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ABSTRACT

A nonparametric version of the basis pursuit method is developed
for field estimation. The underlying model entails known bases,
weighted by generic functions to be estimated from the field’s noisy
samples. A novel field estimator is developed based on a regularized
variational least-squares (LS) criterion that yields estimates spanned
by thin-plate splines. Robustness considerations motivate well the
adoption of an overcomplete set of basis functions, together with a
sparsity-promoting regularization term, which endows the estima-
tor with the ability to select a few of these bases that “better” ex-
plain the data. This parsimonious field representation becomes pos-
sible because the sparsity-aware spline-based method of this paper
induces a group-Lasso estimator of the thin-plate spline basis expan-
sion coefficients. The novel spline-based approach to basis pursuit
is motivated by a spectrum cartography application, in which a set
of sensing cognitive radios collaborate to estimate the distribution of
RF power in space and frequency. Simulated tests corroborate that
the estimated power spectrum density atlas yields the desired RF
state awareness, since the maps reveal spatial locations where idle
frequency bands can be reused for transmission, even when fading
and shadowing effects are pronounced.

Index Terms— Sparsity, basis pursuit, splines, (group-)Lasso,
field estimation, cognitive radio sensing.

1. INTRODUCTION

The unceasing demand for continuous situational awareness in the
context of cognitive radio (CR) networks calls for innovative signal
processing algorithms, complemented by collaborative sensing plat-
forms to accomplish the objectives of layered sensing and control.
These challenges are embraced in the study of spectrum cartography
whereby CRs cooperate to estimate the distribution of power across
spatial locations x and frequencies f , namely the power spectrum
density (PSD) map Φ(x, f). Knowing the PSD at any location al-
lows remote CRs to reuse dynamically idle bands. It also reveals ad-
ditional opportunities compared to existing alternatives, which have
mostly relied on space-invariant models for the RF ambience [9], [8].
Indeed, it broadens the access of secondary systems to the RF spec-
trum, since knowledge of Φ(x, f) allows CRs to share frequencies
with primary users as long as they operate in areas (spatial holes)
where the primary signal is too weak for reliable communication;
see also [2].

The estimated PSD map need not be extremely accurate, but
precise enough to identify spectrum holes. As it will be argued in
Section 2, this justifies adopting a set of known bases to capture
the frequency dependence of Φ(x, f), yielding the basis expansion
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model

Φ(x, f) =

Nb∑
ν=1

gν(x)bν(f) (1)

with x ∈ R
2, f ∈ R, and the L2−norms {||bν(f)||L2 = 1}Nb

ν=1

normalized to unity. The bases {bν(f)}Nb
ν=1 are preselected, and the

functions gν(x) are to be estimated based on noisy PSD samples. As
far as the spatial dependence is concerned, the model must account
for path loss, fading, mobility, and shadowing effects, all of which
vary with the propagation medium. For this reason, it is prudent to
adopt a nonparametric approach and let the data dictate the spatial
component of (1). This motivates a variational least-squares (LS)
estimator for gν(x) regularized with a thin-plate splines penalty, en-
forcing smoothness in the solution, and rendering it expressible as a
combination of radial basis kernels [6].

Consider selecting Nb basis functions using the basis pursuit ap-
proach [5], which entails an extensive set of bases (Nb overly large)
and thus an overcomplete model. This motivates augmenting the
variational LS problem with an extra sparsity-encouraging penalty,
which endows the map estimator with the ability to discard factors
gν(x)bν(f) in (1), only retaining a few bases that “better” explain
the data. This attribute is inherited because the novel sparsity-aware
spline-based method of this paper induces a group-Lasso estimator
for the coefficients of the spline-based representation of gν . Group-
Lasso estimators are known to set groups of weak coefficients to zero
(here the Nb groups associated with coefficients per gν ), and outper-
form the sparsity-agnostic LS estimator by capitalizing on the spar-
sity present [10]. A related approach to model selection in nonpara-
metric regression is the component selection and smoothing operator
(COSSO) [7]. Different from the approach followed here, COSSO
does not perform basis selection and is limited to smoothing-spline,
analysis-of-variance models. Compared to the single group-Lasso
estimate here, COSSO entails an iterative algorithm, which alter-
nates through a sequence of smoothing spline and nonnegative gar-
rote subproblems.

