex binary optimization over C are discussed next.

C. Heuristic approaches

Considering that C is binary, solving optimally the problems
in (10) or (11) requires

(

m
p

)

evaluations of the objective func-

tion. Since this may be computationally infeasible, this section
provides two alternatives to find an approximate solution.

The first approach is to capitalize on the equivalent formu-
lation in (11), relaxing the binary constraints as

c ∈ {0, 1}m ⇒
Relaxation

0m � c � 1m, (16)

so that (11) is transformed into a convex SDP problem that
can be solved efficiently using O((n + m)3.5) operations.
Once a solution to the relaxed problem is obtained, recovery
of a binary vector c can be carried out in two ways. One
alternative is to set the largest p elements to 1 and the rest
to 0; this deterministic strategy is called tresholding. Another
one normalizes the relaxed solution so that it adds up to
one, and regards it as a probability distribution over the
nodes. Then, the sampled nodes are drawn at random from
this distribution, see [19]. Although not pursued here, also
pertinent are formulations that penalize the objective with
‖c‖1 and leverage ℓ1-norm minimization advances to promote
sparsity on c.

The second approach relies on a greedy iterative scheme.
Specifically, instead of searching over all possible

(

m
p

)

sam-

pling configurations, we run p iterations and in each of them
we try nodes individually and retain the one yielding the best
solution. This way only (m)p = m(m−1) · · · (m−(p−1)) <
mp evaluations of the objective function (10) are required, so
that the overall computational cost of this approximation is
O((m)p). Greedy algorithms have well-documented merits for
sample selection, even for non-submodular objectives like the
one in (10).
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Fig. 3. Estimated MSE over 500 realizations as a function of the number of
samples for computing the GFT of a graph signal defined on an Erdős-Renyi
graph of m = 100 nodes that has bandwidth k = 10.

IV. NUMERICAL EXPERIMENTS

In this section we consider the problem of computing the
frequency coefficients of a graph signal. The numerical simu-
lations carried out illustrate the performance of the sketching
and sampling method described in this paper. We consider an
Erdős-Rényi graph with m = 100 nodes and link activation
probability of p = 0.2. We consider a k-bandlimited signal
y on this graph with k = 10 and we wish to estimate the
frequencies ỹk that generated this signal through the linear
model y = Vkỹk. Thus, by setting H = Vk as the linear
transform and x = ỹk, the method described here can be
used to calculate the frequency coefficients of the signal in an
efficient way. The signals are contaminated with white noise
w independent of y with covariance matrix Σw = σ2I where
σ2 is the noise power calculated as σ2 = σ2

coeff · ‖ỹk‖. The
different heuristics proposed in section III-C are compared to
three experimental design sampling methods (EDS) proposed
in [20], [21]. Specifically, we implement sampling with re-
placement with weights according to the: 1) ℓ∞ norm of the
rows of V; 2) ℓ1 norm of the rows of V; and 3) ℓ2 norm of
the rows of V. This latter case is the method proposed in [19].
In all cases, after obtaining the sampling matrix C, the sketch
H∗

s(C) is calculated as in (9) for each C.

For the first simulation, we consider that p = k = 10
samples were taken and we estimate the relative MSE for
varying levels of noise, from σ2

coeff = 10−5 to σ2

coeff = 10−3.
For each value of σ2

coeff, this MSE is obtained from averaging
the relative error over 500 realizations. As can be seen from
Fig. 2 the heuristic solutions to problem in Proposition 2 yield
better performance than traditional sampling methods when
computing the GFT of the graph signal efficiently. Similar
levels of performance are achieved when the level of noise is
fixed to σ2

coeff = 10−4 and the number of samples varies from
p = 6 to p = 24 as illustrated in Fig. 3.

V. CONCLUSIONS

We studied the problem of computing efficient approximate
solutions to linear inverse problems via sketching. The pro-
posed method exploits sampling theory of bandlimited graph
signals to minimize the online computational cost of obtaining
an approximate solution, by designing a matrix sketch that
operates only on a sampled version of the output. The joint
design of the sampling scheme and the matrix sketch is carried
out off line. The minimized online cost renders the proposed
method ideal for streaming applications. Since the resultant
problem was non-convex, different suboptimal schemes were
proposed and their performance compared in the context of
fast estimation of frequency components of a graph signal.
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