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a b s t r a c t 

Sampling of signals belonging to a low-dimensional subspace has well-documented merits for dimen- 

sionality reduction, limited memory storage, and online processing of streaming network data. When the 

subspace is known, these signals can be modeled as bandlimited graph signals. Most existing sampling 

methods are designed to minimize the error incurred when reconstructing the original signal from its 

samples. Oftentimes these parsimonious signals serve as inputs to computationally-intensive linear oper- 

ators. Hence, interest shifts from reconstructing the signal itself towards approximating the output of the 

prescribed linear operator efficiently. In this context, we propose a novel sampling scheme that leverages 

graph signal processing, exploiting the low-dimensional (bandlimited) structure of the input as well as 

the transformation whose output we wish to approximate. We formulate problems to jointly optimize 

sample selection and a sketch of the target linear transformation, so when the latter is applied to the 

sampled input signal the result is close to the desired output. Similar sketching as sampling ideas are 

also shown effective in the context of linear inverse problems. Because these designs are carried out off

line, the resulting sampling plus reduced-complexity processing pipeline is particularly useful for data 

that are acquired or processed in a sequential fashion, where the linear operator has to be applied fast 

and repeatedly to successive inputs or response signals. Numerical tests showing the effectiveness of the 

proposed algorithms include classification of handwritten digits from as few as 20 out of 784 pixels in 

the input images and selection of sensors from a network deployed to carry out a distributed parameter 

estimation task. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

The complexity of modern datasets calls for new tools capa-

le of analyzing and processing signals supported on irregular do-

ains. A key principle to achieve this goal is to explicitly account

or the intrinsic structure of the domain where the data resides.

his is oftentimes achieved through a parsimonious description of

he data, for instance modeling them as belonging to a known

or otherwise learnt) lower-dimensional subspace. Moreover, these
� Work in this paper is supported by NSF CCF 1750428 , NSF ECCS 1809356 , 

SF CCF 1717120 , ARO W911NF1710438 and Spanish MINECO grants No TEC2013- 

1604-R and TEC2016-75361-R . 
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ata can be further processed through a linear transform to esti-

ate a quantity of interest [3,4] , or to obtain an alternative, more

seful representation [5,6] among other tasks [7,8] . Linear models

re ubiquitous in science and engineering, due in part to their gen-

rality, conceptual simplicity, and mathematical tractability. Along

ith heterogeneity and lack of regularity, data are increasingly

igh dimensional and this curse of dimensionality not only raises

tatistical challenges, but also major computational hurdles even

or linear models [9] . In particular, these limiting factors can hinder

rocessing of streaming data, where say a massive linear operator

as to be repeatedly and efficiently applied to a sequence of input

ignals [10] . These Big Data challenges motivated a recent body of

ork collectively addressing so-termed sketching problems [11–13] ,

hich seek computationally-efficient solutions to a subset of (typi-

ally inverse) linear problems. The basic idea is to draw a sketch of

he linear model such that the resulting linear transform is lower

imensional, while still offering quantifiable approximation error

uarantees. To this end, a fat random projection matrix is designed
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to pre-multiply and reduce the dimensionality of the linear opera-

tor matrix, in such way that the resulting matrix sketch still cap-

tures the quintessential structure of the model. The input vector

has to be adapted to the sketched operator as well, and to that

end the same random projections are applied to the signal in a

way often agnostic to the input statistics. 

Although random projection methods offer an elegant dimen-

sionality reduction alternative for several Big Data problems, they

face some shortcomings: i) sketching each new input signal en-

tails a nontrivial computational cost, which can be a bottleneck

in streaming applications; ii) the design of the random projection

matrix does not take into account any a priori information on the

input (known subspace); and iii) the guarantees offered are proba-

bilistic. Alternatively one can think of reducing complexity by sim-

ply retaining a few samples of each input. A signal belonging to

a known subspace can be modeled as a bandlimited graph signal

[14,15] . In the context of graph signal processing (GSP), sampling

of bandlimited graph signals has been thoroughly studied [14,15] ,

giving rise to several noteworthy sampling schemes [16–19] . Lever-

aging these advances along with the concept of stationarity [20–

22] offers novel insights to design sampling patterns accounting

for the signal statistics, that can be applied at negligible online

computational cost to a stream of inputs. However, most existing

sampling methods are designed with the objective of reconstruct-

ing the original graph signal, and do not account for subsequent

processing the signal may undergo; see [23–25] for a few recent

exceptions. 

In this sketching context and towards reducing the online com-

putational cost of obtaining the solution to a linear problem, we

leverage GSP results and propose a novel sampling scheme for sig-

nals that belong to a known low-dimensional subspace. Different

from most existing sampling approaches, our design explicitly ac-

counts for the transformation whose output we wish to approxi-

mate. By exploiting the stationary nature of the sequence of inputs,

we shift the computational burden to the off-line phase where

both the sampling pattern and the sketch of the linear transfor-

mation are designed. After doing this only once, the online phase

merely consists of repeatedly selecting the signal values dictated

by the sampling pattern and processing this stream of samples us-

ing the sketch of the linear transformation. 

In Section 2 we introduce the mathematical formulation of the

direct and inverse linear sketching problems as well as the as-

sumptions on the input signals. Then, we proceed to present the

solutions for the direct and inverse problems in Section 3 . In both

cases, we obtain first a closed-form expression for the optimal re-

duced linear transform as a function of the selected samples of the

signal. Then we use that expression to obtain an equivalent opti-

mization problem on the selection of samples, that turns out to be

a Semidefinite Program (SDP) modulo binary constraints that arise

naturally from the sample (node) selection problem. Section 4 dis-

cusses a number of heuristics to obtain tractable solutions to the

binary optimization. In Section 5 we apply this framework to the

problem of estimating the graph frequency components of a graph

signal in a fast and efficient fashion, as well as to the problems of

selecting sensors for parameter estimation, classifying handwritten

digits and attributing texts to their corresponding author. Finally,

conclusions are drawn in Section 6 . 

Notation Generically, the entries of a matrix X and a (column)

vector x will be denoted as X ij and x i . The notation 

T and 

H stands

for transpose and transpose conjugate, respectively, and the super-

script † denotes pseudoinverse; 0 is the all-zero vector and 1 is the

all-one vector; and the � 0 pseudo norm ‖ X ‖ 0 equals the number

of nonzero entries in X . For a vector x , diag (x ) is a diagonal ma-

trix with the ( i, i )th entry equal to x i ; when applied to a matrix,

diag (X ) is a vector with the diagonal elements of X . For vectors

x , y ∈ R 

n we adopt the partial ordering � defined with respect to
he positive orthant R 

n + by which a x �y if and only if x i ≤ y i for all

 = 1 , . . . , n . For symmetric matrices X , Y ∈ R 

n ×n , the partial order-

ng � is adopted with respect to the semidefinite cone, by which

 �Y if and only if Y − X is positive semi-definite. 

. Sketching of bandlimited signals 

Our results draw inspiration from the existing literature for

ampling of bandlimited graph signals. So we start our discus-

ion in Section 2.1 by defining sampling in the GSP context, and

xplaining how these ideas extend to more general signals that

elong to lower-dimensional subspaces. Then in Sections 2.2 and

.3 we present, respectively, the direct and inverse formulation of

ur sketching as sampling problems. GSP applications and moti-

ating examples that involve linear processing of network data are

resented in Section 5 . 

.1. Graph signal processing 

Let G = (V, E, W) be a graph described by a set of n nodes V, a

et E of edges ( i, j ) and a weight function W : E → R that assigns

eights to the directed edges. Associated with the graph we have

 shift operator S ∈ R 

n ×n which we define as a matrix sharing the

parsity pattern of the graph so that [ S ] i, j = 0 for all i � = j such

hat ( j, i ) / ∈ E [26] . The shift operator is assumed normal so that

here exists a matrix of eigenvectors V = [ v 1 , . . . , v n ] and a diagonal

atrix � = diag (λ1 , . . . , λn ) such that 

 = V �V 

H . (1)

e consider realizations x = [ x 1 , . . . , x n ] 
T ∈ R 

n of a random signal

ith zero mean E [ x ] = 0 and covariance matrix R x := E [ xx T ] . The

andom signal x is interpreted as being supported on G in the

ense that components x i of x are associated with node i of G. The

raph is intended as a descriptor of the relationship between com-

onents of the signal x . The signal x is said to be stationary on the

raph if the eigenvectors of the shift operator S and the eigenvec-

ors of the covariance matrix R x are the same [20–22] . It follows

hat there exists a diagonal matrix ˜ R x 	 0 that allows us to write

 x := E [ xx 

T ] = V ̃

 R x V 

H . (2)

he diagonal entry [ ̃  R x ] ii = ̃  r i is the eigenvalue associated with

igenvector v i . Without loss of generality we assume eigenvalues

re ordered so that ˜ r i ≥ ˜ r j for i ≤ j . Crucially, we assume that

xactly k ≤ n eigenvalues are nonzero. This implies that if we

efine the subspace projection 

˜ x := V 

H x , its last n − k elements

re almost surely zero. Therefore, upon defining the vector ˜ x k :=
 ̃ x 1 , . . . , ̃  x k ] 

T ∈ R 

k containing the first k elements of ˜ x it holds with

robability 1 that 

˜ 
 := V 

H x = [ ̃ x k ; 0 n −k ] 
T . (3)

tationary graph signals can arise, e.g., when considering diffusion

rocesses on the graph and they will often have spectral profiles

ith a few dominant eigenvalues [22,27,28] . Stationary graph sig-

als are important in this paper because they allow for interesting

nterpretations and natural connections to the sampling of ban-

limited graph signals [16–19,23–25] – see Section 3 . That said,

echniques and results apply for as long as (3) holds whether there

s a graph that supports the signal or not. 

