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Abstract—A cooperative approach to the sensing task of
wireless cognitive radio (CR) networks is introduced based on a
spatial model of the power spectrum density (PSD). The model
entails a basis expansion of the PSD in frequency, weighted
by unknown spatial functions that are estimated from CR
measurements. A novel model estimator is developed using a
least-squares (LS) criterion regularized with a smoothing penalty.
The estimator yields a finitely-parameterized two-dimensional
surface spanned by thin-plate splines, which approximates the
distribution of power in space. An online PSD tracker is also
developed for slowly time-varying power spectra. Different from
existing approaches to interference spectrum cartography, the
novel sensing scheme neither requires knowledge of second-order
spatial statistics, nor it relies on stationarity assumptions.

I. INTRODUCTION

Spectrum sensing is of paramount importance to the opera-

tion of CR systems, which aim at efficient spectrum utilization.

Sensing the ambient interference spectrum enables spatial

frequency reuse and allows for dynamic spectrum allocation.

Energy detection is a simple yet effective scheme that has

been widely adopted to this end, because it circumvents the

need for synchronization with unknown transmitted signals;

see, e.g., [5], [7] and references therein. Collaboration among

CRs can markedly improve the sensing performance [9], and is

key to revealing opportunities for spatial frequency reuse [8].

This paper develops a collaborative sensing scheme whereby

receiving CRs cooperate to estimate the distribution of power

in space x and frequency f , namely the spectrum map

Φ(x, f). Knowing the spectrum at any location allows remote

CRs to reuse dynamically idle bands. It also enables CRs

to adapt their transmit-power so as to minimally interfere

with licensed transmitters. In this context, the threshold for

deciding occupancy of a frequency band is not set according

to the probability of false alarms, but through comparing PSD

estimates against prescribed power levels.

A related approach was taken in [1], where interference

measurements are spatially interpolated using the Kriging

technique to obtain the desired Φ(x, f). This method is

applicable provided that the CR observations are spatially
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wide-sense stationary, and requires knowledge of the mean

and auto-covariance of the spatial random field. However,

obtaining accurate statistical models to characterize the radio

environment is challenging [10].

The present paper introduces a novel PSD estimator, which

is obtained by fitting a space-frequency model to (time-

averaged) periodogram measurements collected at spatially

dispersed CRs. The estimator need not be extremely accurate,

but precise enough to identify spectrum holes. This motivates

adopting a basis expansion to model the PSD dependence in

frequency. As far as the spatial dependence is concerned, the

model must account for path loss, fading, mobility, and shad-

owing effects, all of which vary with the propagation medium.

For this reason, it is prudent to let the data dictate the spatial

component of the model. This becomes possible through a

regularized least-squares (LS) criterion, which effects spatial

smoothness in the estimated PSD. In a nutshell, the novel

model for Φ(x, f) entails a preselected basis in frequency and

spline kernels in the spatial dimension. An online version of

the novel scheme is also developed to track slow variations in

the PSD map across time, a feature that is particularly useful

when e.g., a transmitter joins or departs.

The spline-based PSD estimator here provides an alternative

to [2], where basis expansions are used both in space and

frequency. Different from [1], [2], it does not require a spatial

covariance model or pathloss law chosen a fortiori. Moreover,

it captures general propagation characteristics including both

shadowing and fading. Similar to [2] though, the resultant

algorithms work as general field estimation and localization

tools.

II. SPATIAL PSD MODEL

Consider a set of Ns sources transmitting signals

{us(t)}Ns
s=1 using portions of the overall bandwidth B. The

objective of revealing which of these portions (sub-bands)

are available for new systems to transmit, suggests that the

PSD estimate sought does not need to be super accurate. This

motivates modeling the PSD of each us(t) as

Φs(f) =
Nb∑
ν=1

θsνbν(f), s = 1, . . . , Ns (1)

where the basis bν(f) is centered at frequency fν , ν =
1, . . . , Nb. The example depicted in Fig. 1 involves overlap-
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Fig. 1. Expansion with overlapping raised cosine pulses.

ping raised cosine bases of unit height and support Bν =
[fν − (1 + ρ)/2Ts, fν + (1 + ρ)/2Ts], where Ts is the

symbol period and ρ stands for the roll-off factor. Such

bases can model transmit spectra of e.g., multicarrier systems.

