
SPARSITY-COGNIZANT OVERLAPPING CO-CLUSTERING
FOR BEHAVIOR INFERENCE IN SOCIAL NETWORKS

Hao Zhu†, Gonzalo Mateos†, Georgios B. Giannakis†, Nicholas D. Sidiropoulos∗, and Arindam Banerjee†

†University of Minnesota, 200 Union St. SE, Minneapolis, MN 55455, USA
∗Technical University of Crete, Dept. of ECE, 73100 Chania, Crete, Greece

ABSTRACT

Co-clustering can be viewed as a two-way (bilinear) factorization of
a large data matrix into dense/uniform and possibly overlapping sub-
matrix factors (co-clusters). This combinatorially complex problem
emerges in several applications, including behavior inference tasks
encountered with social networks. Existing co-clustering schemes
do not exploit the fact that overlapping factors are often sparse,
meaning that their dimension is considerably smaller than that of
the data matrix. Based on plaid models which allow for overlapping
submatrices, the present paper develops a sparsity-cognizant over-
lapping co-clustering (SOC) approach. Numerical tests demonstrate
the ability of the novel SOC scheme to globally detect multiple
overlapping co-clusters, outperforming the original plaid model
algorithms which rely on greedy search and ignore sparsity.

Index Terms— Clustering, overlapping co-clustering, sparsity,
plaid models.

1. INTRODUCTION

The problem of co-clustering amounts to simultaneous clustering of
a set of objects (samples) and the set of their attributes (features) into
classes according to some similarity criterion; see e.g., the tutorial
paper [1] and references therein. Given a data matrix with rows rep-
resenting different samples and columns representing features, co-
clustering reduces to finding dense, approximately constant-valued
submatrices (see Fig. 1). The co-clustering problem is NP-hard (by
reduction to ordinary clustering as in k-means), yet there is growing
interest in efficient suboptimal co-clustering algorithms due to their
importance in a gamut of timely applications in biostatistics, social
network analysis, recommendation systems, and telecommunication
networks.

One of the major challenges of social network analysis is identi-
fication of cohesive subgroups of actors within a network [2]. When
the relational data is represented in the form of a sociomatrix, un-
veiling these subgroups becomes a co-clustering problem. Recently,
co-clustering techniques have been also utilized for the purpose of
understanding and analyzing the behavioral characteristics of Inter-
net traffic [3]. By performing an orthogonal nonnegative matrix fac-
torization of the adjacency matrix of the so-termed traffic activity
graphs (TAGs), dominant host groups with strong interactions can be

This work was supported by the NSF grants CCF-0830480 and ECCS-

0824007; and also through collaborative participation in the Communications

and Networks Consortium sponsored by the U. S. Army Research Laboratory

under the Collaborative Technology Alliance Program, Cooperative Agree-

ment DAAD19-01-2-0011. The U. S. Government is authorized to reproduce

and distribute reprints for Government purposes notwithstanding any copy-

right notation thereon.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Fig. 1. Data matrix with latent overlapping co-clustering structure
(left); and ideal co-clustering algorithm output where the underlying
structure is revealed after suitable row/column permutations (right).

identified. However, orthogonality in [3] leads to non-overlapping
co-clusters, a restrictive constraint for Internet traffic modeling and
many other types of applications. In fact, most of the existing co-
clustering algorithms, e.g., the ones in [1], consider only the case of
non-overlapping clusters.

In the context of revealing interpretable biological structure in
gene expression microarray data, the plaid model was put forth in [4]
and is arguably amongst the most flexible co-clustering techniques.
In this model, co-clusters or submatrices are referred to as layers and
are allowed to overlap, while their union does not necessarily cover
the whole data set. To fit the plaid model, a heuristic and greedy
iterative algorithm was developed in [4] that includes layers one at
a time until no more significant layers can be extracted. Further
algorithmic improvements were reported in [5].