Observe for future reference that since V ̃

 x = VV 

H x = x we can

ndo the projection with multiplication by the eigenvector matrix

 . This can be simplified because, as per (3) , only the first k entries

f ˜ x are of interest. Define then the (tall) matrix V k = [ v 1 , . . . , v k ] ∈
 

n ×k containing the first k eigenvectors of R x . With this definition

e can write ˜ x k = V 

H 
k 

x and 

 = V k ̃  x k = V k (V 

H x ) . (4)
k 
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Fig. 1. Direct sketching problem. We observe realizations x + w and want to estimate the output y = Hx with a reduced complexity pipeline. (Left) We sample the incoming 

observation x s = C (x + w ) , and multiply it by the corresponding columns H s = HC T [cf. (6) ]; the appropriate samples for all incoming observations are determined by (7) . 

(Right) Since the multiplication by H s is the same for all incoming x s [cf. (8) ] we can design, off-line, an arbitrary matrix H s that improves the performance, as per (9) . 
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O  
hen a process is such that realizations lie in a k -dimensional

ubspace as specified in (3) we say that it is k -bandlimited or sim-

ly bandlimited if k is understood. We emphasize that in this defi-

ition V is an arbitrary orthonormal matrix which need not be as-

ociated with a shift operator as in (1) – notwithstanding the fact

hat it will be associated with a graph in some applications. Our

oal here is to use this property to sketch the computation of lin-

ar transformations of x or to sketch the solution of linear systems

f equations involving x as we explain in Sections 2.2 and 2.3 . 

.2. Direct sketching 

The direct sketching problem is illustrated in Fig. 1 . Consider

 noise vector w ∈ R 

n with zero mean E [ w ] = 0 and covariance

atrix R w 

:= E [ ww 

T ] . We observe realizations x + w and want to

stimate the matrix-vector product y = Hx for a matrix H ∈ R 

m ×n .

stimating this product requires O ( mn ) operations. The motivation

or sketching algorithms is to devise alternative computation meth-

ds requiring a (much) smaller number of operations in settings

here multiplication by the matrix H is to be carried out for a

arge number of realizations x . In this paper we leverage the ban-

limitedness of x to design sampling algorithms to achieve this

oal. 

Formally, we define binary selection matrices C of dimension

 × n as those that belong to the set 

 := { C ∈ { 0 , 1 } p×n : C1 = 1 , C 

T 1 � 1 } . (5) 

he restrictions in (5) are such that each row of C contains exactly

ne nonzero element and that no column of C contains more than

ne nonzero entry. Thus, the product vector x s := Cx ∈ R 

p samples

selects) p elements of x that we use to estimate the product y =
x . In doing so we not only need to select entries of x but columns

f H . This is achieved by computing the product H s := HC 

T ∈ R 

m ×p 

nd we therefore choose to estimate the product y = Hx with the

roduct 

ˆ 
 := H s x s := HC 

T C (x + w ) . (6) 

mplementing (6) requires O ( mp ) operations. Adopting the mean

quared error (MSE) as a figure of merit, the optimal sampling ma-

rix C ∈ C is the solution to the minimum (M)MSE problem com-

aring ˆ y in (6) to the desired response y = Hx , namely 

 

∗ := argmin 

C ∈C 
E 

[ ∥∥HC 

T C (x + w ) − Hx ) 
∥∥2 

2 

] 
. (7) 

bserve that selection matrices C ∈ C have rank p and satisfy CC 

T =
 , the p -dimensional identity matrix. It is also readily verified that

 

T C = diag (c ) with the vector c ∈ {0, 1} n having entries c i = 1 if

nd only if the i th column of C contains a nonzero entry. Thus, the

roduct C 

T C is a diagonal matrix in which the i th entry is nonzero

f and only if the i th entry of x is selected in the sampled vector

 s := Cx . In particular, there is a bijective correspondence between

he matrix C and the vector c modulo an arbitrary ordering of the

ows of C . In turn, this implies that choosing C ∈ C in (7) is equiv-

lent to choosing c ∈ {0, 1} n with c T 1 = p. We take advantage of

his fact in the algorithmic developments in Sections 3 and 4 . 
In (6) , the sampled signal x s is multiplied by the matrix

 s := HC 

T . The restriction to have the matrix H s be a sampled ver-

ion of H is unnecessary in cases where it is possible to compute

n arbitrary matrix off line. This motivates an alternative formula-

ion where we estimate y as 

ˆ 
 := H s x s := H s C (x + w ) . (8) 

he matrices H s and C can now be jointly designed as the solution

o the MMSE optimization problem 

 C 

∗, H 

∗
s } := argmin 

C ∈C, H s 

E 

[ ∥∥H s C (x + w ) − Hx 

∥∥2 

2 

] 
. (9)

o differentiate (7) from (9) we refer to the former as operator

ketching since it relies on sampling the operator H that oper-

tes on the vector x . In (8) we refer to H s as the sketching ma-

rix which, as per (9) , is jointly chosen with the sampling matrix

 . In either case we expect that sampling p ≈ k entries of x should

ead to good approximations of y given the assumption that x is

 -bandlimited. We will see that p = k suffices in the absence of

oise ( Proposition 1 ) and that making p > k helps to reduce the

ffects of noise otherwise ( Proposition 2 ). We point out that solv-

ng (7) or (9) is intractable because of their nonconvex objectives

nd the binary nature of the matrices C ∈ C. Heuristics for approx-

mate solution with manageable computational cost are presented

n Section 4 . While tractable, these heuristics still entail a signifi-

ant computation cost. This is justified when solving a large num-

er of estimation tasks. See Section 5 for concrete examples. 

.3. Inverse sketching 

The inverse sketching problem seeks to solve a least squares es-

imation problem with reduced computational cost. As in the case

f the direct sketching problem we exploit the bandlimitedness of

 to propose the sampling schemes illustrated in Fig. 2 . Formally,

e consider the system x = H 

T y and want to estimate y from ob-

ervations of the form x + w . As in Section 2.2 , the signal x ∈ R 

n 

s k -bandlimited as described in (2) - (4) and the noise w ∈ R 

n is

ero mean with covariance R w 

:= E [ ww 

T ] . The signal of interest

s y ∈ R 

m and the matrix that relates x to y is H ∈ R 

m ×n . The solu-

ion to this least squares problem is to make ˆ y = (HH 

T ) −1 H (x + w )

hich requires O ( mn ) operations if the matrix A LS = (HH 

T ) −1 H is

omputed off line or O ( m 

2 n ) operations if the matrix HH 

T is com-

uted online. 

To reduce the cost of computing the least squares estimate we

onsider sampling matrices C ∈ C as defined in (5) . Thus, the sam-

led vector x s := C (x + w ) is one that selects p entries of the ob-

ervation x + w . Sampling results in a reduced observation model

nd leads to the least square estimate 

ˆ 
 := H s x s := (HC 

T CH 

T ) −1 HC 

T C (x + w ) (10) 

here we have defined the estimation matrix H s :=
(HC 

T CH 

T ) −1 HC 

T . The computational cost of implementing (10) is

 ( mp ) operations if the matrix H s is computed off line or O ( m 

2 p )
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Fig. 2. Inverse sketching problem. Reduce the computational cost of solving a least squares estimation problem x = H 

T y . (Left) Given observations of x + w , we sample them 

x s = C (x + w ) and solve the linear regression problem of the reduced system Cx = CH 

T y by computing the least squares solution H s (H , C ) = (HC T CH 

T ) −1 HC T and multiplying 

it by the sampled observations [cf. (10) ]; the optimal samples C are designed by solving (11) . (Right) Likewise, instead of solving the least squares problem on the reduced 

matrix, we can design an entirely new smaller matrix H s that acts on the sampled observations [cf. (12) ], jointly designing the sampling pattern C and the sketch H s as per 

(13) . 
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operations if the matrix H s is computed online. We seek the

optimal sampling matrix that minimizes the MSE 

C 

∗ := argmin 

C ∈C 
E 

[ ∥∥H 

T (HC 

T CH 

T ) −1 HC 

T C (x + w ) − x 

∥∥2 

2 

] 
. (11)

As in (7) , restricting H s in (10) to be a sampled version of H is

unnecessary if H s is to be computed off line. In such case we focus

on estimates of the form 

ˆ y := H s x s := H s C (x + w ) (12)

where the matrix H s ∈ R 

m ×p is an arbitrary matrix that we select

jointly with C to minimize the MSE, 

{ C 

∗, H 

∗
s } := argmin 

C ∈C, H s 

E 

[ ∥∥H 

T H s C (x + w ) − x 

∥∥2 

2 

] 
. (13)

We refer to (10) - (11) as the inverse operator sketching prob-

lem and to (12) - (13) as the inverse sketching problem. They

differ in that the matrix H s is arbitrary and jointly optimized

with C in (13) whereas it is restricted to be of the form H s :=
(HC 

T CH 

T ) −1 HC 

T in (11) . Inverse sketching problems are studied

in Section 3 . We will see that in the absence of noise we can

choose p = k for k -bandlimited signals to sketch estimates that are

as good as least square estimates ( Proposition 1 ). In the presence

of noise choosing p > k helps in reducing noise ( Proposition 2 ).

The computation of optimal sampling matrices C and optimal esti-

mation matrices H s is intractable due to nonconvex objectives and

binary constraints in the definition of the set C in (5) . Heuristics

for its solution are discussed in Section 4 . As in the case of direct

sketching, these heuristics still entail significant computation cost

that is justifiable when solving a stream of estimation tasks. See

Section 5 for concrete examples. 

Remark 1 (Sketching and sampling) . This paper studies sketching

as a sampling problem to reduce the computational cost of com-

puting the linear transformations of a vector x . In its original def-

inition sketching is not necessarily restricted to sampling, is con-

cerned with the inverse problem only, and does not consider the

joint design of sampling and estimation matrices [12,13] . Sketch-

ing typically refers to the problem in (10) - (11) where the matrix

C is not necessarily restricted to be a sampling matrix – although

it often is – but any matrix such that the product C (x + w ) can

be computed with low cost. Our work differs in that we are try-

ing to exploit a bandlimited model for the signal x to design op-

timal sampling matrices C along with, possibly, optimal computa-

tion matrices H s . Our work is also different in that we consider

not only the inverse sketching problem of Section 2.3 but also the

direct sketching problem of Section 2.2 . 