In other situations, power spectral masks may dictate sharp

transitions between contiguous sub-bands, cases in which non-

overlapping rectangular bases may be more appropriate. All in

all, the set of bases should be selected to accommodate a priori

knowledge about the PSD.

The power transmitted by source s will propagate to the

location x ∈ R
2 according to a generally unknown spatial

loss function ls(x) : R
2 → R. As a result, the contribution

of source s to the PSD at point x is ls(x)
∑Nb

ν=1 θsνbν(f);
and the PSD due to all sources received at x will be given by

Φ(x, f) =
∑Ns

s=1 ls(x)
∑Nb

ν=1 θsνbν(f). Such a model can be

simplified by defining the function gν(x) :=
∑Ns

s=1 θsν ls(x).
With this definition and upon exchanging the order of sum-

mation, the spatial PSD model is

Φ(x, f) =
Nb∑
ν=1

gν(x)bν(f) (2)

where functions {gν(x)}Nb
ν=1 are to be estimated. They rep-

resent the aggregate distribution of power across space cor-

responding to the frequencies spanned by the bases {bν}.

Observe that the sources are not explicitly present in (2). Even

if this model could have been postulated directly, the previous

discussion justifies the factorization of the power spectral map

per band in factors depending on each variable x and f .

III. COOPERATIVE PSD ESTIMATION

The sensing strategy will rely on the periodogram estimate

φ̂rn(τ) at a set of receiving (sampling) locations X :=
{xr}Nr

r=1 ∈ R
2, frequencies F := {fn}N

n=1 ∈ B, and

time-slots {τ}T
τ=1. In order to reduce the variance of the

periodogram and mitigate fading effects, φ̂rn(τ) is averaged

across a window of T time-slots, to obtain

ϕrn :=
1
T

T∑
τ=1

φ̂rn(τ). (3)

Hence, the envisioned setup consists of Nr receiving CRs,

which collaborate to build the PSD map based on PSD

observations {ϕrn}. The bulk of processing is performed

centrally at a fusion center (FC), which is assumed to know

the locations X of all CRs and the sensed tones in F . The

FC receives – over a dedicated control channel – the vector

of samples ϕr := [ϕr1 . . . ϕrN ]′ ∈ R
N taken by node r for

all r = 1, . . . , Nr, where ′ denotes transposition.

While a basis expansion model can be introduced for the

spatial loss function ls(x) as well [2], the uncertainty on

the location of the sources and obstructions may render such

a model imprecise. This will happen, e.g., when shadowing

is present. The alternative approach followed here relies on

estimation of the functions gν(x) based on the data {ϕrn}.

To capture the smooth portions of Φ(x, f), the criterion for

selecting gν(x) will be regularized using a so termed thin-

plate penalty [12, p. 30]. This penalty extends to R
2 the one-

dimensional roughness regularization used in smoothing spline

models. Accordingly, {gν}Nb
ν=1 is estimated as

{ĝν}Nb
ν=1 := argmin

{gν∈S}
1
Ñ

Nr∑
r=1

N∑
n=1

(
ϕrn −

Nb∑
ν=1

gν(xr)bν(fn)

)2

+λ

Nb∑
ν=1

∫
R2

||∇2gν(x)||2F dx (4)

where Ñ := NrN , and ||∇2gν ||F denotes the Frobenius norm

of the Hessian of gν . The optimization is over S, the space

of Sobolev functions, for which the penalty is well defined

[4]. The parameter λ ≥ 0 controls the degree of smoothing.