As data sets grow large, row/column co-cluster membership vec-
tors are highly sparse, since only a few of the rows and columns
determine each of the interesting submatrices sought. Incorpora-
tion of sparsity as prior information is expected to yield improved
performance, encouraging parsimonious models that are more in-
terpretable and informative. Even though sparsity-encouraging co-
clustering methods are well motivated, they remain so far relatively
unexplored.

Motivated by these considerations, the present paper develops
a novel approach for sparsity-cognizant overlapping co-clustering
(SOC). The resultant SOC algorithm builds on the plaid model
and inherits its flexibility in modeling overlapping clusters. It en-
courages sparsity by appropriately modifying the plaid estimation
criterion, through �1-norm regularization of the binary row/column
(layer) co-cluster membership vectors. Estimation of the model
parameters is based on an alternating block-minimization algorithm,
which performs simultaneously cross-layer optimization instead of
the greedy layer-by-layer strategy in [4] and [5]. On a per iteration
basis, the algorithm: i) solves a sequence of ordinary least-squares
(LS) problems to refine the layer levels; and ii) fits a Lasso-type of
model with binary constraints to determine which of the rows and
columns of Y are assigned to each layer. Numerical experiments
with synthetic data show that the proposed scheme can outperform

3534978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010

the baseline plaid model, highlighting its potential for real Internet
traffic and sociomatrix data analysis. Diverse experiments with real
data will be provided in the journal version [6].

2. PROBLEM STATEMENT AND PLAID MODELS

Consider an n × p matrix Y induced by two groups of interacting
nodes {Ai}n

i=1 and {Bj}p
j=1, with the (i, j)-th entry Yij ∈ R mea-

suring the strength of the relationship between nodes Ai and Bj . As
will become clear later on, the term ‘node’ should be understood
as an abstract entity, possibly representing actors in a sociological
study, or gene/sample descriptors in a microarray experiment. The
two groups of nodes are not necessarily different, while simple di-
chotomous relationships can be captured through binary-valued ma-
trices Y.

For example, in the identification of cohesive social subgroups,
the two groups coincide and Y becomes a sociomatrix, i.e., the
n × n adjacency matrix of the graph induced by the set of actors
{Ai}n

i=1 [2]. In this case, Yij = 1 if the actors i and j are re-
lated, and 0 otherwise. Another example is the traffic activity graph
(TAG) for Internet traffic flow analysis. There, {Ai}n

i=1 represents
the set of hosts within a local area network (LAN) engaged in com-
munications with outside hosts {Bj}p

j=1. The value Yij tracks the
traffic flow between Ai and Bj during a given time interval; or even
simpler, Yij = 1 if there exists traffic, and 0 otherwise. Last but not
least, Y can represent the DNA microarray data obtained from genes
{Ai}n

i=1 and samples {Bj}n
j=1, where Yij measures the expression

level with which gene Ai is expressed in sample Bj . Relying on
the data in Y, the goal is to unveil the most descriptive relationships
between the interacting node groups.

Whereas assumptions about the data and their interpretation are
heavily application-dependent, a common feature in applications of
co-clustering is the presence of (hidden) dense/uniform submatrices,
each capturing a subset of {Ai}n

i=1 that has similar feature values re-
lated to a subset of {Bj}p

j=1. For sociomatrices, permuting the rows
and columns can reveal subgroups of actors closely related to each
other. For an http TAG between inside and outside hosts of a univer-
sity campus, one submatrix might coincide with a research group’s
frequent visits to a server “farm”, e.g., IEEEXplore�. In DNA mi-
croarray data, a uniform submatrix can help identify a subgroup of
co-regulated genes under a subset of experimental conditions. All
in all, these submatrices may reveal certain informative behavioral
patterns in a concise fashion. Finding such submatrices boils down
to a co-clustering problem.