3. Direct and inverse sketching as signal sampling 

In this section we delve into the solutions of the direct and in-

verse sketching problems stated in Section 2 . We start with the

simple case where the observations are noise free ( Section 3.1 ).

This will be useful to gain insights on the solutions to the noisy
ormulations studied in Section 3.2 , and to establish links with

he literature of sampling graph signals. Collectively, these results

ill also inform heuristic approaches to approximate the output of

he linear transform in the direct sketching problem, and the least

quares estimate in the inverse sketching formulation ( Section 4 ).

e consider operator sketching constraints in Section 3.3 . 

.1. Noise-free observations 

Since in this noiseless scenario we have that w = 0 (cf.

igs. 1 and 2 ), then the desired output for the direct sketch-

ng problem is y = Hx and the reduced-complexity approxima-

ion is given by ˆ y = H s Cx . In the inverse problem we instead have

 = H 

T y , but assuming H is full rank then we can exactly in-

ert the aforementioned relationship as y := A LS x = (HH 

T ) −1 Hx .

ccordingly, in the absence of noise we can equivalently view the

nverse problem as a direct one whereby H = A LS . 

Next, we formalize the intuitive result that asserts that perfect

stimation, namely that ˆ y = y , in the noiseless case is possible if

 is a k -bandlimited signal [cf. (3) ] and the number of samples is

 ≥ k . To aid readability, the result is stated as a proposition. 

roposition 1. Let x ∈ R 

n be a k-bandlimited signal and let H ∈
 

m ×n be a linear transformation. Let H s ∈ R 

m ×p be a reduced-input

imensionality sketch of H , p ≤ n and C ∈ C be a selection matrix. In

he absence of noise ( w = 0 ), if p = k and C 

∗ is designed such that

ank { C 

∗V k } = p = k, then ˆ y = H 

∗
s C 

∗x = y provided that the sketching

atrix H 

∗
s is given by 

 

∗
s = 

{
HV k (C 

∗V k ) 
−1 , Direct sketching , 

A LS V k (C 

∗V k ) 
−1 , Inverse sketching . 

(14)

The result follows immediately from e.g., the literature of sam-

ling and reconstruction of bandlimited graph signals via selection

ampling [16,18] . Indeed, if C 

∗ is chosen such that rank { C 

∗V k } =
p = k, then one can perfectly reconstruct x from its samples

 s := C 

∗x using the interpolation formula 

 = V k (C 

∗V k ) 
−1 x s . (15)

he sketches H 

∗
s in (14) follow after plugging (15) in y = Hx (or

 = A LS x for the inverse problem), and making the necessary iden-

ifications in 

ˆ y = H 

∗
s C 

∗x . Notice that forming the inverse-mapping

ketch H 

∗
s involves the (costly) computation of (HH 

T ) −1 within A LS ,

ut this is carried out entirely off line. 

In the absence of noise the design of C decouples from that of

 s . Towards designing C 

∗, the O ( p 3 ) complexity techniques pro-

osed in [16] for finding a subset of p rows of V k that are linearly

ndependent can be used here. Other existing methods to deter-

ine the most informative samples are relevant as well [24] . 

.2. Noisy observations 

Now consider the general setup described in Sections 2.2 and

.3 , where the noise vector signal w ∈ R 

n is random and inde-

endent of x , with E [ w ] = 0 , R w 

= E [ ww 

T ] ∈ R 

n ×n and R w 

�0 . For



F. Gama, A.G. Marques and G. Mateos et al. / Signal Processing 169 (2020) 107404 5 

t  

H  

p  

t  

t  

f

 

g  

o  

f  

d  

t  

T  

t  

m

P  

t  

H

H

 

C

m

 

o

m  

 

p  

i  

R  

s  

f  

T  

o  

g  

s  

i

x  

B  

t  

o  

(  

s  

a  

i  

d  

E  

o  

w  

s  

S  

l

 

o  

i  

R  

H  

t  

n  

t  

a  

l  

(  

p  

s  

e  

s  

l  

p  

b  

o

 

t  

w  

e

P  

d  

P

c

w  

a

 

f[

 

t  

l  

c  

t  

C

R  

α
h  

n  

n  

l  

(

a

3

 

i

w  

i  

w  

A  

s  

m  

f  

t  

c  

p  
he direct sketching formulation, we have y = H (x + w ) and 

ˆ y =
 s C (x + w ) (see Fig. 1 ). In the inverse problem we want to ap-

roximate the least squares estimate A LS (x + w ) of y , with an es-

imate of the form 

ˆ y = H s C (x + w ) as depicted in Fig. 2 . Naturally,

he joint design of H s and C to minimize (9) or (13) must account

or the noise statistics. 

Said design will be addressed as a two-stage optimization that

uarantees global optimality and proceeds in three steps. First, the

ptimal sketch H s is expressed as a function of C . Second, such a

unction is substituted into the MMSE cost to yield a problem that

epends only on C . Third, the optimal H 

∗
s is found using the func-

ion in step one and the optimal value of C 

∗ found in the step two.

he result of this process is summarized in the following proposi-

ion; see the ensuing discussion and Appendix A.1 for a short for-

al proof. 

roposition 2. Consider the direct and inverse sketching problems in

he presence of noise [cf. (9) or (13)] . Their solutions are C 

∗ and H 

∗
s =

 

∗
s (C 

∗) , where 

 

∗
s (C ) = 

{ 

HR x C 

T 
(
C (R x + R w 

) C 

T 
)−1 

, Direct sketching , 

A LS R x C 

T 
(
C (R x + R w 

) C 

T 
)−1 

, Inverse sketching . 

(16) 

For the direct sketching problem (9) , the optimal sampling matrix

 

∗ can be obtained as the solution to the problem 

in 

C ∈C 
tr 

[ 
HR x H 

T − HR x C 

T 
(
C (R x + R w 

) C 

T 
)−1 

CR x H 

T 
] 

(17) 

Likewise, for the inverse sketching problem (13) , C 

∗ is the solution

f 

in 

C ∈C 
tr 
[
R x − H 

T A LS R x C 

T 
(
C (R x + R w 

) C 

T 
)−1 

CR x A 

T 
LS H 

]
. (18)

For the sake of argument, consider now the direct sketching

roblem. The optimal sketch H 

∗
s in (16) is tantamount to H act-

ng on a preprocessed version of x , using the matrix R x C 

T (C (R x +
 w 

) C 

T ) −1 . What this precoding entails is, essentially, choosing the

amples of x with the optimal tradeoff between the signal in the

actor R x C 

T and the noise in the inverse term (C (R x + R w 

) C 

T ) −1 .

his is also natural from elementary results in linear MMSE the-

ry [29] . Specifically, consider forming the MMSE estimate of x

iven observations x s = Cx s + w s , where w s := Cw is a zero-mean

ampled noise with covariance matrix R w s = CR w 

C 

T . Said estimator

s given by 

ˆ 
 = R x C 

T (C (R x + R w 

) C 

T ) −1 x s . (19)

ecause linear MMSE estimators are preserved through linear

ransformations such as y = Hx , then the sought MMSE estimator

f the response signal is ˆ y = H ̂

 x . Hence, the expression for H 

∗
s in

16) follows. Once more, the same argument holds for the inverse

ketching problem after replacing H with the least squares oper-

tor A LS = (HH 

T ) −1 H . Moreover, note that (18) stems from min-

mizing E [ ‖ x − H 

T ˆ y ‖ 2 
2 
] as formulated in (13) , which is the stan-

ard objective function in linear regression problems. Minimizing

 [ ‖ y − ˆ y ‖ 2 2 ] for the inverse problem is also a possibility, and one

btains solutions that closely resemble the direct problem. Here

e opt for the former least squares estimator defined in (13) ,

ince it is the one considered in the sketching literature [13] ; see

ection 5 for extensive performance comparisons against this base-

ine. 

Proposition 2 confirms that the optimal selection matrix C 

∗ is

btained by solving (17) which, after leveraging the expression

n (16) , only requires knowledge of the given matrices H, R x and

 w 

. The optimal sketch is then found substituting C 

∗ into (16) as

 

∗
s = H 

∗
s (C 

∗) , a step incurring O (mnp + p 3 ) complexity. Naturally,

his two-step solution procedure resulting in { C 

∗, H 

∗
s (C 

∗) } entails
o loss of optimality [30, Section 4.1.3] , while effectively reducing

he dimensionality of the optimization problem. Instead of solving

 problem with p(m + n ) variables [cf. (9) ], we first solve a prob-

em with pn variables [cf. (17) ] and, then, use the closed-form in

16) for the remaining pm unknowns. The practicality of the ap-

roach relies on having a closed-form for H 

∗
s (C ) . While this is pos-

ible for the quadratic cost in (9) , it can be challenging for other

rror metrics or nonlinear signal models. In those cases, schemes

uch as alternating minimization, which solves a sequence of prob-

ems of size pm (finding the optimal H s given the previous C ) and

n (finding the optimal C given the previous H s ), can be a feasi-

le way to bypass the (higher dimensional and non-convex) joint

ptimization. 