Specifically, for λ = 0 the estimates in (4) correspond to rough
functions interpolating the data; while as λ → ∞ the estimates

must be linear functions (cf. ∇2ĝν(x) ≡ 0). A smoothing

parameter in between these limiting values will be selected

using a leave-one-out cross-validation approach as in e.g., [12].

A. The thin-plate splines solution

The optimization problem (4) is variational in nature, and

in principle requires searching over the infinite-dimensional

functional space S. Interestingly, it will turn out that (4) admits

closed-form, finite-dimensional minimizers ĝν(x). This should

not be surprising when the bases bν(f) have non-overlapping

support because (4) decouples per gν(x). Indeed, under this

condition on the bases (4) can be reformulated as

{ĝν} = arg min
{gν∈S}

Nb∑
ν=1

[
1
Ñ

Nr∑
r=1

(
ϕ̃rν − b̃νgν(xr)

)2

+λ

∫
R2

||∇2gν(x)||2F dx

]
=

{
arg min

gν∈S
1
Ñ

Nr∑
r=1

(
ϕ̃rν − b̃νgν(xr)

)2

+λ

∫
R2

||∇2gν(x)||2F dx

}
(5)

where ϕ̃rν :=
∑

n:fn∈Bν
ϕrn and b̃ν :=

∑
n:fn∈Bν

bν(fn).
Thus, each ĝν(x) can be obtained separately by solving the

standard thin-plate splines problem inside the curly brackets

in (5); see also [12, p. 31]. For the general case however, (4)

does not exhibit a separable structure, and the following result
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provides a generalization to the standard multi-dimensional

spline models.

Proposition 1: The estimates {ĝν}Nb
ν=1 in (4) are thin-plate

splines expressible in closed form as

ĝν(x) =
Nr∑
r=1

βνrK(||x − xr||2) + α′
ν1x + αν0 (6)

where K(ρ) := ρ2 log(ρ) and βν := [βν1 . . . βνNr
]′ is con-

strained to the linear subspace B := {β ∈ R
Nr :

∑Nr

r=1 βr =
0,

∑Nr

r=1 βrxr = 0, xr ∈ X} for ν = 1, . . . , Nb.
Proof: See [3, Proof of Proposition 1].

Remark 1: Proposition 1 asserts that the model in (2)

can afford overlapping frequency bases combined with spatial

splines, which allow for finite parametrization of the PSD map

[cf. (6)]. This is particularly important for non-FDMA based

CR networks.

What is left to determine are the coefficients

{βν , αν1, αν0}Nb
ν=1, the subject dealt with next.

B. Optimum coefficients: existence and uniqueness

Consider the vector ϕn := [ϕ1n . . . ϕNrn]′ of averaged pe-

riodogram samples taken at frequency fn, and form the super-

vector of all network-wide observations ϕ := [ϕ′
1 . . . ϕ′

N ]′ ∈
R

Ñ . For all ν = 1, . . . , Nb, define αν := [αν0 α′
ν1]

′ ∈
R

3 and recall that βν := [βν1 . . . βνNr
]′. Then, form the

respective supervectors α := [α′
1 . . . α′

Nb
]′ ∈ R

3Nb and

β := [β′
1 . . . β′

Nb
]′ ∈ R

NrNb . Finally, introduce three ma-

trices: i) T ∈ R
Nr×3 with rth row t′r := [1 x′

r] for

r = 1, . . . , Nr and xr ∈ X ; ii) B ∈ R
N×Nb with nth

row b′
n := [b1(fn) . . . bNb

(fn)] for n = 1, . . . , N ; and iii)

K ∈ R
Nr×Nr with ij-th entry [K]ij := K(||xi − xj ||) for

xi,xj ∈ X .