Several practical concerns have to be addressed in these co-
clustering applications. First, a huge amount of data is usually col-
lected in Y. For instance, in TAG analysis the number of hosts is
typically in the order of thousands [3], and for DNA microarrays np
can be over 500,000 easily [4]. Therefore, the submatrices, espe-
cially the interesting ones, are usually hidden ‘sparsely’ in Y. How-
ever, traditional co-clustering algorithms are sparsity agnostic. Sec-
ond, the submatrices may overlap, so that some nodes can belong to
different submatrices. For example, an actor of diverse expertise can
be involved with different fellow actor groups; or a gene can have
multiple functions and hence co-regulate with different subsets of
genes in different samples. In this context, given a data array Y with
those characteristics, the aim of the present paper is to develop an
efficient co-clustering algorithm to extract the underlying submatri-
ces, by exploiting sparsity and accounting for possible overlapping
clusters.

2.1. Plaid Models

In order to solve the co-clustering problem, one can model the data
array Y as a superposition of multiple submatrices. This is the basic
idea behind plaid models, which have been successfully used in gene
expression analysis [4]. Specifically, the basic plaid model consists
of multiple uniform layers, submatrices in our terminology, intended
to capture the behavior patterns, and also a background layer to ac-
count for certain global effects. Given a total of k submatrices, the
value Yij is expressed using the summation of all the layer effects,
and a noise level εij ; that is,

Yij = μ0 +

k∑
l=1

μlρilκjl + εij , ∀i, ∀j (1)

where μ0 is the background level color, μl describes the level of
layer l, ρil = 1 if Ai is in the l-th submatrix (0 otherwise); and simi-
larly, κjl = 1 if Bj is in the l-th submatrix (0 otherwise). The binary-
valued numbers ρil and κjl are the l-th submatrix membership indi-
cator for Ai and Bj , respectively. Incorporating row/column-level
related effects for each layer, (1) becomes

Yij = (μ0 + αi0 + βj0) +

k∑
l=1

(μl + αil + βjl)ρilκjl + εij

=
k∑

l=0

θijlρilκjl + εij , ∀i, ∀j (2)

where αil and βjl capture node-related effects of Ai and Bj within
the l-th submatrix. With the plaid model of (2), we seek the optimal
membership indicators to minimize the data fitting error

min
ρil,κjl∈{0,1},θijl

1

2

n∑
i=1

p∑
j=1

(
Yij − θij0 −

k∑
l=1

θijlρilκjl

)2

+λ
n∑

i=1

k∑
l=1

|ρil| + λ

p∑
j=1

k∑
l=1

|κjl| (3)

where λ > 0 controls the sparsity enforced on the chosen indicators.
The first term in (3) is a classical LS fitting error criterion consid-
ered in [4]. The novelty here is in the last two sums which exploit
the sparsity of the submatrices present in plaid models. Given that
the number of informative submatrices and the size of them is usu-
ally much smaller compared to the problem dimension, enforcing
sparsity facilitates extraction of the most representative submatrices
out of the data Y.

It is well known that many clustering problems are NP-hard; see
e.g., [4]. The problem (3) is further complicated due to the binary
constraints. These considerations motivate the development of effi-
cient approximation algorithms in the next section. Before continu-
ing, it is worth stressing that the original algorithms for plaid models
[4, 5] identify the submatrices one by one; that is, they first detect the
largest submatrix, then subtract it from Y, and restart from the resid-
ual matrix to identify the next one. This way, they are likely to lose
the global picture for Y and are prone to error propagation across
different submatrices, since it is impossible to refine the submatri-
ces once they have been determined. To address this limitation, we
are going to perform simultaneous identification of all submatrices.
Section 3 will elaborate on our novel sparsity-cognizant overlapping
co-clustering (SOC) algorithm based on plaid models.

3. SOC ALGORITHM

To simplify exposition, suppose we have obtained the background
layer levels μ0, αi0, and βj0 (see details in Section 3.3). The (i, j)-

3535

th entry of the residual matrix Z then becomes

Zij = Yij − (μ0 + αi0 + βj0) =

k∑
l=1

θijlρilκjl + εij . (4)

Given the number of submatrices k, minimizing the fitting error in
(3) amounts to substituting the term Yij−θij0 with Zij , and the SOC
algorithm is developed to solve this problem. As mentioned earlier,
the sparsity is enforced in (3) through the �1 norm penalty. This
term necessitates cross-layer data fitting, instead of the greedy search
across layers. To this end, we adopt an iterative approach where all
the θ, ρ, and κ values are updated in turn per iteration cycle. Let

