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ABSTRACT

A novel regularizer capturing the tensor rank is introduced in this
paper as the key enabler for completion of three-way data arrays
with missing entries. The novel regularized imputation approach
induces sparsity in the factors of the tensor’s PARAFAC decomposi-
tion, thus reducing its rank. The focus is on count processes which
emerge in diverse applications ranging from genomics to computer
and social networking. Based on Poisson count data, a maximum a-
posteriori (MAP) estimator is developed using the Kullback-Leibler
divergence criterion. This probabilistic approach also facilitates in-
corporation of correlated priors regularizing the rank, while endow-
ing the tensor imputation method with extra smoothing and predic-
tion capabilities. Tests on simulated and real datasets corroborate the
sparsifying regularization effect, and demonstrate recovery of 15%
missing RNA-sequencing data with an inference error of −12dB.

Index Terms— Tensor, low-rank, missing data, Poisson processes.

1. INTRODUCTION

Recovering missing data is a fundamental task arising in various ap-
plications as diverse as medical imaging, bioinformatics, as well as
social and computer networking. The key idea rendering recovery
feasible is leveraging the regularity present among missing and avail-
able data. Low rank is an attribute capturing this regularity that can
be readily exploited when data are organized into a matrix. Indeed,
data matrices can be completed by fitting them to a partial set of
their entries while regularizing their ranks [5]. In this context, the
nuclear norm has been advocated as a practical rank regularizer with
analytical performance guarantees [9].
Relation to prior works. The focus here is on imputation of missing
entries of tensors (also known as multi-way arrays), which are high-
order generalizations of matrices frequently encountered in chemo-
metrics, medical imaging, and networking [11]. Leveraging the low-
rank structure for tensor completion is challenging, since even com-
puting the tensor rank is NP-hard. Defining a nuclear norm surrogate
is not obvious either, since singular values as defined by the Tucker
decomposition are not generally related with the rank. Traditional
approaches to finding low-dimensional representations of tensors in-
clude unfolding the multi-way data and applying matrix factoriza-
tions such as the SVD, or, employing the parallel factor (PARAFAC)
decomposition [16, 11]. In the context of tensor completion, an ap-
proach falling under the first category can be found in [10], while the
PARAFAC decomposition was dealt with in [2].

The imputation approach presented here builds on a novel reg-
ularizer accounting for the tensor rank. It relies on redefining the
matrix nuclear norm in terms of low-rank factors, which admit a
neat connection with the atomic-norm [6]. While least-squares (LS)
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is typically adopted as the fitting criterion for matrix and tensor com-
pletion, implicitly assuming Gaussian data, the method here targets
count data available in the form of network traffic data, genome se-
quencing, and social media interactions, modeled as a Poisson pro-
cess that leads to a MAP estimator in terms of the Kullback-Leibler
divergence [8]. This probabilistic approach also facilitates the incor-
poration of correlated priors that regularize the rank, while endowing
the tensor imputation method with extra smoothing and prediction
capabilities.

2. PRELIMINARIES

2.1. Nuclear-norm minimization for matrix completion

Leveraging dependencies implied by the property of low-rank is a
popular method for estimating missing values of a data matrix Z ∈
RN×M [9]. For the imputation to be feasible, a binding assumption
that relates available entries with the missing ones is required. An
alternative is to postulate that Z has low rank R ≪ min(N,M),
which implies that the vector s(Z) of its singular values is sparse.

Finding matrix Ẑ with rank not exceeding R, which approx-
imates Z in the available entries specified by a binary matrix ∆ ∈
{0, 1}N×M , can be formulated as the following convex optimization
problem [9] (∗ denotes Hadamard product, subscript F the Frobe-
nious norm, and superscript T transposition)

Ẑ = argmin
X
||(Z−X)∗∆||2F + µ∥X∥∗ (1)

where ∥X∥∗ := ∥s(X)∥1 denotes the nuclear norm, and µ ≥ 0 is a
rank-controlling parameter tuned to ensure rank(Ẑ) ≤ R.