Using the previous definitions, observe that the constraints

βν ∈ B in Proposition 1 can be expressed as T′βν = 0
for each ν = 1, . . . , Nb, or jointly as (INb

⊗ T′)β = 0,

where ⊗ denotes Kronecker product and INb
stands for the

identity matrix of size Nb × Nb. Upon plugging (6) in (4), it

is shown in the Appendix that the optimal coefficients {α̂, β̂}
defining {ĝν(x)}Nb

ν=1 are obtained as solutions to the following

constrained, regularized LS problem

min
α,β

1
Ñ

‖ϕ − (B ⊗ K)β − (B ⊗ T)α‖2
2 + λβ′(INb

⊗ K)β

s. t. (INb
⊗ T′)β = 0. (7)

Even though K (hence INb
⊗K) is not positive definite, it is

still possible to show that β′(INb
⊗K)β > 0 for any β such

that (INb
⊗T′)β = 0 [4], implying that (7) is convex. To find

{α̂, β̂} introduce the QR decompositions of T and B

T = [Q1 Q2]
[
R
0

]
, B = [Ω1 Ω2]

[
Γ
0

]
(8)

where [Q1 Q2] and [Ω1 Ω2] are orthogonal, while R and Γ are

upper triangular. Proceeding along the lines of [12, p. 33], note

first that the constraint (INb
⊗T′)β = 0 implies the existence

of γ ∈ R
Nb(Nr−3) satisfying β = (INb

⊗ Q2)γ. Hence,

{α̂, β̂} can be obtained by solving the following system of

linear equations

(B ⊗ Q′
2)ϕ =

[
(B′B ⊗ Q′

2KQ2) + ÑλINb(Nr−3)

]
γ̂ (9)

[Γ ⊗ R]α̂ = (Ω′
1 ⊗ Q′

1)ϕ − (Γ ⊗ Q′
1KQ2)γ̂ (10)

β̂ = (INb
⊗ Q2)γ̂. (11)

Matrix Q′
2KQ2 is positive definite and rank(Γ ⊗ R) =

rank(Γ)rank(R); see e.g., [6]. It thus follows from (9)-(10)

that (7) admits a unique solution if and only if Γ and R are

invertible (correspondingly, B and T have full column rank).

These conditions place practical constraints that should be

taken into account at the system design stage. Specifically, T
has full column rank if and only if the points in X , i.e., the CR

locations, are not aligned. Furthermore, B will have linearly

independent columns provided the bases {bν(f)}Nb
ν=1 comprise

a linearly independent and complete set, i.e., B ⊆ ⋃
ν Bν .

Note that completeness precludes all frequencies {fn}N
n=1

from falling outside the aggregate support of the basis set,

hence leading to undesired all-zero columns in B.

Remark 2: The condition on X does not introduce an

actual limitation as it can be easily satisfied in practice,

especially when the CRs are randomly deployed. Likewise,

the basis set is part of the system design and can be chosen

to satisfy the conditions on B.

The combined results in this section can be summarized in

the following steps developed to estimate Φ(x, f):
S1. Given ϕ, solve (9)-(11) for α̂, β̂.

S2. Substitute α̂, β̂ in (6) to obtain {ĝν(x)}Nb
ν=1.

S3. Plug {ĝν(x)}Nb
ν=1 in (2) to estimate Φ(x, f).

IV. ONLINE PSD TRACKER

The real-time requirements on the sensing radios and the

convenience of an estimator that adapts to changes in the

spectrum map are the motivating reasons behind the online

PSD tracker introduced in this section. The spectrum map

estimator will be henceforth denoted by Φ(x, f, τ), to make

its time dependence explicit.

Define the vector φ̂n(τ) := [φ̂1n(τ) . . . φ̂Nrn(τ)]′ of pe-

riodogram samples taken at frequency fn by all CRs, and

form the supervector φ̂(τ) := [φ̂′
1(τ) . . . φ̂′

N (τ)]′ ∈ R
NrN .