θ(s) denote all θ
(s)
ijl values ∀i, j, l at iteration s; and likewise for ρ(s)

and κ(s). After selecting initial values for ρ(0) and κ(0) as detailed
in Section 3.3, S update iterations follow. For s = 1, . . . , S, vector
θ(s) is updated from ρ(s−1) and κ(s−1), then ρ(s) is updated from
θ(s) and κ(s−1), and finally κ(s) from θ(s) and ρ(s).

In addition to this iterative cycling, the membership indicators
are updated with exact search on the binary-valued alphabet. This
has been shown to yield better performance in [5], compared to the
soft estimation of the original algorithm in [4]. However, since we
update across all the submatrices, the problem (3) with binary-valued
constraint will incur combinatorial complexity. Therefore, reduced-
complexity algorithms will be used later to search for the optimal
solution to the �1 penalized cost function on the binary lattice. First,
let us look at the update of the real-valued layer level.

3.1. Updating θ(s)

Given ρ(s−1) and κ(s−1), at iteration s we update the θ
(s)
ijl values by

minimizing

min
μl,αil,βjl

1

2

n∑
i=1

p∑
j=1

(
Zij−

k∑
l=1

(μl + αil + βjl)ρ
(s−1)
il κ

(s−1)
jl

)2

.

(5)

This is an unconstrained quadratic programming (QP) problem,
which can be solved in closed form. However, finding such solution
entails inversion of a large matrix, the dimension of which equals the
number of unknowns in (5). For this reason, we will apply instead
the coordinate descent algorithm. Specifically, for l = 1, . . . , k
suppose we have all the layer levels for the k submatrices but the
l-th one, let the (i, j)-the entry of matrix Z̃l be

Z̃l
ij = Zij −

k∑
l′=1,l′ �=l

θ
(s)

ijl′ρ
(s−1)

il′ κ
(s−1)

jl′ (6)

and extract from Z̃l of the rows where ρ
(s−1)
il = 1 and the columns

where κ
(s−1)
jl = 1 to form the reduced matrix Žl. Minimizing (5)

then yields

μ
(s)
l = mean(Žl)

α
(s)
il = mean(Žl

i:) − μ
(s)
l

β
(s)
jl = mean(Žl

:j) − μ
(s)
l (7)

where mean(·) returns the mean of all the matrix entries. Note that

α
(s)
il = 0 for the rows that are not in the l-th submatrix; and similarly

for β
(s)
jl . The coordinate descent algorithm updates the l-th subma-

trix feature levels as in (7), by cycling through l = 1, . . . , L in turn,
for T cycles.

3.2. Updating ρ
(s)
il and κ

(s)
jl

Due to the symmetry of updating the row/column membership indi-
cators, we will only focus on detecting ρ(s) using θ(s) and κ(s−1).
Notice that in this case minimization of the fitting error in (3) reduces
to n subproblems, each one indexed by i = 1, . . . , n

{ρ(s)
il }k

l=1 = min
ρil∈{0,1}

1

2

p∑
j=1

(
Zij −

k∑
l=1

θ
(s)
ijl κ

(s−1)
jl ρil

)2

+λ
k∑

l=1

ρil

(8)

where the absolute value in the �1 norm penalty term has been
dropped due to non-negativity (we enforce a {0, 1} alphabet). With
the goal of minimizing the LS cost along with a penalty λ per
ρil = 1, the solution to (8) is expected to both be a good fit of
the model and also exhibit sparsity. This accounts for the fact that
only a few and relatively small informative submatrices are typically
present compared to the problem dimension. The membership indi-

cators for the i-th row, i.e., {ρ(s)
il }k

l=1, need to be obtained jointly.
This is critical for the case of overlapping submatrices, where the

cross-effects are relatively strong, thus solving {ρ(s)
il }k

l=1 jointly is
expected to offer considerably improved performance.

