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ABSTRACT

Unveiling low-dimensional latent structure by means of multilinear
decompositions of tensor data is central to data analytics tasks at
the confluence of signal processing, machine learning and data min-
ing. However, increasingly noisy, incomplete, and heterogeneous
datasets (that deviate from e.g., Gaussian distributional assumptions)
as well as the need for real-time processing of streaming data pose
major challenges to this end. In this context, the present paper de-
velops a novel online (adaptive) algorithm to obtain three-way de-
compositions of low-rank, Poisson-distributed tensors. Such (pos-
sibly incomplete) streams of count data arise with various applica-
tions including traffic engineering, computer network monitoring,
genomics, photonics and satellite imaging. The proposed estima-
tor minimizes a Poisson log-likelihood cost along with a separable
regularizer of the PARAFAC decomposition factors, to trade-off fi-
delity for complexity of the approximation captured by the decom-
position’s rank. Leveraging stochastic gradient descent iterations, a
scalable, online algorithm is developed to learn the decomposition
factors on-the-fly and perform data imputation as a byproduct. Pre-
liminary numerical tests with simulated data and solar flare video
confirm the efficacy of the proposed tensor imputation algorithm, as
well as its convergence to the batch estimator benchmark.

Index Terms— Low-rank tensor, PARAFAC model, streaming
count data, online imputation algorithm, missing data.

1. INTRODUCTION

As data collected from e.g., online social media, ubiquitous sensing,
as well as high-throughput genome sequencing technologies become
increasingly voluminous, complex and heterogeneous [1], it is not
uncommon to encounter datasets indexed by three or more variables
giving rise to a tensor (also known as multi-way array) [2, 3]. In
various applications one of these variables indexes time [4–6], and
sizable portions of the data are missing due to (intentional) subsam-
pling for faster acquisition, privacy considerations, or sensing and
communication errors [7–9]. Moreover, for non-negative integer-
valued measurements and modeling of sparse multilinear count data,
the workhorse Gaussian model and its induced least-squares crite-
rion tend to be inappropriate [10–13].
Problem outline and envisioned applications. Accordingly, the
desiderata for extracting actionable information from streaming
and incomplete multiway data are low-complexity, online algo-
rithms capable of unraveling latent structures through parsimonious
(e.g., low-rank) decompositions; see also [2, 3] for recent tutorial
treatments on tensor decompositions including the parallel factor
analysis (PARAFAC) model. The focus here is to develop an online
(adaptive) algorithm for decomposing low-rank tensors from possi-
bly incomplete, streaming Poisson-distributed data. Time-indexed
count data arises in application domains such as computer network
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monitoring, temporal recommendation systems, genome sequenc-
ing, traffic engineering, discovering latent influences among social
communities, as well as with video processing whereby frames are
acquired using some optical imaging technologies.
Relation to prior work and contributions. The problem of iden-
tifying low-dimensional subspace structure from streaming data has
a long history in signal and array processing, e.g., [14]. Recent ad-
vances consider high-dimensional matrix data that could be incom-
plete and corrupted by outliers [15–19]; see [8] for a recent review.
On a related note, the influential work in [20] considered online dic-
tionary learning for image denoising (without missing data). Deviat-
ing from the Gaussian model, dimensionality reduction from stream-
ing categorical data was considered in [21]. Algorithms for subspace
tracking from Poisson-distributed count data were developed in [11].
In the tensor case, online algorithms for imputation and low-rank de-
composition of multiway Gaussian data were puth forth in [5]; see
also [4,6] for early adaptive algorithms implementing PARAFAC of
full tensor observations. For low-rank Poisson tensor data, comple-
tion algorithms in a batch setup have been proposed in [10].

Unlike these works, here we develop for the first time an on-
line (adaptive) algorithm to obtain three-way decompositions of low-
rank, Poisson-distributed tensors with missing entries. The proposed
estimator minimizes a Poisson log-likelihood cost along with a sep-
arable regularizer of the PARAFAC decomposition factors [10], to
trade-off fidelity for complexity of the approximation captured by
the decomposition’s rank. Leveraging stochastic gradient descent it-
erations, a scalable, online algorithm is developed in Section 3 to
learn the decomposition factors on-the-fly and perform data imputa-
tion as a byproduct. Preliminary numerical tests with simulated data
and solar flare video frames [22] confirm the efficacy of the proposed
tensor imputation algorithm (Section 4), as well as its convergence
to the batch estimator benchmark in [10]. Concluding remarks are
given in Section 5.
Notation. Bold uppercase (lowercase) letters are used to represent
matrices (column vectors). Underlined bold uppercase letters de-
note tensors. As an example, x, X are X, denote a vector, matrix,
and tensor, respectively. Matrices with a subscript are used to de-
note a slice of the tensor, e.g., Xt. Symbols ⊗,�, ◦,~ denote the
Kronecker, Khatri-Rao, outer product, and Hadamard (entry-wise)
product, respectively. For matrices, ‖ · ‖F and ‖ · ‖∗ stand for the
Frobenius and nuclear norms.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1. PARAFAC Decomposition