Per time-slot τ = 1, 2, . . ., the periodogram φ̂(τ) is averaged

using the following adaptive counterpart of (3):

ϕ(τ) :=
τ∑

τ ′=1

δτ−τ ′
φ̂(τ ′) = δϕ(τ − 1) + φ̂(τ) (12)

which implements an exponentially weighted moving average

(EWMA) operation with forgetting factor δ ∈ (0, 1). For every

τ , the online estimator Φ(x, f, τ) is obtained by plugging

in (2) the solution {ĝν(x, τ)}Nb
ν=1 of (4), after replacing

ϕrn with ϕrn(τ) [cf. the entries of the vector in (12)]. In

addition to mitigating fading effects, this adaptive approach

can track slowly time-varying PSDs because the EWMA in

(12) exponentially discards past data.

Suppose that per time-slot τ , the FC receives raw peri-

odogram samples φ̂(τ) from the CRs in order to update
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Φ(x, f, τ). The results of Section III apply for every τ ,

meaning that the {ĝν(x, τ)}Nb
ν=1 are given by (6), while the

optimum coefficients {α̂(τ), β̂(τ)} are found after solving

(9)-(11). Capitalizing on (12), straightforward manipulations

in (9)-(11) show that {α̂(τ), β̂(τ)} are recursively given for

all τ ≥ 1 by

β̂(τ) = δβ̂(τ − 1) + (INb
⊗ Q2)G1φ̂(τ) (13)

α̂(τ) = δα̂(τ − 1) + G2φ̂(τ) (14)

where the time-invariant matrices G1 and G2 are

G1 :=
[
(B′B ⊗ Q′

2KQ2) + ÑλINb(Nr−3)

]−1

(B ⊗ Q′
2)

G2 := [Γ ⊗ R]−1 [(Ω′
1 ⊗ Q′

1) − (Γ ⊗ Q′
1KQ2)G1] .

Recursions (13)-(14) provide a means to update Φ(x, f, τ)
sequentially in time, by incorporating the newly acquired

data from the CRs in φ̂(τ). There is no need to separately

update ϕ(τ) as in (12), yet the desired averaging takes place.

Furthermore, matrices G1 and G2 need to be computed only

once, during the startup phase of the network.

V. NUMERICAL TESTS

Consider a set of Nr = 100 CRs uniformly distributed in an

area of 1Km2, cooperating to estimate the PSD map generated

by Ns = 5 licensed users (sources) located as in Fig. 2. The

transmitted signals are raised cosine pulses with roll-off factor

ρ = 0.5, symbol period Ts = 50ms, and center frequency fs =
90 + 20sMHz, s = 1, . . . , Ns. All source signals have power

20W , and overlap in the frequency band B = [100, 300]MHz

(see the bases in Fig. 1). The PSD generated by source s
experiences fading and shadowing effects in its propagation

from xs to any location x, where it can be measured in the

presence of noise. A 6-tap Rayleigh model is adopted for the

multipath channel Hs(f, τ, x) between xs and x, whose mean

adheres to the path-loss law E(Hs) = exp(−||xs −x||22/Δ2)
with Δ = 0.8. A deterministic shadowing effect is generated

by a 18m-high and 500m-wide wall represented by the white

segment in Fig. 2. It produces a knife-edge effect on the power

emitted by the antennas at a height of 20m. The simulated

tests presented here account for the shadowing at ground level.

The additive Gaussian noise is assumed white in space and

frequency with −10dB of variance compared to the average

transmitter power received by the set of Nr radios.

A. Batch spectrum cartography

For τ = 1, . . . , 500, each radio computes the periodogram

at N = 16 frequencies and updates the sample mean ϕrn, n =
1, . . . , N as in (3). These network-wide observations at T =
500 are collected in ϕ, and upon following the steps at the end

of Section III the spectrum map becomes available. This map

is averaged across frequencies. Fig. 2 shows the position of

the sources revealed, as well as the radially decaying spectra

of four of them which are not affected by the obstacle. It

also identifies the effect of the wall by flattening the spectrum

emitted by the fifth source at the top-left corner.