The next proposition establishes that (17) and (18) , which yield

he optimal C 

∗, are equivalent to binary optimization problems

ith a linear objective function and subject to linear matrix in-

quality (LMI) constraints. 

roposition 3. Let c ∈ {0, 1} n be the binary vector that contains the

iagonal elements of C 

T C , i.e. C 

T C = diag (c ) . Then, in the context of

roposition 2 , the optimization problem (17) over C is equivalent to 

min 

 ∈{ 0 , 1 } n , 
Y , ̄C α

tr [ Y ] (20) 

s . t . C̄ α = α−1 diag (c ) c T 1 n = p [
Y − HR x H 

T + HR x ̄C αR x H 

T HR x ̄C α

C̄ αR x H 

T R̄ 

−1 
α + C̄ α

]
	 0 

here R̄ α = (R x + R w 

− αI n ) , C̄ α and Y ∈ R 

m ×m are auxiliary vari-

bles and α > 0 is any scalar satisfying R̄ α � 0 . 

Similarly, (18) is equivalent to a problem identical to (20) except

or the LMI constraint that should be replaced with 

Y − R x + H 

T A LS R x ̄C αR x A 

T 
LS H H 

T A LS R x ̄C α

C̄ αR x A 

T 
LS H R̄ 

−1 
α + C̄ α

]
	 0 . (21) 

See Appendix A.2 for a proof. Problem (20) is an SDP optimiza-

ion modulo the binary constraints on vector c , which can be re-

axed to yield a convex optimization problem (see Remark 2 for

omments on the value of α). Once the relaxed problem is solved,

he solution can be binarized again to recover a feasible solution

 ∈ C. This convex relaxation procedure is detailed in Section 4 . 

emark 2 (Numerical considerations) . While there always exists

> 0 such that R̄ α = (R x + R w 

− αI n ) is invertible, this value of α
as to be smaller than the smallest eigenvalue of R x + R w 

. In low-

oise scenarios this worsens the condition number of R̄ α, creating

umerical instabilities when inverting said matrix (especially for

arge graphs). Alternative heuristic solutions to problems (17) and

20) (and their counterparts for the inverse sketching formulation) 

re provided in Section 4.1 . 

.3. Operator sketching 

As explained in Sections 2.2 and 2.3 , there may be setups where

t is costly (or even infeasible) to freely design the new operator H s 

ith entries that do not resemble those in H . This can be the case

n distributed setups where the values of H cannot be adapted, or

hen the calculation (or storage) of the optimal H s is impossible.

n alternative to overcome this challenge consists in forming the

ketch by sampling p columns of H , i.e., setting H s = HC 

T and opti-

izing for C in the sense of (7) or (11) . Although from an MSE per-

ormance point of view such an operator sketching design is subop-

imal [cf. (16) ], numerical tests carried out in Section 5 suggest it

an sometimes yield competitive performance. The optimal sam-

ling strategy for sketches within this restricted class is given in
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Table 1 

Computational complexity of the heuristic methods proposed in Section 4 to solve 

optimization problems in Section 3 : (i) Number of operations required; (ii) Time (in 

seconds) required to solve the problem in Section 5.4 , see Fig. 7 . Also, for the sake 

of comparison, we have included a row containing the cost of the optimal solution, 

meaning the cost of solving the optimization problems exactly with no relaxation 

on the binary constraints. 

Method Number of operations Time [s] 

Optimal solution O 

((
n 

p 

))
> 10 6 

Convex relaxation (SDP) O 
(
(m + n ) 3 . 5 

)
25.29 

Noise-blind heuristic O ( n log n + nm ) 0.46 

Noise-aware heuristic O 
(
n 3 + nm 

)
21.88 

Greedy approach O 
(
mn 2 p 2 + np 4 

)
174.38 
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the following proposition; see Appendix A.3 for a sketch of the

proof. 

Proposition 4. Let H s = HC 

T be constructed from a subset of p

columns of H . Then, the optimal sampling matrix C 

∗ defined in (7) can

be recovered from the diagonal elements c ∗ of (C 

∗) T C 

∗ = diag (c ∗) ,
where c ∗ is the solution to the following problem 

min 

c ∈{ 0 , 1 } n , 
Y , ̄C 

tr [ Y ] (22)

s . t . C̄ = diag (c ) c T 1 n = p [
Y − HR x H 

T + 2 H ̄C R x H 

T H ̄C 

C̄ H 

T (R x + R w 

) −1 

]
	 0 . 

Likewise, the optimal sampling matrix C 

∗ defined in (11) can be

recovered from the solution to a problem identical to (22) except for

the LMI constraint that should be replaced with [
Y − R x + 2 H 

T H ̄C R x H 

T H ̄C 

C̄ H 

T H (R x + R w 

) −1 

]
	 0 . (23)

In closing, we reiterate that solving the optimization problems

stated in Propositions 3 and 4 is challenging because of the binary

decision variables c ∈ {0, 1} n . Heuristics for approximate solution

with manageable computational cost are discussed next. 

4. Heuristic approaches 

In this section, several heuristics are outlined for tackling the

linear sketching problems described so far. The rationale is that of-

tentimes the problems posed in Section 3 can be intractable, ill-

conditioned, or, just too computationally expensive even if carried

out off line. In fact, the optimal solution C 

∗ to (17) or (18) can be

obtained by evaluating the objective function in each one of the(
n 
p 

)
possible solutions. Table 1 lists the complexity of each of the

proposed methods. Additionally, the time (in seconds) taken to run

the simulation related to Fig. 7 is also included in the table for

comparison. In all cases, after obtaining C 

∗, forming the optimal

value of H 

∗
s in (16) entails O (mnp + p 3 ) operations. 

4.1. Convex relaxation (SDP) 

Recall that the main difficulty when solving the optimization

problems in Propositions 3 and 4 are the binary constraints that

render the problems non-convex and, in fact, NP-hard. A standard

alternative to overcome this difficulty is to relax the binary con-

straint c ∈ {0, 1} n on the sampling vector as c ∈ [0, 1] n . This

way, the optimization problem (20) , or alternatively, with LMI con-

straints (21) , becomes convex and can be solved with polynomial

complexity in O ((m + n ) 3 . 5 ) operations as per the resulting SDP

formulation [30] . 
Once a solution to the relaxed problem is obtained, two ways of

ecovering a binary vector c are considered. The first one consists

n computing p c = c / ‖ c ‖ 1 , which can be viewed as a probability

istribution over the samples (SDP-Random). These samples are

hen drawn at random from this distribution; see [31] . This should

e done once, off line, and the same selection matrix used for ev-

ry incoming input (or output). The second one is a determinis-

ic method referred to as thresholding (SDP-Thresh.), which simply

onsists in setting the largest p elements to 1 and the rest to 0.

ince the elements in c are non-negative, note that the constraint

 

T 1 n = p considered in the optimal sampling formulation can be

quivalently rewritten as ‖ c ‖ 1 = p. Using a dual approach, this im-

lies that the objective of the optimization problem is implicitly

ugmented with an � 1 -norm penalty λ‖ c ‖ 1 , whose regularization

arameter λ corresponds to the associated Lagrange multiplier. In

ther words, the formulation is implicitly promoting sparse solu-

ions. The adopted thresholding is a natural way to approximate

he sparsest � 0 -(pseudo) norm solution with its convex � 1 -norm

urrogate. An alternative formulation of the convex optimization

roblem can thus be obtained by replacing the constraint c T 1 n = p

ith a penalty λ‖ c ‖ 1 added to the objective, with a hyperparam-

ter λ. While this approach is popular, for the simulations car-

ied out in Section 5 we opted to keep the constraint c T 1 n = p to

ave explicit control over the number of selected samples p , and

o avoid tuning an extra hyperparameter λ. 

.2. Noise-aware heuristic (NAH) 

A heuristic that is less computationally costly than the SDP in

ection 4.1 can be obtained as follows. Consider for instance the

bjective function of the direct problem (17) 

r 

[ 
HR x H 

T − HR x C 

T 
(
C (R x + R w 

) C 

T 
)−1 

CR x H 

T 
] 

(24)

here we note that the noise imposes a tradeoff in the selec-

ion of samples. More precisely, while some samples are very im-

ortant in contributing to the transformed signal, as determined

y the rows of R x H 

T , those same samples might provide very

oisy measurements, as determined by the corresponding sub-

atrix of (R x + R w 

) . Taking this tradeoff into account, the pro-

osed noise-aware heuristic (NAH) consists of selecting the rows

f (R x + R w 

) −1 / 2 R x H 

T with highest � 2 norm. This polynomial-time

euristic entails O ( n 3 ) operations to compute the inverse square

oot of (R x + R w 

) [32] and O ( mn ) to compute its multiplication

ith R x H 

T as well as the norm. Note that (R x + R w 

) −1 / 2 R x H 

T re-

embles a signal-to-noise ratio (SNR), and thus the NAH is attempt-

ng to maximize this measure of SNR. 

.3. Noise-blind heuristic (NBH) 

Another heuristic that incurs an even lower computational cost

an also be obtained by inspection of (17) . Recall that the complex-

ty of the NAH is dominated by the computation of (R x + R w 

) −1 / 2 .

n even faster heuristic solution can thus be obtained by sim-

ly ignoring this term, which accounted for the noise present in

he chosen samples. Accordingly, in what we termed the noise-

lind heuristic (NBH) we simply select the p rows of R x H 

T that

ave maximum � 2 norm. The resulting NBH is straightforward to

mplement, entails O ( mn ) operations for computing the norm of

 x H 

T and O ( n log n ) operations for the sorting algorithm [33] . It is

hown in Section 5 to yield satisfactory performance, especially

f the noise variance is low or the linear transform has favorable

tructure. In summary, the term noise-blind stems from the fact

hat we are selecting the samples that yield the highest output en-

rgy as measured by R x H 

T , while being completely agnostic to the

oise corrupting those same samples. 
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The analysis of both the NAH ( Section 4.2 ) and NBH

 Section 4.3 ) can be readily extended to the linear inverse prob-

em by inspecting the objective function in (18) . 