In matrix case, a rank-one matrix Z ∈ RM×N can be decomposed
as a ◦ bT , where a ∈ RM×1 and b ∈ RN×1 are two vectors. Bol-
lowing the concept from that, if given the third vector c ∈ RT×1, a
rank-one tensor Z ∈ RM×N×T can be formed as Z = a◦b◦c with
the (m,n, t)-th entry given by Zmnt = ambnct.

Then a R-rank tensor M =
R∑

r=1

ar ◦ br ◦ cr , where R is the mini-

mum number of rank-one tensors for the decomposition.
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The paralle factor decomposition (PARAFAC) is the most basic ten-
sor model because it directly considers the low rank approximation
of a tensor

X ≈
R∑

r=1

ar ◦ br ◦ cr (1)

2.2. Poisson Distributed Tensor Model For Count Data

A natural way to formulate the non-negative integer-value data ob-
served from independent count event is to assume that the obser-
vation Y satisfies the Poisson distribution with parameter X, e.g.
Y ∼ Pois(X). Pois(·) denotes the tensor Poisson distribution,

Pr [ymnt = k] =
xk
mnte

−xmnt

k!
(2)

In reality, we may only have access to a subset of Y, e.g. {∆ ~
Y,∆}, where the observation mask ∆ is a binary tensor and
δmnt = 1, when Ymnt is observed, otherwise δmnt = 0. In many
applications, we receive observations continuously, such as a live
video. To process the steaming data online, we consider the expec-
tation or the average of the log likelihood instead of the whole log
likelihood function. which can be formulate as

LT (Y,∆;X) = Et[lt(Yt,∆t;Xt)] =
1

T

T∑
t=1

lt(Yt,∆t;Xt)

(3)
Where lt(Xt;Yt,∆t) is the log likelihood function of the partial
observation {∆t ~Yt,∆t} at time t,

lt(Yt,∆t;Xt) =
∑
mn

δmnt(xmnt − ymnt log xmnt) (4)

We also assume that tensor X has low-rank structure, so we want to
solve the following problem

X̂ = argmin
X,A,B,C

LT (Y,∆;X)

s.t. X = A ◦B ◦C, rank(X) ≤ R
(5)

2.3. A Separable Low-Rank Regularization

Problem (5) is NP-hard because of the rank constrain. For matrix
case, low rank condition can be approximate be the nuclear norm
‖X‖∗. And it can be further transormed by solving the following
problem [23].

‖X‖∗ = min
B,C

1

2
(‖B‖2F + ‖C‖2F ) s.to X = BCT (6)

Bollowing the idea from [23], we expect to introduce a Frobenius
norm regularization term to approximate the low rank constrain in
(5).

h(A,B,C) =
1

2
(‖A‖2F + ‖B‖2F + ‖C‖2F ) (7)

Then the loss function becomes

GT (A,B,C;Y,∆)

= LT (Y,∆;X) + λh(A,B,C)

=
1

T

T∑
τ=1

∑
mn

δmnτ (

R∑
r=1

amrbnrcτr − ymnτ log

R∑
r′=1

amrbnrcτr)

+
λ

2
(‖A‖2F + ‖B‖2F + ‖C‖2F )

(8)

3. ONLINE TENSOR COMPLETION FOR POISSON DATA

The minimizer of (8) can be solved by the LRPTI algorithm in [?].
However, it requires us to have assess to all of the data steam, which
hinders applicability to memory limited case. To begin with, let’s
rewrite the rank-regularized empirical loss function in (8)

GT (A,B,C;Y,∆) := LT (Y,∆;X) + λh(A,B,C)

=
1

T

T∑
τ=1

(lτ (Yτ ,∆τ ;Xτ ) +
1

2µ
(‖A‖2F + ‖B‖2F ) +

µ

2
‖cτ‖22)

:=
1

T

T∑
τ=1

gτ (A,B, cτ )

(9)
Where µ = λT . Then problem (8) becomes

min
A,B

CT (A,B) :=
1

T

T∑
τ=1

ḡτ (A,B) (10)

Where ḡτ (A,B) := mincτ gτ (A,B, cτ ). However, solving (10)
is complex, so let’s solve the approximate problem

min
A,B

C̄T (A,B) :=
1

T

T∑
τ=1

gτ (A,B, ĉτ ) (11)

Where ĉτ is the estimation of cτ based on the current data {Yτ ,∆τ}
and the factor matrices obtained at previous step {A[τ − 1],B[τ −
1]}.