Fig. 2. Spectral map estimate in dB.

For simplicity, the frequency bases bν(f) were selected for

this simulation as Nb = 5 raised cosine pulses coinciding with

the actual transmitted PSDs. The smoothing parameter λ was

chosen using the leave-one-out cross-validation approach [12],

yielding the optimal tradeoff as dictated by the data. It

effects smoothness which translates to congruence among PSD

samples, allowing the radios to recover the radial aspect of

the transmitted power. On the other hand, it compromises the

sharp transition on the obstacle as the estimated PSD map

shows a glitch at the south-west of the wall.

B. Tracking a transmitter’s departure

The online estimator presented in Section IV is run for

τ = 1, . . . , 650. Per time-slot τ , the CRs compute φ̂(τ) and

the new coefficients α̂(τ) and β̂(τ) are updated using (14)

and (13) respectively, with δ = 0.99. In order to illustrate

the PSD tracker, the transmitter at the center of Fig. 2 is

shut-off at τ = 400, and the PSD is estimated at that

location. The result is shown in Fig. 3, where the solution

is averaged across frequencies, and the error relative to the

true model is presented. It shows that the estimator evolves

toward the true value up to an error below −20dB, and that

it is capable to adapt to the departing source. Specifically,

three different periods are observed. When τ ∈ [0, 200), the

error in Φ(x, f, τ) decreases because the recursive estimates

in (14) and (13) improve thanks to averaging [cf. (12)]. When

τ ∈ [200, 400), the estimator reaches steady state because the

effective average window is elapsed, and new measurements

do not add extra information. After τ = 400, the radios

around the central transmitter measure zero power, but the

EWMA slowly forgets previous values; hence, the jump in

the estimation error followed by the exponentially decaying

trend.

VI. CONCLUDING REMARKS

A cooperative splines-based approach to spectrum cartog-

raphy was developed for CR sensing. Simulated experiments
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Fig. 3. Error evolution of tracking estimate in dB.

corroborate that the proposed estimator is effective in estimat-

ing the PSD generated by a set of sources in the presence of

fading and shadowing. It can further track changes due to the

departure of a transmitter.

The novel model and its estimation can be used in more

general statistical inference, field estimation and localization

problems, whenever the data admit a basis expansion over a

proper subset of its dimensions. Furthermore, Proposition 1

extends to other kernels beyond splines, when the smoothing

penalty is replaced by a norm induced from a reproducing

kernel Hilbert space [12]. Also of interest is to quantify the

number of sensors required to attain a prescribed approxima-

tion error, in light of the existing connections between spline-

based reconstruction and Shannon’s sampling theory [11].1

APPENDIX

Note from (6) that ĝν(xr) = k′
rβν + t′rαν , where k′

r and

t′r are the rth rows of K and T, respectively. The first term

in the cost of (4) can be expressed as (up to a factor Ñ−1)

N∑
n=1

Nr∑
r=1

(
ϕrn −

Nb∑
ν=1

bν(fn)[k′
rβν + t′rαν ]

)2

=
N∑

n=1

Nr∑
r=1

(ϕrn − (bn ⊗ kr)′β − (bn ⊗ tr)′α)2

=
N∑

n=1

‖ϕn − (b′
n ⊗ K)β − (b′

n ⊗ T)α‖2
2

=‖ϕ − (B ⊗ K)β − (B ⊗ T)α‖2
2 .

Consider next the penalty term in the cost of (4). Substituting

into (6), it follows that
∫

R2 ||∇2ĝν(x)||2F dx = β′
νKβν [12,

1The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies of
the Army Research Laboratory or the U. S. Government.

p. 33]. It thus holds that

λ

Nb∑
ν=1

∫
R2

||∇2ĝν(x)||2F dx = λ

Nb∑
ν=1

β′
νKβν = λβ′(INb

⊗K)β

from which (7) follows readily.
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