2. BEM FOR SPECTRUM CARTOGRAPHY

Consider a set of Ns sources transmitting signals {us(t)}Ns
s=1 us-

ing portions of the overall bandwidth B. The objective of revealing
which of these portions (sub-bands) are available for new systems to
transmit, suggests that the PSD estimate sought does not need to be
super accurate. This motivates modeling the transmit-PSD of each
us(t) as

Φs(f) =

Nb∑
ν=1

θsνbν(f), s = 1, . . . , Ns (2)

where the basis bν(f) is centered at frequency fν , ν = 1, . . . , Nb.
The example depicted in Fig. 1 involves (generally overlapping)
raised cosine bases with support Bν = [fν − (1 + ρ)/2Ts, fν +
(1 + ρ)/2Ts], where Ts is the symbol period, and ρ stands for the
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Fig. 1. Expansion with overlapping raised cosine pulses.

roll-off factor. Such bases can model transmit-spectra of e.g., multi-
carrier systems. In other situations, power spectral masks may dic-
tate sharp transitions between contiguous sub-bands, cases in which
non-overlapping rectangular bases may be more appropriate. All
in all, the set of bases should be selected to accommodate a priori
knowledge about the PSD.

The power transmitted by source s will propagate to the loca-
tion x ∈ R

2 according to a generally unknown spatial loss function
ls(x) : R

2 → R. The propagation model ls(x) not only captures
frequency-flat deterministic pathloss or frequency-invariant shadow-
ing patterns, but also stationary, block-fading and even frequency-
selective Rayleigh channel effects, since their statistical moments do
not depend on the frequency variable. In this case, the following van-
ishing memory assumption is required on the transmitted signals for
the spatial receive-PSD Φ(x, f) to be factorizable as ls(x)Φs(f);
see [3] for further details.
(as) Sources {us(t)}Ns

s=1 are stationary, mutually uncorrelated, in-
dependent of the channels, and have vanishing correlation per co-
herence interval; i.e., rss(τ) := E[us(t + τ)us(t)] = 0, ∀ |τ | >
Tc − L, where Tc and L represent the coherence interval and delay
spread of the channels, respectively.

Under (as), the contribution of source s to the PSD at point x
is ls(x)

∑Nb
ν=1 θsνbν(f); and the PSD due to all sources received

at x will be given by Φ(x, f) =
∑Ns

s=1 ls(x)
∑Nb

ν=1 θsνbν(f).
Such a model can be simplified by defining the function gν(x) :=∑Ns

s=1 θsν ls(x). With this definition and upon exchanging the or-
der of summation, the spatial PSD model takes the form in (1),

where functions {gν(x)}Nb
ν=1 are to be estimated. They represent

the aggregate distribution of power across space corresponding to
the frequencies spanned by the bases {bν}. Note that the sources
are not explicitly present in (1). Even if this model could have been
postulated directly for the cartography task at hand, the previous
discussion justifies the factorization of the Φ(x, f) map per band in
factors depending on each of the variables x and f .

3. COOPERATIVE SPLINE-BASED PSD ESTIMATION

The sensing strategy will rely on the periodogram estimate φ̂rn(τ)

at a set of receiving (sampling) locations X := {xr}Nr
r=1 ∈ R

2,
frequencies F := {fn}N

n=1 ∈ B, and time-slots {τ}T
τ=1. In order to

reduce the periodogram variance and mitigate fading effects, φ̂rn(τ)
is averaged across a window of T time-slots [3], to obtain

ϕrn :=
1

T

T∑
τ=1

φ̂rn(τ). (3)

Hence, the envisioned setup consists of Nr receiving CRs, which
collaborate to estimate the PSD map based on observations {ϕrn}.

While a BEM could be introduced for the spatial loss function
ls(x) as well [3], the uncertainty on the source locations and obstruc-
tions in the propagation medium may render such a model imprecise.

This will happen, e.g., when shadowing is present. The alternative

approach followed here relies on estimating {gν(x)}Nb
ν=1 based on

the data {ϕrn}. To capture the smooth portions of Φ(x, f), the cri-
terion for selecting gν(x) will be regularized using a so termed thin-
plate penalty [6]. This penalty extends to R

2 the one-dimensional
roughness regularization used in smoothing spline models.