ĉτ = argmin
cτ

gτ (A[τ − 1],B[τ − 1], cτ ) (12)

Problem (12) can be solved efficiently because when {Yτ ,∆τ} and
{A[τ − 1],B[τ − 1]} are given, it becomes a convex problem with
respect to cττ . In order to solve (11), let’s look at an quadratic
upperbound of gτ (A[τ − 1],B[τ − 1], c).

g̃τ (A,B;A[τ − 1],B[τ − 1], cτ ) := gτ (A[τ − 1],B[τ − 1], cτ )

+
1

2ατ
(‖A−A[τ − 1]‖2F + ‖B−B[τ − 1]‖2F )

+ 〈∇Agτ (A,B[τ − 1], cτ )|A=A[τ−1],A−A[τ − 1]〉
+ 〈∇Bgτ (A[τ − 1],B], cτ )|B=B[τ−1],B−B[τ − 1]〉

(13)
With α−1

τ ≥ max(‖∇2
Agτ (A,B[τ−1], ĉτ )|A=A[τ−1]‖, ‖∇2

Bgτ (A[τ−
1],B, ĉτ )|B=B[τ−1]‖), (13) is a tight approximation for gτ . Be-
cause one can verify

(1) g̃τ (A,B;A[τ − 1],B[τ − 1], cτ ) ≥ gτ (A,B, cτ ),∀A,B

(2) g̃τ (A[τ − 1],B[τ − 1];A[τ − 1],B[τ − 1], cτ )

= gτ (A[τ − 1],B[τ − 1], cτ )

(3a)∇Ag̃t(A,B;A[τ − 1],B[τ − 1], cτ )|A=A[τ−1],B=B[τ−1]

= ∇Agτ (A,B, cτ )|A=A[τ−1],B=B[τ−1]

(3b)∇Bg̃t(A,B;A[τ − 1],B[τ − 1], cτ )|A=A[τ−1],B=B[τ−1]

= ∇Bgτ (A,B, cτ )|A=A[τ−1],B=B[τ−1]

(14)
We intend to solve

min
A,B

C̃T (A,B) :=
1

T

T∑
τ=1

g̃τ (A,B;A[τ − 1],B[τ − 1], ĉτ )

(15)
The optimizer for (15) is[

A[τ ]
B[τ ]

]
=

[
A[τ − 1]
B[τ − 1]

]
− ατ

[
∇Agτ (A,B[τ − 1], ĉτ )
∇Bgτ (A[τ − 1],B, ĉτ )

]
(16)
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Algorithm 1 Online SGD for Poisson tensor decomposition and im-
putation

1: Input: Tensor {(Yτ ~∆τ ,∆τ )}τ=1,..,T , µ > 0, 0 < β ≤ 1
and γ > 0, rank R

2: Initialize τ = 1. A[0],B[0] at random.
3: repeat
4: Solve

ĉτ = argmin
cτ

gτ (A[τ − 1],B[τ − 1], cτ )

5: ατ ← γ
6: repeat
7: Update

A[τ ] = max(A[τ − 1]− ατ∇Agτ (A,B[τ − 1], ĉτ ),0M×R)

B[τ ] = max(B[τ − 1]− ατ∇Bgτ (A[τ − 1],B, ĉτ ),0M×R)

ατ ← ατβ

8: until gt(A[τ ],B[τ ], ĉτ ) ≤ gt(A[τ − 1],B[τ − 1], ĉτ )
9: τ ← τ + 1.

10: until τ > T
11: return X̂ = A ◦B ◦C.

Where ατ can be considered as a proper stepsize which guarantees
a true descent on the gτ (A,B, ĉτ ). In the proposed algorithm 1, we
apply the line search approach to find {ατ}.

4. NUMERICAL TESTS

The performance and convergence of the proposed algorithm 1 is
assessed in this section via computer simulation on synthetic data
and the SDO data set.