.4. Greedy approach 

Another alternative to approximate the solution of (17) and

18) over C, is to implement an iterative greedy algorithm that

dds samples to the sampling set incrementally. At each iteration,

he sample that reduces the MSE the most is incorporated to the

ampling set. Considering problem (17) as an example, first, one-

y-one all n samples are tested and the one that yields the low-

st value of the objective function in (17) is added to the sam-

ling set. Then, the sampling set is augmented with one more

ample by choosing the one that yields the lowest optimal ob-

ective among the remaining n − 1 ones. The procedure is re-

eated until p samples are selected in the sampling set. This way

nly n + (n − 1) + · · · + (n − (p − 1)) < np evaluations of the ob-

ective function (17) are required. Note that each evaluation of

17) entails O (mnp + p 3 ) operations, so that the overall cost of the

reedy approach is O (mn 2 p 2 + np 4 ) . Greedy algorithms have well-

ocumented merits for sample selection, even for non-submodular

bjectives like the one in (17) ; see [25,34] . 

. Numerical examples 

To demonstrate the effectiveness of the sketching methods de-

eloped in this paper, five numerical test cases are considered. In

ections 5.1 and 5.2 we look at the case where the linear transform

o approximate is a graph Fourier transform (GFT) and the signals

re bandlimited on a given graph [14,15] . Then, in Section 5.3 we

onsider an (inverse) linear estimation problem in a wireless sen-

or network. The transform to approximate is the (fat) linear es-

imator and choosing samples in this case boils down to select-

ng the sensors acquiring the measurements [24, Section VI-A] . For

he fourth test, in Section 5.4 , we look at the classification of dig-

ts from the MNIST Handwritten Digit database [35] . By means

f principal component analysis (PCA), we can accurately describe

hese images using a few coefficients, implying that they (approx-

mately) belong to a lower dimensional subspace given by a few

olumns of the covariance matrix. Finally, in Section 5.5 we con-

ider the problem of authorship attribution to determine whether

 given text belongs to some specific author or not, based on the

tylometric signatures dictated by word adjacency networks [36] . 

Throughout, we compare the performance in approximating the

utput of the linear transform of the sketching-as-sampling tech-

ique presented in this paper (implemented by each of the five

euristics introduced) and compare it to that of existing alterna-

ives. More specifically, we consider: 

a) The sketching-and-sampling algorithms proposed in this pa-

per, namely: a1) the random sampling scheme based on

the convex relaxation (SDP-Random, Section 4.1 ); a2) the

thresholding sampling schemed based on the convex relax-

ation (SDP-Thresh., Section 4.1 ); a3) the noise-aware heuris-

tic (NAH, Section 4.2 ); a4) the noise-blind heuristic (NBH,

Section 4.3 ); a5) the greedy approach ( Section 4.4 ); and a6)

the operator sketching methods that directly sample the lin-

ear transform (SLT) [cf. Section 3.3 ] by solving the problems

in Proposition 4 using the methods a1)-a5). 

b) Algorithms for sampling bandlimited signals [cf. (3) ],

namely: b1) the experimental design sampling (EDS) method

proposed in [37] ; and b2) the spectral proxies (SP) greedy-

based method proposed in [19, Algorithm 1] . In particular,

we note that the EDS method in [37] computes a distribu-

tion where the probability of selecting the i th element of x
is proportional to the norm of the i th row of the matrix V

that determines the subspace basis. This gives rise to three

different EDS methods depending on the norm used: EDS-

1 when using the � 1 norm, EDS-2 when using the � 2 norm

[31] and EDS- ∞ when using the � ∞ 

norm [37] . 

c) Traditional sketching algorithms, namely Algorithms 2.4, 2.6

and 2.11 described in (the tutorial paper) [13] , and respec-

tively denoted in the figures as Sketching 2.4, Sketching 2.6

and Sketching 2.11. Note that these schemes entail different

(random) designs of the matrix C in (12) that do not neces-

sarily entail sampling (see Remark 1 ). They can only be used

for the inverse problem (13) , hence they will be tested only

in Sections 5.1 and 5.3 . 

d) The optimal linear transform 

ˆ y = A 

∗(x + w ) that minimizes

the MSE, operating on the entire signal, without any sam-

pling nor sketching. Exploiting the fact that the noise w and

the signal x are uncorrelated, these estimators are A 

∗ = H

for the direct case and A 

∗ = A LS = (HH 

T ) −1 H for the inverse

case. We use these method as the corresponding baselines

(denoted as Full). Likewise, for the classification problems in

Sections 5.4 and 5.5 , the baseline is the corresponding clas-

sifier operating on the entire signal, without any sampling

(denoted as SVM). 

To aid readability and reduce the number of curves on the fig-

res presented next, only the best-performing among the three

DS methods in b1) and the best-performing of the three sketching

lgorithms in c) are shown. 

.1. Approximating the GFT as an inverse problem 

Obtaining alternative data representations that would offer bet-

er insights and facilitate the resolution of specific tasks is one

f the main concerns in signal processing and machine learning.

n the particular context of GSP, a k -bandlimited graph signal x =
 k ̃  x k can be described as belonging to the k -dimensional subspace

panned by the k eigenvectors V k = [ v 1 , . . . , v k ] ∈ C 

k ×n of the graph

hift operator S [cf. (3), (4) ]. The coefficients ˜ x k ∈ C 

k are known

s the GFT coefficients and offer an alternative representation of x

hat gives insight into the modes of variability of the graph signal

ith respect to the underlying graph topology [15] . 

Computing the GFT coefficients of a bandlimited signal follow-

ng x = V k ̃  x k can be modeled as an inverse problem where we

ave observations of the output x , which are a transformation of

 = 

˜ x k through a linear operation H 

T = V k (see Section 2.3 ). We can

hus reduce the complexity of computing the GFT of a sequence of

raph signals, by adequately designing a sampling pattern C and

ketching matrix H s that operate only on p � n samples of each

raph signal x , instead of solving x = V k ̃  x k for the entire graph sig-

al x (cf. Fig. 2 ). This reduces the computational complexity by a

actor of n / p , serving as a fast method of obtaining the GFT coeffi-

ients. 

In what follows, we set the graph shift operator S to be the ad-

acency matrix of the underlying undirected graph G. Because the

hift is symmetric, it can be decomposed as S = V �V 

T . So the GFT

o approximate is V 

T , a real orthonormal matrix that projects sig-

als onto the eigenvector space of the adjacency of G. With this

otation in place, for this first experiment we assume to have ac-

ess to 100 noisy realizations of this k -bandlimited graph signal

 x t + w t } 100 
t=1 

, where w t is zero-mean Gaussian noise with R w 

=
2 
w 

I n . The objective is to compute { ̃ x k,t } 100 
t=1 

, that is, the k active

FT coefficients of each one of these graph signals. 

To run the algorithms, we consider two types of undirected

raphs: a stochastic block model (SBM) and a small-world (SW)

etwork. Let G SBM 

denote a SBM network with n total nodes

nd c communities with n nodes in each community, b = 1 , . . . , c,
b 
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Fig. 3. Approximating the GFT as an inverse sketching problem. Relative estimated MSE as a function of noise. Legends: SDP-Random (scheme in a1); SDP-Thresh. (scheme 

in a2); NAH (scheme in a3), NBH (scheme in a4); Greedy (scheme in a5); SLT, EDS-1, EDS-2 (schemes in b1), SP (scheme in b2); Sketching 2.6, Sketching 2.11 (schemes in 

c); and baseline using the full signal (no sampling). 

Fig. 4. Approximating the GFT as an inverse sketching problem. Relative estimated MSE as a function of the number of samples used. Legends: SDP-Random (scheme in 

a1); SDP-Thresh. (scheme in a2); NAH (scheme in a3), NBH (scheme in a4); Greedy (scheme in a5); SLT, EDS-1, EDS-2 (schemes in b1), SP (scheme in b2); Sketching 2.6, 

Sketching 2.11 (schemes in c); optimal solution using the full signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

i  

a  

x  

r  

i  

g  

a  

d  

e

 

p  

o  

f

f  

i  

t  
∑ c 
b=1 n b = n [38] . The probability of drawing an edge between

nodes within the same community is p b and the probability of

drawing an edge between any node in community b and any

node in community b ′ is p bb ′ . Similarly, G SW 

describes a SW net-

work with n nodes characterized by parameters p e (probability of

drawing an edge between nodes) and p r (probability of rewiring

edges) [39] . In the first experiment, we study signals x ∈ R 

n sup-

ported on either the SBM or the SW networks. In each of the test

cases presented, G ∈ {G SBM 

, G SW 

} denotes the underlying graph,

and A ∈ {0, 1} n × n its associated adjacency matrix. The simula-

tion parameters are set as follows. The number of nodes is n = 96

and the bandwidth is k = 10 . For the SBM, we set c = 4 commu-

nities of n b = 24 nodes in each, with edge probabilities p b = 0 . 8

and p bb ′ = 0 . 2 for b � = b ′ . For the SW case, we set the edge and

rewiring probabilities as p e = 0 . 2 and p r = 0 . 7 . The metric to as-

sess the reconstruction performance is the relative mean squared

error (MSE) computed as E [ ‖ ̂ y − ˜ x k ‖ 2 2 ] / E [ ‖ ̃ x k ‖ 2 2 ] . We estimate the

MSE by simulating 100 different sequences of length 100, total-

p

ng 10,0 0 0 signals. Each of these signals is obtained by simulat-

ng k = 10 i.i.d. zero-mean, unit-variance Gaussian random vari-

bles, squaring them to obtain the GFT ˜ x k , and finally computing

 = V k ̃  x k . We repeat this simulation for 5 different random graph

ealizations. For the methods that use the covariance matrix R x as

nput, we estimate R x from 500 realizations of x , which we re-

arded as training samples and are not used for estimating the rel-

tive MSE. Finally, for the methods in which the sampling is ran-

om, i.e., a1), b1), and c), we perform the node selection 10 differ-

nt times and average the results. 