The minimization problem in (8) is quadratic subject to {0, 1}
binary constraints. Mathematically, the problem is the same encoun-
tered in MIMO or multiuser detection with a binary pulse ampli-
tude modulation (PAM) alphabet. The problem is NP-hard, yet a
wide variety of advanced algorithms from the MIMO detection lit-
erature can be applied; e.g., see [7] and references therein. Among
these, the sphere decoding algorithm (SDA), offers (near-) optimal
performance at approximately cubic average complexity at medium-
to-high received signal-to-noise ratio, which is related to the quality
of the data matrix Z here. Therefore, given θ(s) and κ(s−1), we can
apply those polynomial complexity detection algorithms to obtain a

(sub-)optimal {ρ(s)
il }k

l=1 for each i = 1, . . . , n. Similarly, with θ(s)

and ρ(s), {κ(s)
jl }k

l=1 can be obtained efficiently ∀j = 1, . . . , p.

The last two subsections complete one iteration of the novel
SOC algorithm. Since the cost function in (3) is bounded below by
zero, and non-increasing per iteration, the SOC algorithm is guaran-
teed to converge at least to a stationary point. Regularization strate-
gies, such as pruning, have been used to refine the original algo-
rithms in [4, 5]. They can be implemented here too, but they are not
so relevant to the novelty of the SOC algorithm. Next, more details
are provided on some further issues involving the implementation of
the SOC algorithm.

3.3. Implementation Issues

The major part of the SOC algorithm outlined in the last two subsec-
tions exploits the sparsity inherent in typical application data, and
copes with the limitations of the original greedy layer-by-layer iden-
tification. In this section, we clarify some issues related to initializa-
tion and the choice of parameters.

The initialization includes two parts: the background level fit-
ting, and the starting values ρ(0) and κ(0) for the iterative cycles of
the SOC algorithm. The purpose of background fitting is to obtain
an accurate Z matrix in (4), such that the submatrices appear out of
the large data set. It is equivalent to the l-th layer level estimation
in Section 3.1, with Y substituting Žl, and all the row/column indi-
cators equal to one. The background fitting should also be included
whenever we have an improved estimate of all the submatrices after

3536

the update of θ(s). The indicators ρ(0) and κ(0) are initialized us-
ing k-means, the ‘workhorse’ clustering algorithm performing either
row or column partitioning; see e.g., [5] for more details.

Two parameters whose choice critically affects performance of
the SOC algorithm are: i) the number of layers, k; and ii) the con-
stant λ. In greedy layer-by-layer deflation approaches, k can be
chosen to explain a certain percentage of variation which is deemed
“systematic” for the type of data considered. The sparsity penalty
helps to find the most representative submatrices, and we can use
a similar deflation approach to determine a suitable k. The spar-
sity regularization parameter λ has been set by trial-and-error in
our experiments; however, systematic approaches based on bi-cross-
validation can be adopted; see e.g., [8] and the references therein.

4. PRELIMINARY NUMERICAL TESTS

In this section, a simulated test using synthetic data is presented to
illustrate the merits of the SOC algorithm. Comprehensive numeri-
cal experiments on real Internet traffic and sociometric data can be
found in [6], but are omitted here due to space limitations. Despite
their simplicity, simulated data sets are attractive since the results are
easy to visualize. For the ensuing comparison with the baseline algo-
rithm for plain models [4], the software available from the author’s
website is utilized.

The simulated data set corresponds to a 100 × 100 binary ma-
trix Y of all zeros, with the exception of two overlapping uniform
submatrices, respectively supported in S1 := [10, 40]× [10, 40] and
S2 := [30, 60]× [30, 60], such that Yij := 1 for i, j ∈ S1 ∪S2. The
additive noise on each entry of Y is uniformly distributed between
[0, 0.5] independently; see Fig. 2(a). The actual data set is obtained
by randomly permuting the rows and columns of the resulting ma-
trix, so that the latent sub-block structure is no longer apparent [Fig.
2(b)].