4.1. Synthetic tensor data tests

The input signal X of dimension M × N × T = 20 × 15 × 400
is generated i.i.d, using the low-rank approximation (1), where the
entries of {A,B,C}, with rank R = 10, are drawn from a uniform
distribution and scaled yielding to E[xmnt] = 100]. Also, we as-
sume the observation mask ∆ is generated i.i.d. via the Bernoulli
distribution with the parameter p ∈ [0, 1]. Relative error {e(re)t }
and normalized subspace reconstruction error (NSRE) {e(ss)t } are
adopted to measure performance. They are computed as e

(re)
t =

‖X̂t − Xt‖F /‖Xt‖F , where X̂t = (B̂[t] � Â[t])cTt is the esti-
mation of Xt; and e

(ss)
t = ‖PΠ̂⊥

Ct
ΠC‖F /‖ΠC‖F , where PΠ̂⊥

Ct
=

(I − Π̂CtΠ̂
†
Ct) is the projection operator onto the orthogonal com-

plement of estimation of the subspace (with respect to {ct}), Π̂Ct =

(B̂[t] � Â[t]). And ΠC = (B � A) is the true subspace. We
compare our result with the batch algorithm LRPTI in [10]. LRPTI
is not an online algorithm, since it is assessd using all of the data
steam. As a result, the performance of LRPTI will later be consid-
ered as the baseline. The relative error for LRPTI is computed as
{‖Âdiag(ct)B̂−Xt‖F /‖Xt‖F }t=1,...,T , and the normalized sub-
space reconstrucion error will be only a number Π̂C = (B̂ � Â),
depicted by the yellow line in Fig.1 (b).

Fig.?? depicts the relative error with respect to data steam in-
dex T for the proposed algorithm (both fully and 50% observed)
and batch alogrithm LRPTI when the data is fully observed. The
optimality of our approach is demonstrated by showing the conver-
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Fig. 2: Solar flare video at t = 200. (a) True video, (b) video corrupted by
Poisson noise, (c) partial observation of (b) with p = 0.1, (d) reconstructed
video via batch algorithm for full Poisson corrupted observation (b), (e) re-
constructed video via proposed algorithm for full Poisson corrupted observa-
tion (b), (f) reconstructed video via proposed algorithm for patial observation
(c). For (d)(e)(f), we set the rank for testing R = 20. (f) depicts that only
with a small sample of the video, the proposed algorithm will still be able to
reconstruct most of the details of the original video.

gence of the relative error to the baseline. Even with a 50% observed
data steam, the relative error for our approach still converges to the
baseline fast. Fig. ?? shows the normalized subspace reconstruction
error for the proposed algorithm with respect to data steam index T ,
and the batch algorithm. It can be seen that the normalized subspace
reconstruction error for our approach also converges to the baseline,
which implies that our approach can also achieve the optimal sub-
space.

4.2. Real tensor data

We also apply the proposed algorithm on a Poisson currupted ver-
sion of a real solar flare video captured by the NASA SDO satellite
(see [22] for detailed information). The video is of resolution 50×50
with 300 frames. We let the rank for testing R = 20, and model pa-
rameter µ = 0.01. Fig.?? depicts the relative error for both of our
approach and the batch algorithm. Unlike the symthetic data in sec-
tion 4.1, we can not compute the normalized subspace reconstruction
error since there is no ground truth factor matrices {A,B,C} for the
real video. In Fig.2, we illastrate the original solar flare video, the
Poisson corrupted version, the and their reconstruction via our ap-
proach and the batch algorithm. Fig.2f shows that few samples are
sufficient for the reconstruction using the proposed algorithm.

5. CONCLUSIONS

In this paper, we have studied online tensor decomposition and
imputation problem when the steaming data are Poisson random
counts. We consider a maximum likelihood formulation regularized
with a separable surrogate of the nuclear norm. Applying stochas-
tic gradient descent on an approximated loss function, an efficient
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Fig. 1: (a) Relative error for symthetic data with 10 realizations and µ = 0.01; (b) Normalized subspace reconstruction error for symthetic data with 10
realizations and µ = 0.01; (c) Relative error for SDO dataset, with µ = 0.01. In all of those figures, the blue and red curves converge to the base line yellow
curve after only a few time steps, e.g. t < 150, which indicates the convergence and optimality of the proposed approach.

online algorithm was developed. With the capability to memory-
limited implementation, the proposed online approach offered an
attractive alternative to batch algorithm. Convergency and optimal-
ity of the proposed algorithm was demonstrated numerically via tests
on symthetic data and a real data example of solar flare video. The
proof of the convergency and optimality for the proposed algorithm
will be persuing as future research.
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