For each of the graph types (SBM and SW), we carry out two

arametric simulations. In the first one, we consider the number

f selected samples to be fixed to p = k = 10 and consider dif-

erent noise power levels σ 2 
w 

= σ 2 

coeff
· E [ ‖ x ‖ 2 ] by varying σ 2 

coeff
rom 10 −5 to 10 −3 and where E [ ‖ x ‖ 2 ] is estimated from the train-

ng samples, see Fig. 3 for results. For the second simulation, we fix

he noise to σ 2 

coeff
= 10 −4 and vary the number of selected sam-

les p from 6 to 22, see Fig. 4 . 
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Fig. 5. Approximating the GFT as a direct sketching problem for a large network. Relative estimated MSE ‖ ̂ y − ˜ x k ‖ 2 / ‖ ̃ x k ‖ 2 for the problem of estimating the k = 10 frequency 

components of a bandlimited graph signal from noisy observations, supported on an ER graph with p = 0 . 1 and size n = 10 , 0 0 0 . 5 a As a function of σ 2 

coeff
for fixed 

p = k = 10 . 5 b As a function of the p for fixed σ 2 

coeff
= 10 −4 . 
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First, Fig. 3 a and b show the estimated relative MSE as a func-

ion of σ 2 

coeff
for fixed p = k = 10 for the SBM and the SW graph

upports, respectively. We note that, for both graph supports, the

reedy approach in a5) outperforms all other methods and is, at

ost, 5dB worse than the baseline which computes the GFT us-

ng the full signal, while saving 10 times computational cost in

he online stage. Then, we observe that the SDP-Thresh. method

n a2) is the second best method, followed closely by the EDS-2 in

1). We observe that both NAH and NBH heuristics of a3) and a4)

ave similar performance, with the NBH working considerably bet-

er in the low-noise scenario. This is likely due to the suboptimal

ccount of the noise carried out by the NAH (see Section 4.2 ). NBH

orks as well as the SDP-Thresh. method in the SBM case. With re-

pect to off-line computational complexity, we note that the EDS-2

ethod incurs in an off-line cost of O (n 3 + n 2 + n log (n )) which,

n this problem, reduces to O (10 6 ), while the greedy scheme has a

ost of O (10 7 ); however, the greedy approach performs almost one

rder of magnitude better in the low-noise scenario. Alternatively,

he NBH heuristic has a comparable performance to the EDS-2 on

oth graph supports, but incurs in an off-line cost of O (10 3 ). 

Second, the relative MSE as a function of the number of sam-

les p for fixed noise σ 2 

coeff
for the SBM and SW networks is plot-

ed in Fig. 4 a and b, respectively. In this case, we note that the

reedy approach of a5) outperforms all other methods, but its rel-

tive gain in terms of MSE is inferior. This would suggest that less

omputationally expensive methods like the NBH are preferable,

specially for higher number of samples. Additionally, we observe

hat for p < k , the EDS graph signal sampling technique works

etter. For p = 22 selected nodes, the best performing sketching-

s-sampling technique (the greedy approach) performs 5dB worse

han the baseline, but incurring in only 23% of the online compu-

ational cost. 

.2. Approximating the GFT in a large-scale network 

The GFT coefficients can also be computed via a matrix multi-

lication 

˜ x k = V 

H 
k 

x . We can model this operation as a direct prob-

em, where the input is given by x , the linear transform is H = V 

H 
k 

nd the output is y = 

˜ x k . We can thus proceed to reduce the com-

lexity of this operation by designing a sampling pattern C and a

atrix sketch H s that compute an approximate output operating
nly on a subset of p � n samples of x [cf. (8) ]. This way, the

omputational complexity is reduced by a factor of p / n when com-

ared to computing the GFT using V 

H 
k 

directly on the entire graph

ignal x . 

We consider a substantially larger problem with an Erd ̋os-Rényi

ER) graph G ER 

of n = 10 , 0 0 0 nodes and where edges connecting

airs of nodes are drawn independently with p ER 

= 0 . 1 . The sig-

al under study is bandlimited with k = 10 frequency coefficients,

enerated in the same way as in Section 5.1 . To solve the prob-

em (17) we consider the NAH in a3), the NBH in a4) and the

reedy approach in a5). We also consider the case in which the

inear transform is sampled directly (6) , solving (7) by the greedy

pproach. Comparisons are carried out against all the methods in

). 

In Fig. 5 we show the relative MSE for each method, in two

ifferent simulations. First, in Fig. 5 a the simulation was carried

ut as a function of noise σ 2 

coeff
varying from 10 −5 to 10 −3 , for a

xed number of samples p = k = 10 . We observe that the greedy

pproach in a5) performs best. The NAH in a3) and the NBH in

4) are the next best performers, achieving a comparable MSE. The

DS- ∞ in b1) yields the best results among the competing meth-

ds. We see that for the low-noise case ( σ 2 

coeff
= 10 −5 ) we can ob-

ain a performance that is 7dB worse than the baseline, but using

nly p = 10 nodes out of n = 10 , 0 0 0 , thereby reducing the online

omputational cost of computing the GFT coefficients by a factor of

,0 0 0 . 

For the second simulation, whose results are shown in Fig. 5 b,

e fixed the noise at σ 2 

coeff
= 10 −4 and varied the number of sam-

les from p = 6 to p = 24 . Again, the greedy approach in a5) out-

erforms all the other methods, and the NAH in a3) and the NBH

n a4) as the next best performers. The EDS- ∞ in b1) performs bet-

er than the SP method in b2). We note that, for p < k , the EDS- ∞
ethod has a performance very close to the NBH in a4), but as p

rows larger, the gap between them widens, improving the relative

erformance of the NBH. When selecting p = 24 nodes, the greedy

pproach achieves an MSE that is 4dB worse than the baseline, but

ncurring in only 0.24% of the online computational cost. 

With respect to the off-line cost, the EDS- ∞ method incurs in

 (n 3 + n 2 log n + n log n ) which, in this setting is O (10 12 ), while the

reedy cost is O (10 11 ); yet, the MSE of the greedy approach is over
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Fig. 6. Sensor selection for parameter estimation. Sensor are distributed uniformly over the [0, 1] 2 region of the plane. Sensor graph is built using a Gaussian kernel over 

the Euclidean distance between sensors, and keeping only 4 nearest neighbors. Relative estimated MSE as: 6 a A function of σ 2 

coeff
and 6 b A function of p . Legends: SDP- 

Random (scheme in a1); SDP-Thresh. (scheme in a2); NAH (scheme in a3); NBH (scheme in a4); Greedy (scheme in a5); SLT, EDS-1 and EDS-2 (schemes in b1); SP (scheme 

in b2); Sketching 2.6, Sketching 2.11 (schemes in c); optimal solution using the full signal. 
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an order of magnitude better than that of EDS- ∞ . Likewise, the

NAH and the NBH yield a lower, but comparable performance, with

an off-line cost of O (10 9 ) and O (10 6 ), respectively. 

5.3. Sensor selection for distributed parameter estimation 

Here we address the problem of sensor selection for

communication-efficient distributed parameter estimation [24] .

The model under study considers the measurements x ∈ R 

n of each

of the n sensors to be given as a linear transform of some un-

known parameter y ∈ R 

m , x = H 

T y , where H 

T ∈ R 

n ×m is the obser-

vation matrix; refer to [24, Section II] for details. 

We consider n = 96 sensors, m = 12 unknown parameters, and

that the bandwidth of the sensor measurements is k = 10 . Follow-

ing [24, Section VI-A] , matrix H 

T is random where each element is

drawn independently from a zero-mean Gaussian distribution with

variance 1 / 
√ 

n . The underlying graph support G U 

is built as fol-

lows. Each sensor is positioned at random, according to a uniform

distribution, in the region [0, 1] 2 of the plane. With d i,j denoting

the Euclidean distance between sensors i and j , their correspond-

ing link weight is computed as w i j = αe 
−βd 2 

i, j , where α and β are

constants selected such that the minimum and maximum weights

are 0.01 and 1. The network is further sparsified by keeping only

the edges in the 4-nearest neighbor graph. Finally, the resulting

adjacency matrix is used as the graph shift operator S . 

For the simulations in this setting we generate a collection

{ x t + w t } 100 
t=1 

of sensor measurements. For each one of these mea-

surements, 100 noise realizations are drawn to estimate the rela-

tive MSE defined as E [ ‖ y − ˆ y ‖ 2 ] / E [ ‖ y ‖ 2 ] . Recall that ˆ y = H 

∗
s C 

∗(x +
w ) [cf. (12) ], with H 

∗
s given in Proposition 2 and C 

∗ designed ac-

cording to the methods under study. We run the simulations for

5 different sensor networks and average the results, which are

shown in Fig. 6 . 

For the first simulation, the number of samples is fixed as

p = k = 10 and the noise coefficient σ 2 

coeff
varies from 10 −5 to

10 −3 . The estimated relative MSE is shown in Fig. 6 b. We observe

that the greedy approach in a5) performs considerably better than

any other method. The solution provided by SDP-Thresh. in a2) ex-

hibits the second best performance. With respect to the methods

under comparison, we note that EDS-1 in b1) is the best performer

and outperforms NAH in a3) and the NBH in a4), but is still worse
han SDP-Random in a1), although comparable. We also observe

hat while traditional Sketching 2.4 in c) yields good results for

ow-noise scenarios, its performance quickly degrades as the noise

ncreases. We conclude that using the greedy approach it is possi-

le to estimate the parameter y with a 4dB loss, with respect to

he optimal, baseline solution, but taking measurements from only

0 out of the 96 deployed sensors. 

In the second simulation, we fixed the noise given by σ 2 

coeff
=

0 −4 and varied the number of samples from p = 6 to p = 22 . The

stimated relative MSE is depicted in Fig. 6 b. We observe that the

reedy approach in a5) outperforms all other methods. We also

ote that, in this case, the Sketching 2.4 algorithm in c) has a very

ood performance. It is also worth pointing out that the SP method

n b2) outperforms the EDS scheme in b1), and that the perfor-

ance of the SDP relaxations in a1) and a2) improves considerably

s p increases. 