A second penalty term is introduced to fit the unknown spatial

functions {gν}Nb
ν=1 in the model with a large (Nb � NrN ), and a

possibly overcomplete set of known basis functions {bν}Nb
ν=1. These

models are particularly attractive when there is an inherent uncer-
tainty on the transmitters’ parameters, such as central frequency and
bandwidth of the pulse shapers; or, e.g., the roll-off factor when
raised-cosine pulses are employed. In particular, adaptive commu-
nication schemes rely on frequently adjusting these parameters. A
sizeable collection of bases to effectively accommodate most of the
possible cases provides the desirable robustness. Still, prior knowl-
edge available on the incumbent communication technologies being
sensed should be exploited to choose the most descriptive classes of
basis functions; e.g., a large set of raised-cosine pulses. This knowl-
edge justifies why known bases are selected to describe frequency
characteristics of the PSD map, while a variational approach is pre-
ferred to capture spatial dependencies.

In this context, the envisioned estimation method should provide
the CRs with the capability of selecting a few bases that “better ex-
plain” the actual transmitted signals. As a result, most functions gν

are expected to be identically zero; hence, there is an inherent form
of sparsity present that can be exploited to improve estimation. The
rationale behind the proposed approach is rooted in the basis pursuit
principle, a term coined by [5] for finding the most parsimonious
sparse signal expansion using an overcomplete basis set. A major
differentiating aspect however, is that while the sparse coefficients
in the basis expansions treated in [5] are scalars, model (1) here en-
tails basis functions weighted by coefficient functions gν .

Accordingly, the proposed approach to sparsity-aware spline-
based field estimation from the space-frequency PSD measurements

ϕrn [cf. (3)], is to obtain {ĝν}Nb
ν=1 as

{ĝν}Nb
ν=1 := argmin

{gν∈S}

⎡⎣ 1

NrN

Nr∑
r=1

N∑
n=1

(
ϕrn −

Nb∑
ν=1

gν(xr)bν(fn)

)2

+λ

Nb∑
ν=1

∫
R2

||∇2gν(x)||2F dx + μ

Nb∑
ν=1

∥∥[gν(x1), . . . , gν(xNr )]′
∥∥

2

]
(4)

where ||∇2gν ||F denotes the Frobenius norm of the Hessian of
gν . The optimization is over S , the space of Sobolev functions,
for which the thin-plate penalty is well defined [6]. The parameter
λ ≥ 0 included in this penalty controls the degree of smoothing.
Specifically, for λ = 0 the estimates in (4) correspond to rough
functions interpolating the data; while as λ → ∞ the estimates
yield linear functions (cf. ∇2ĝν(x) ≡ 02×2). A smoothing parame-
ter in between these limiting values is selected using a leave-one-out
cross-validation (CV) approach.

The additional regularization term, which is weighted by a tun-
ing parameter μ ≥ 0, is responsible for the sparsity in the solution.
Note that the minimization of

∥∥[gν(x1), . . . , gν(xNr )]′
∥∥

2
intu-

itively shrinks all pointwise functional values {gν(x1), . . . , gν(xNr )}
to zero for sufficiently large μ. Interestingly, it will be shown in the
ensuing section that this is enough to guarantee that ĝν(x) ≡ 0 ∀x,
for μ large enough.
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4. GROUP-LASSO ON SPLINES

The optimization problem (4) is variational in nature, and in princi-
ple requires searching over the infinite-dimensional functional space
S. It turns out that (4) admits closed-form, finite dimensional mini-
mizers ĝν(x), as presented in the following proposition, which pro-
vides a generalization of the standard thin-plate splines results [6],
to the multi-dimensional BEM (1) [4].

Proposition 1: The estimates {ĝν}Nb
ν=1 in (4) are thin-plate splines

expressible in closed form as

ĝν(x) =

Nr∑
r=1

βνrK(||x − xr||2) + α′
ν1x + αν0 (5)

where K(ρ) := ρ2 log(ρ), and βν := [βν1, . . . , βνNr ]′ is con-
strained to the linear subspace B := {β ∈ R

Nr :
∑Nr

r=1 βr =

0,
∑Nr

r=1 βrxr = 02, xr ∈ X} for ν = 1, . . . , Nb.