The SOC algorithm is tested after setting S = 20 cycling itera-
tions and T = 1 for the coordinate descent algorithm in Section 3.1,
targeting for k = 2 layers; for both λ = 0 (no sparsity enforced) and
λ = 3. We use the SDA to detect the optimal solution to (8). For
the background and additive layers, the full model in (2) is adopted.
For the plaid model implementation of [4], the row/column rejection
strategy was utilized as well as the option to search for small intense
layers rather than large diffuse ones (further details are in [4]); also
three backfitting cycles were conducted to re-optimize the θijk pa-
rameters, once the plaid model software discovered the significant
layers. Upon termination of the algorithms, rows and columns of the
estimated matrix (obtained as sum of fitted layers) were permuted
back to the original order to inspect whether the original overlap-
ping submatrices have been recovered.

The layer membership results are depicted in Fig. 2 (c)-(e), by
showing the support of the layers found. Both the proposed algo-
rithm without sparsity and the plaid model fail to recover the origi-
nal structure. In particular, the plaid model recovers a single signifi-
cant layer after deflating the background from Y. Through �1-norm
regularization of the layer row/column membership indicators, the
proposed scheme with λ = 3 yields the desired result after suc-
cessfully refining the initializations. In this case, μ1 = 0.9349
and μ2 = 0.9063, while the αik and βjk have nonzero support for
i, j ∈ S1 ∩ S2 and k = 1, 2. This way, after summing layers the

fitted values Ŷij ≈ 1 in the overlapping region also. Exploiting spar-
sity is key in determining the exact structure, while the greedy nature
of the plaid model leads to a single co-cluster covering all effects but
with insufficient resolution.

(a)
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(b)
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(c)
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(d)
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(e)
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Fig. 2. Simulated data set with overlapping submatrices (a), and
after row/column permutations (b). Co-clustering results: proposed
scheme with λ = 0 (c), λ = 3 (e), and the plaid model (d).

5. CONCLUSIONS AND CURRENT RESEARCH

A novel sparsity-exploiting co-clustering approach was developed
based on plaid models which allow for overlapping co-clusters.
Preliminary numerical tests corroborated the merits of the resultant
SOC algorithm relative to competing alternatives in determining the
exact model structure. An interesting direction to substantiate the
proposed approach includes establishing uniqueness of the solution
which minimizes the LS cost regularized with the �1 norm under
the binary alphabet constraints. In addition, the novel approach is
currently tested on real data sets, and results will be reported in the
final version of the paper as well as in [6].

6. REFERENCES

[1] S. Busygin, O. Prokopyev, and P. M. Pardalos, “Biclustering in data
mining,” Computers and Operations Research, vol. 35, pp. 2964–2987,
2008.

[2] S. Wasserman and K. Faust, Social Network Analysis, Cambridge Uni-
versity Press, 1994.

[3] Y. Jin, E. Sharafuddin, and Z. L. Zhang, “Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition,” in Proc. of SIGMETRICS, New York, NY, 2009, pp.
49–60.

[4] L. Lazzeroni and A. Owen, “Plaid models for gene expression data,”
Statistica Sinica, vol. 12, pp. 61–86, 2002.

[5] H. Turner, T. Bailey, and W. Krzanowski, “Improved biclustering of mi-
croarray data demonstrated through systematic performance tests,” Com-
put. Stat. Data Anal, vol. 48, pp. 235–254, 2005.

[6] H. Zhu, G. Mateos, G. B. Giannakis, N. D. Sidiropoulos, and A. Baner-
jee, “Sparsity-exploiting overlapping co-clustering for behavior infer-
ence in social networks,” (journal version in preparation).

[7] G. B. Giannakis, Z. Liu, X. Ma, and S. Zhou, Space-Time Coding for
Broadband Wireless Communications, John Wiley & Sons, Inc., 2007.

[8] D. M. Witten, R. Tibshirani, and T. Hastie, “A penalized matrix decom-
position, with applications to sparse principal components and canonical
correlation analysis,” Biostatistics, vol. 10, pp. 515–534, 2009.

3537