.4. MNIST handwritten digits classification 

Images are another example of signals that (approximately) be-

ong to a lower-dimensional subspace. In fact, principal component

nalysis (PCA) shows that only a few coefficients are enough to

escribe an image [40,41] . More precisely, if we vectorize an im-

ge, compute its covariance matrix, and project it onto the eigen-

ectors of this matrix, then the resulting vector (the PCA coeffi-

ients) would have most of its components almost zero. This shows

hat natural images are approximately bandlimited in the subspace

panned by the eigenvectors of the covariance matrix, and thus are

uitable for sampling. 

We focus on the problem of classifying images of handwritten

igits from the MNIST database [35] . To do so, we use a linear sup-

ort vector machine (SVM) classifier [42] , trained to operate on a

ew of the PCA coefficients of each image. We can model this task

s a direct problem where the linear transform to apply to each

vectorized) image is the cascade of the projection onto the co-

ariance matrix eigenvectors (the PCA transform), followed by the

inear SVM classifier. 

To be more formal, let x ∈ R 

n be the vectorized image, where

 = 28 × 28 = 784 is the total number of pixels. Each element of

his vector represents the value of a pixel. Denote by R x = V �V 

T 

he covariance matrix of x . Then, the PCA coefficients are com-
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Fig. 7. Selected pixels to use for classification of the digits according to each strategy. The percentage error (ratio of errors to total number of images) is also shown. 7 a 

Images showcasing the average of all images in the test set labeled as a 1 (left) and as a 7 (right). Using all pixels to compute k = 20 PCA coefficients and feeding them to 

a linear SVM classifier yields 1.00% error. 
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uted as x PCA = V 

T x [cf. (3) ]. Typically, there are only a few non-

egligible PCA coefficients which we assume to be the first k � n

lements. These elements can be directly computed by x PCA 

k 
= V 

T 
k 

x

cf. (4) ]. Then, these k PCA coefficients are fed into a linear SVM

lassifier, A SVM 

∈ R 

m ×k where m is the total number of digits to

e classified (the total number of classes). Lastly, y = A SVM 

x PCA 

k 
=

 SVM 

V 

T 
k 

x is used to determine the class (typically, by assigning

he image to the class corresponding to the maximum element

n y ). This task can be cast as a direct sketching problem (8) ,

y assigning the linear transform to be H = A SVM 

V 

T 
k 

∈ R 

m ×n , with

 ∈ R 

m being the output and the vectorized image x ∈ R 

n being the

nput. 

In this experiment, we consider the classification of c different

igits. The MNIST database consists of a training set of 60,0 0 0 im-

ges and a test set of 10,0 0 0. We select, uniformly at random, a

ubset T of training images and a subset S of test images, con-

aining only images of the c digits to be classified. We use the

T | images in the training set to estimate the covariance matrix

 x and to train the SVM classifier [43] . Then, we run on the test

et S the classification using the full image, as well as the re-

ults of the sketching-as-sampling method implemented by the

ve different heuristics in a), and compute the classification error

 = | # misclassified images | / |S| as a measure of performance. The

aseline method, in this case, stems from computing the classifi-

ation error obtained when operating on the entire image, without

sing any sampling or sketching. For all simulations, we add noise

o the collection of images to be classified { x t + w t } |S| 
t=1 

, where

 t is zero-mean Gaussian noise with variance R w 

= σ 2 
w 

I n , with
2 
w 

= σ 2 

coeff
E [ ‖ x ‖ 2 ] (where the expected energy is estimated from

he images in the training set T ). We assess performance as func-

ion of σ 2 

coeff
and p . 

We start by classifying digits { 1 , 7 } , that is c = 2 . We do so

or fixed p = k = 20 and σ 2 

coeff
= 10 −4 . The training set has |T | =

0 , 0 0 0 images (5,0 0 0 of each digit) and the test set contains |S| =
0 0 images (10 0 of each). Fig. 7 illustrates the averaged images of

oth digits (averaged across all images of each given class in the

est set S) as well as the selected pixels following each different

election technique. We note that, when using the full image, the

ercentage error obtained is 1%, which means that 2 out |S| = 200

mages were misclassified. The greedy approach ( Fig. 7 d) has a per-

entage error of 1.5% which entails 3 misclassified images, only one

ore than the full image SVM classifier, but using only p = 20 pix-

ls instead of the n = 784 pixels of the image. Remarkably, even

fter reducing the online computational cost by a factor of 39.2,

e only incur a marginal performance degradation (a single addi-

ional misclassified image). Moreover, solving the direct sketching-
 m  
s-sampling problem with any of the proposed heuristics in a) out-

erforms the selection matrix obtained by EDS-1. When consider-

ng the computationally simpler problem of using the same sam-

ling matrix for the signal and the linear transform [cf. (6) ], the

rror incurred is of 5.65%. Finally, we note that the sketching-as-

ampling techniques tend to select pixels for classification that are

ifferent in each image (pixels that are black in the image of one

igit and white in the image of the other digit, and vice versa), i.e.,

he most discriminative pixels. 

For the first parametric simulation, we consider the same two

igits { 1 , 7 } under the same setting as before, but, in one case, for

xed p = k = 20 and varying noise σ 2 

coeff
( Fig. 8 a) and for fixed

2 

coeff
= 10 −4 and varying p ( Fig. 8 b). We carried out these simu-

ations for 5 different random dataset train/test splits. The greedy

pproach in a5) outperforms all other solutions in a), and performs

omparably to the SVM classifier using the entire image. The NAH

nd NBH also yield satisfactory performance. In the most favorable

ituation, the greedy approach yields the same performance as the

VM classifier on the full image, but using only 20 pixels, the worst

ase difference is of 0.33% (1 image) when using only p = 16 pixels

49% reduction in computational cost). 

For the second parametric simulation, we consider c = 10 dig-

ts: { 0 , 1 , . . . , 9 } ( Fig. 9 ). We observe that the greedy approach in

5) is always the best performer, although the relative performance

ith respect to the SVM classifier on the entire image worsens. We

lso observe that the NAH and NBH are more sensitive to noise,

eing outperformed by the EDS-1 in b1) and the SDP relaxations.

hese three simulations showcase the tradeoff between faster com-

utations and performance. 

.5. Authorship attribution 

As a last example of the sketching-as-sampling methods, we ad-

ress the problem of authorship attribution where we want to de-

ermine whether a text was written by a given author or not [36] .

o this end, we collect a set of texts that we know have been writ-

en by the given author (the training set), and build a word adja-

ency network (WAN) of function words for each of these texts.

unction words, as defined in linguistics, carry little lexical mean-

ng or have ambiguous meaning and express grammatical relation-

hips among other words within a sentence, and as such, cannot

e attributed to a specific text due to its semantic content. It has

een found that the order of appearance of these function words,

ogether with their frequency, determine a stylometric signature

f the author. WANs capture, precisely, this fact. More specifically,

hey determine a relationship between words using a mutual infor-

ation measure based on the order of appearance of these words
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Fig. 8. MNIST Digit Classification for digits 1 and 7 . Error proportion as 8 a function of noise σ 2 

coeff
and as 8 b a function of the number of samples p . We note that in both 

cases the greedy approach in a5) works best. The worst case difference between the greedy approach and the SVM classifier using the entire image is 0.33%, which happens 

when attempting classification with just 16 pixels out of 784. 

Fig. 9. MNIST Digit Classification for all ten digits. Error proportion as 9 a function of noise σ 2 

coeff
and as 9 b a function of the number of samples p . We note that in both 

cases the greedy approach in a5) works best. The worst case difference between the greedy approach and the SVM classifier using the entire image is 16.36%. 
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(how often two function words appear together and how many

other words are usually in between them). For more details on

function words and WAN computation, please refer to [36] . 

In what follows, we consider the corpus of novels written by

Jane Austen. Each novel is split in fragments of around 1,0 0 0

words, leading to 771 texts. Of these, we take 617 at random to

be part of the training set, and 154 to be part of the test set. For

each of the 617 texts in the training set we build a WAN con-

sidering 211 function words, as detailed in [36] . Then we com-

bine these WANs to build a single graph, undirected, normalized

and connected (usually leaving around 190 function words for each

random partition, where some words were discarded to make the

graph connected). An illustration of one realization of a resulting

graph can be found in Fig. 10 . The adjacency matrix of the result-

ing graph is adopted as the shift operator S . 

Now that we have built the graph representing the stylometric

signature of Jane Austen, we proceed to obtain the corresponding

graph signals. We obtain the word frequency count of the function

words on each of the 771 texts, respecting the split 617 for train-

ing and 154 for test set, and since each function word represents

a node in the graph, the word frequency count can be modeled
s a graph signal. The objective is to exploit the relationship be-

ween the graph signal (word frequency count) and the underly-

ng graph support (WAN) to determine whether a given text was

uthored by Jane Austen or not. To do so, we use a linear SVM

lassifier (in a similar fashion as in the MNIST example covered

n Section 5.4 ). The SVM classifier is trained by augmenting the

raining set with another 617 graph signals (word frequency count)

elonging to texts written by other contemporary authors, includ-

ng Louisa May Alcott, Emily Brontë, Charles Dickens, Mark Twain,

dith Wharton, among others. The 617 graph signals correspond-

ng to texts by Jane Austen are assigned a label 1 and the remain-

ng 617 samples are assigned a label 0 . This labeled training set of

,234 samples is used to carry out supervised training of a linear

VM. The trained linear SVM serves as a linear transform on the

ncoming graph signal, so that it becomes H in the direct model

roblem. We then apply the sketching-as-sampling methods dis-

ussed in this work to each of the texts in the test set (which has

een augmented to include 154 texts of other contemporary au-

hors, totaling 308 samples). To assess performance, we evaluate

he error rate of determining whether the texts in the test set were

uthored by Jane Austen or not, that is achieved by the sketched
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Fig. 10. Word adjacency networks (WANs). 10 a Example of a WAN built from the training set of texts written by Jane Austen; to avoid clutter only one every other word 

are shown as node labels. 10 b Highlighted in red are the words selected by the greedy approach in a5). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 11. Authorship attribution for texts written by Jane Austen. Error proportion as 11 a function of noise σ 2 

coeff
and as 11 b a function of the number of samples p (number 

of words selected). We note that in both cases the greedy approach in a5), the noise-aware heuristic (NAH) in and the SDP relaxation with thresholding (SDP-Thresh.) in 

offer similar, best performance. The baseline error for an SVM operating on the full text is 7.27% in 11 a and 6.69% in 11 b. 
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t  
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w  
inear classifiers operating on only a subset of function words (se-

ected nodes). 