4.1. Estimation using the group-Lasso

Consider the classical problem of linear regression where a vector
y ∈ R

n of observations is available, along with a matrix X ∈ R
n×p

of inputs. The group-Lasso estimate for the vector of features ζ :=
[ζ ′

1, . . . , ζ
′
Nb

]′ ∈ R
p is defined as the solution to [10]

min
ζ

1

2
‖y − Xζ‖2

2 + μ

Nb∑
ν=1

‖ζν‖2. (6)

This criterion achieves model selection by retaining relevant factors
ζν ∈ R

p/Nb in which the features are grouped. In other words,
group-Lasso encourages sparsity at the factor level, either by shrink-
ing to zero all variables within a factor, or by retaining them alto-
gether depending on the value of the tuning parameter μ ≥ 0. As
μ is increased, more sub-vector estimates ζν become zero, and the
corresponding factors drop out of the model.

The connection between (6) and the spline-based field estima-
tor (4) builds on Proposition 1, and is revealed when estimating the
parameters αν and βν in (5), as presented in Proposition 2. To
this end, some definitions are due at this point. Consider the vector
ϕ := [ϕ11, . . . , ϕ1N , . . . , ϕNr1, . . . , ϕNrN ]′ ∈ R

NrN containing
the network-wide data obtained at all frequencies in F . Three ma-
trices are also introduced collecting the regression inputs: i) T ∈
R

Nr×3 with rth row t′r := [1 x′
r] for r = 1, . . . , Nr and xr ∈ X ;

ii) B ∈ R
N×Nb with nth row b′

n := [b1(fn), . . . , bNb(fn)] for
n = 1, . . . , N ; and iii) K ∈ R

Nr×Nr with ij-th entry [K]ij :=
K(||xi − xj ||) for xi,xj ∈ X . Consider also the QR decomposi-
tion of T = [Q1 Q2] [R

′ 0]
′
.

These matrices are involved in obtaining the optimal αν and βν

as summarized in the following result [4].

Proposition 2: The spline-based field estimator (4) is equivalent to
group-Lasso (6), under the identities

y :=
1√

NrN
[ϕ′, 0]′

X :=

[
B ⊗ INr

INb ⊗
{

bdiag((NrNλQ′
2KQ2)

1/2,0)[KQ2 T]−1
} ]

√
NrN

(7)

with their respective solutions related by (5) and

[
β′

ν , α′
ν

]′
= bdiag(Q2, I3)[KQ2 T]−1ζ̂ν (8)

where αν := [αν0, α
′
ν1]

′.
Factors {ζν}Nb

ν=1 in (6) are in one-to-one correspondence with

vectors {[β′
ν , α′

ν ]′}Nb
ν=1 through the linear mapping (8). This im-

plies that whenever a factor ζν is dropped from the linear regression
model obtained after solving (6), then ĝν(x) ≡ 0, and the term cor-
responding to bν(f) does not contribute to (1). Hence, by appropri-
ately selecting the value of μ, criterion (4) has the potential of retain-
ing only the most significant terms in Φ(x, f) =

∑Nb
ν=1 gν(x)bν(f),

and thus yields parsimonious PSD map estimates. All in all, the mo-
tivation behind the variational problem (4) is now unravelled. The
second penalty renders (4) equivalent to a group-Lasso problem.
This enforces sparsity in the parameters of the splines expansion for
Φ(x, f) at a factor level, which is exactly what is needed to poten-
tially null the less descriptive functions gν .

The group-Lassoed splines-based approach to spectrum cartog-
raphy developed in this section can be summarized in the following
steps to estimate the global PSD map Φ(x, f):

S1. Given ϕ, compute (7), and solve (6) for ζ̂ := [ζ̂ ′
1, . . . , ζ̂

′
Nb

]′.

S2. Change variables [β̂′
ν , α̂′

ν ]′ = bdiag(Q2, I3)[KQ2 T]−1ζ̂ν .

S3. Substitute α̂ν and β̂ν into (5) to obtain {ĝν(x)}Nb
ν=1.

S4. Use {ĝν(x)}Nb
ν=1 in (1) to estimate Φ(x, f).

5. NUMERICAL TESTS

Consider a set of Nr = 100 CRs uniformly distributed in an area of
100m2, cooperating to estimate the PSD map generated by Ns = 2
licensed users (sources). Both transmitted signals are raised cosine
pulses with roll-off factors ρ = 1 and ρ = 0, respectively, and cor-
responding bandwidths W = 10 and W = 20 MHz. They share the
frequency band B = [100, 200] MHz with spectra centered at fre-
quencies fc = 115 and 165MHz, respectively. Fig. 2 (top) depicts
the PSD generated by the active transmitters. The PSD generated by
source s experiences fading and shadowing effects in its propagation
from xs to any location x, where it can be measured in the presence
of noise. A 6-tap Rayleigh model is adopted for the multipath chan-
nel Hs(f, τ,x) between xs and x, whose expected gain adheres to
the path-loss law E(|Hs|2) = min

{
(1, (Δ/||xs − x||2)3

}
, with

Δ = 60m. Shadowing effects are simulated using the model in [1]
with σ = 5dB and δ = 25m. The combined propagation pattern for
the power transmitted by source TX1 is depicted in Fig. 3 (top).

5.1. Spectrum cartography

When designing the basis functions in (1), it is known a priori that
the transmitted signals are indeed normalized raised cosine pulses
with center frequencies fc on a grid of 10 evenly spaced points in B,
with roll-off factors ρ ∈ {0, 1}, and bandwidths W ∈ {10, 20, 30}
MHz. However, the actual combination of bandwidths and roll-off
factors used can be unknown, which justifies why an overcomplete
set of bases comes handy. This setup amounts to 60 possible com-
binations for ρ, W , and fc, thus Nb = 60 bases are adopted. Each

CR computes periodogram samples φ̂rn(τ) at N = 64 frequencies
with SNR = −5 dB, and averages them across T = 1000 time-
slots to form ϕrn, n = 1, . . . , 64 as in (3). These network-wide
observations at T = 1000 are collected in ϕ, and following steps
S1-S4 at the end of Section 4, the spline-based estimator (4), and
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Fig. 2. (top) PSD generated by both sources; (bottom) frequency
bases selected by the nonparametric basis pursuit estimator.

thus the PSD map Φ̂(x, f) is formed. The estimated factor ĝ1(x)

is depicted in Fig. 3 (bottom). Inspection of the estimate Φ̂(x, f)
across frequency confirms that group-Lasso succeeds in selecting the

candidate bases. Fig. 2 (bottom) shows points representing ‖ζ̂ν‖2,

ν = 1, . . . , Nb, where ζ̂ν is the sub-vector in the solution of the
group-Lasso estimator (6) associated with gν(x) and bν(f). They
peak at indexes ν = 12 and 27 (circled in red), which correspond to
the “ground-truth” model, since bases b12 and b27 match the spectra
of the transmitted signals.

In summary, this test case demonstrates that the spline-based es-
timator can reveal which frequency bands are (un)occupied at each
point in space, thus allowing for spatial reuse of the idle bands. For
instance, transmitter TX1 at the left in Fig. 3 is associated with the
basis function b12(f), the only one of the transmitted two that oc-
cupies the 105 − 125 MHz sub-band. Therefore, this sub-band can
be reused at locations x away from the transmission range of TX1,
which is represented by the blue area in Fig. 3.
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field ĝ12(x).

cognitive radio using decentralized projection algorithms,” in Proc. of
SPAWC, Perugia, Italy, Jun. 2009, pp. 116 – 120.

[3] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,” IEEE Trans. on Signal
Processing, vol. 58, pp. 1847–1862, Mar. 2010.

[4] J. A. Bazerque, G. Mateos, and G. B. Giannakis, “Group-lasso on
splines for spectrum cartography,” IEEE Trans. Signal Processing, June
2010 (submitted); also arXiv:1010.0274v1 [stat.ME].

[5] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, pp.
33–61, 1998.

[6] J. Duchon, Splines Minimizing Rotation-Invariant Semi-norms in
Sobolev Spaces. Springer-Verlag, 1977.

[7] Y. Lin and H. H. Zhang, “Component selection and smoothing in mul-
tivariate nonparametric regression,” Annals of Statistics, vol. 34, pp.
2272–2297, May 2006.

[8] K. Nishimori, R. D. Taranto, H. Yomo, P. Popovski, Y. Takatori,
R. Prasad, and S. Kubota, “Spatial opportunity for cognitive radio sys-
tems with heterogeneous path loss conditions,” in Proc. of 65th Vehicu-
lar Technology Conference, Dublin, Ireland, Apr. 2007, pp. 2631–2635.

[9] Z. Quan, S. Cui, V. H. Poor, and A. H. Sayed, “Collaborative wide-
band sensing for cognitive radios,” IEEE Signal Processing Magazine,
vol. 25, pp. 60–73, Nov. 2008.

[10] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. Royal. Statist. Soc B, vol. 68, pp. 49–67, 2006.

2995