For the experiments, we thus considered sequences { x t } 308 
t=1 

of

he 308 test samples, where each x t is the graph signal represent-

ng the word frequency count of each text t in the test set. Af-

er observing the graph frequency response of these graph signals

ver the graph (given by the WAN), we note that signals are ap-

roximately bandlimited with k = 50 components. We repeat the

xperiment for 5 different realizations of the random train/test set

plit of the corpus. To estimate R x we use the sample covariance

f the graph signals in the training set. The classification error is

omputed as the proportion of mislabeled texts out of the 308
 o  
est samples, and is averaged across the random realizations of the

ataset split. We run simulations for different noise levels, com-

uted as σ 2 
w 

= σ 2 

coeff
· E [ ‖ x ‖ 2 ] for a fixed number of p = k = 50

elected nodes (function words), and also for different number of

elected nodes p for a fixed noise coefficient σ 2 

coeff
= 10 −4 . Results

re shown in Fig. 11 . Additionally, Fig. 10 illustrates an example of

he selected words for one of the realizations. 

In Fig. 11 a we show the error rate as a function of noise for all

he methods considered. First and foremost, we observe a baseline

rror rate of 7.27% corresponding to the SVM acting on all function

ords. As expected, observe that the performance of all the meth-

ds degrades as more noise is considered (classification error in-
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creases). In particular, the greedy approach attains the lowest error

rate, with a performance matched by both the SDP-relaxation with

thresholding in a2) and the NAH in a3). It is interesting to observe

that the technique of directly sampling the linear transform and

the signal (method a6) performs as well as the greedy approach in

the low-noise scenario, but then degrades rapidly. Finally, we note

that selecting samples irrespective of the linear classifier exhibits

a much higher error-rate than the sketching-as-sampling counter-

parts. This is the case for the EDS- ∞ shown in Fig. 11 a (the best

performer among all methods in b). 

In the second experiment for fixed noise σ 2 

coeff
= 10 −4 and

varying number of selected samples p , we show the resulting er-

ror rate in Fig. 11 b. The baseline for the SVM classifier using all

the function words is a 6.69% error rate. Next, we observe that

the error rate is virtually unchanged as more function words are

selected, suggesting that the performance of the methods in this

example is quite robust. Among all the competing methods, we

see that the best performing one is the NAH in a3), incurring in

an error rate of 7%, but with comparable performance from the

greedy approach in a5) as well as the SDP relaxation with thresh-

olding in a2). The selection of words with complete disregard for

the classification task (i.e. selecting words only for reconstruction)

significantly degrades the performance, as evidenced by the error

rate achieved by the EDS- ∞ (the best performer among all meth-

ods described in b). 

6. Conclusions 

In this work, we proposed a novel framework for sampling

signals that belong to a lower-dimensional subspace. By viewing

these signals as bandlimited graph signals, we leveraged notions of

sampling drawn from the GSP framework. The objective is to sig-

nificantly reduce the cost of approximating the output of a linear

transform of the given signal. This can be achieved by leveraging

knowledge of both the signal statistics as well as the said linear

operator. 

Under the working principle that the linear transform has to

be applied to a sequence of streaming signals, we jointly designed

a sampling pattern together with a sketch of the linear operator

so that this sketch can be affordably applied to a few samples of

each incoming signal. The joint design problem was formulated as

a two-stage optimization. We first found the expression for the op-

timal sketching matrix as a function of feasible sampling strate-

gies, and then substituted this expression in the original MSE cost

to solve for the optimal sampling scheme. Overall, the resulting

sketched output offers a good approximation to the output of the

full linear transform, but at a much lower online computational

cost. 

We proposed five different heuristics to (approximately) solve

the MSE minimization problems, which are intractable due to

the (combinatorial) sample selection constraints. We then tested

these heuristics, together with traditional sketching approaches

and other sampling methods (that select samples for reconstruc-

tion) in four different scenarios, namely: com putation of GFT coef-

ficients, distributed estimation in a sensor network, handwritten

digit classification and authorship attribution. All these GSP ap-

plications involve signals that belong to lower-dimensional sub-

spaces. In general terms, we observed that the greedy heuristic

works best, even though at a higher off-line computational cost.

We also noted that the noise-blind and noise-aware heuristics of-

fer reasonable performance at a very reduced cost, while the SDP

relaxation performance is highly dependent on the application and

does not scale gracefully for large problems. Any of these heuris-

tics, however, outperforms both traditional sketching methods as

well as sampling-for-reconstruction schemes in the recent GSP lit-

erature. 
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ppendix A 

For concreteness, here we give the proofs for the direct sketch-

ng problem. The arguments for the inverse problem are similar;

ee [2] for details. 

1. Proof of Proposition 2 

The objective function in (9) can be rewritten as 

 

[‖ y − ˆ y ‖ 

2 
2 

]
= E 

[‖ Hx − H s C (x + w ) ‖ 

2 
2 

]
= tr 

[
HR x H 

T − 2 H s CR x H 

T + H s C (R x + R w 

) C 

T H 

T 
s 

]
(25)

ince x and w are assumed independent. Optimizing with respect

o H s first, yields 

 

∗
s (C ) = HR x C 

T 
(
C (R x + R w 

) C 

T 
)−1 

(26)

stablishing the first branch in (16) . Matrix C ∈ C is full rank since

t selects p distinct samples, then C (R x + R w 

) C 

T has rank p and thus

t is invertible [44] . Substituting (26) into (25) , yields (17) . �

2. Proof of Proposition 3 

The inverse in the objective of (17) can be written as [24,30] 

(C (R x + R w 

) C 

T ) −1 = 

(
αI p − αI p + C (R x + R w 

) C 

T 
)−1 

= α−1 I p − α−2 C ( ̄R 

−1 
α + α−1 C 

T C ) −1 C 

T (27)

here α � = 0 is a rescaling parameter, and in obtaining the second

quality we used the Woodbury Matrix Identity [45] . Note that α
as to be such that R̄ α = (R x + R w 

− αI n ) is still invertible. Sub-

tituting (27) into (17) and recalling that C 

T C = diag (c ) , we have

hat 

min 

 ∈{ 0 , 1 } n , ̄C α
tr 

[ 
HR x H 

T − HR x ̄C αR x H 

T + HR x ̄C α

(
R̄ 

−1 
α + C̄ α

)−1 
C̄ αR x H 

T 
] 

s . t . C̄ α = α−1 diag (c ) c T 1 n = p. (28)

ote that in (28) we optimize over a binary vector c ∈ R 

n with

xactly p nonzero entries, instead of a binary matrix C ∈ C. The p

onzero elements in c indicate the samples to be taken. Problem

28) can be reformulated as 

min 

 ∈{ 0 , 1 } n , 
Y , ̄C α

tr [ Y ] (29)

s . t . HR x H 

T − HR x ̄C αR x H 

T + HR x ̄C α

(
R̄ 

−1 
α + C̄ α

)−1 
C̄ αR x H 

T � Y 

C̄ α = α−1 diag (c ) c T 1 n = p 

here Y ∈ R 

m ×m , Y 	0 is an auxiliary optimization variable. Using

he Schur-complement lemma for positive definite matrices [30] ,

29) can be written as (20) . Hence, to complete the proof we need

o show that R̄ 

−1 
α + C̄ α 	 0 so that the aforementioned lemma can

e invoked. To that end, suppose first that α < 0. Then we have

hat R̄ α � 0 and C̄ α = α−1 diag (c ) � 0 , so that R̄ 

−1 
α + C̄ α 	 0 may

ot be positive definite. Suppose now that α > 0. Then C̄ α 	 0 and

here always exists a sufficiently small positive α such that R̄ α � 0

ince R w 

�0 . This implies that if α is chosen such that α > 0 and
¯
 α = R x + R w 

− αI n � 0 (i.e., the conditions stated in the propo-

ition), then R̄ 

−1 
α + C̄ α is positive definite and problems (28) and

20) are equivalent. �
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3. Proof of Proposition 4 

Defining matrix C̄ = diag (c ) , the estimated output is 

ˆ 
 = HC 

T C (x + w ) = H diag (c )(x + w ) = H ̄C (x + w ) . 

Since the desired output is y = Hx , the MSE simplifies to 

 

[‖ Hx − H ̄C (x + w ) ‖ 2 2 

]
= tr 

[
HR x H 

T − 2 H ̄C R x H 

T + H ̄C (R x + R w ) ̄C H 

T 
]
. 

Introducing the auxiliary variable Y ∈ R 

m ×m , Y 	0 , minimizing

he MSE with respect to C ∈ C is equivalent to solving 

min 

 ∈{ 0 , 1 } n , 
Y , ̄C 

tr [ Y ] (30) 

s . t . C̄ = diag (c ) c T 1 n = p 

HR x H 

T − 2 H ̄C R x H 

T + H ̄C (R x + R w 

) ̄C H 

T � Y . 

Finally, using the Schur complement-based lemma for positive

emidefiniteness [30] , then (30) can be shown equivalent to (22) ,

ompeting the proof. �
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