Several iterative algorithms have been proposed to solve (1),
and are effective in tackling low- to medium-size matrix completion
problems; see e.g., [15]. However, most algorithms require compu-
tation of singular values per iteration and become prohibitively ex-
pensive when dealing with high-dimensional data. To solve (1) effi-
ciently, consider the alternative characterization of the nuclear norm
∥X∥∗ = min{B,C}

1
2
(∥B∥2F + ∥C∥2F ), where the minimization is

over all possible bilinear factorizations of X = BCT . Accordingly,
one can arrive at the following equivalent reformulation of (1) [15]

min
{B,C}

∥(Z−BCT )∗∆∥2F +
µ

2
(∥B∥2F + ∥C∥2F ). (2)

The equivalence implies that by finding the global minimum of (2)
[which could entail considerably less variables than (1)], one can re-
cover the optimal solution of (1) as Ẑ := B̂ĈT However, since (2) is
nonconvex, it may have stationary points which need not be globally
optimum. Interestingly, the next proposition offers a condition under
which a stationary point of (2) is globally optimum for (1) [12].

Proposition 1: Let {B̂, Ĉ} be a stationary point of (2) . If ∥Z −
B̂ĈT ∥ < µ/2, then Ẑ := B̂ĈT is globally optimal for (1).

The Frobenious-norm regularization for controlling the rank in
(2), will be useful to obtain tensor counterparts in Section 3.
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Fig. 1. Tensor slices along the row, column, and tube dimensions.

2.2. PARAFAC decomposition

The PARAFAC decomposition of a tensor X ∈ RM×N×P is at the
heart of the proposed imputation method, since it offers the means
to define its rank [16, 11]. For given R ∈ N, consider matrices
A ∈ RN×R, B ∈ RM×R, and C ∈ RP×R, such that

X(m,n, p) =

R∑
r=1

A(m, r)B(n, r)C(p, r). (3)

The rank of X is defined as the minimum value of R for which this
decomposition is possible. For R∗ := rank(X), the PARAFAC de-
composition is given by the corresponding factor matrices {A,B,C}
(all with R∗ columns), so that (3) holds with R = R∗.

To appreciate why the aforementioned rank definition is natu-
ral, rewrite (3) as X =

∑R
r=1 ar ◦ br ◦ cr , where ar , br , and

cr represent the r-th columns of A, B, and C, respectively; and
the outer products Or := ar ◦ br ◦ cr ∈ RM×N×P have entries
Or(m,n, p) := A(m, r)B(n, r)C(p, r). The rank of a tensor is
thus the minimum number of outer products (rank one factors) re-
quired to represent the tensor. It is not uncommon to adopt an equiv-
alent normalized representation

X =
R∑

r=1

γr(ur ◦ vr ◦wr) (4)

by defining unit-norm vectors ur := ar/∥ar∥, vr := br/∥br∥,
wr := cr/∥cr∥, and weights γr := ∥ar∥∥br∥∥cr∥, r = 1, . . . , R.

Let Xp, p = 1, . . . , P denote the p-th slice of X along its
third (tube) dimension, such that Xp(m,n) := X(m,n, p); see Fig.
1. The following compact form of the PARAFAC decomposition in
terms of matrix factors will be used in the sequel

Xp = Adiag
[
eT
p C

]
B, p = 1, . . . , P (5)

where the diagonal matrix D = diag [u] has the vector u on its
diagonal, and eT

p is the p-th row of the P × P identity matrix. The
PARAFAC decomposition is symmetric [cf. (3)], and one can also
write Xm = Bdiag

[
eT
mA

]
C, or, Xn = Cdiag

[
eT
nB

]
A in terms

of slices along the first (row), or, second (column) dimensions.

3. RANK REGULARIZATION FOR TENSORS

Generalizing the nuclear-norm regularization technique (1) from
low-rank matrix to tensor completion is not straightforward, since
singular values of a tensor (given by the Tucker decomposition) are
not related to the rank [11]. The Frobenious-norm regularization
outlined in Section 2.1 offers a viable option for low-rank tensor
completion under the PARAFAC model however, by solving

Ẑ := arg min
{X,A,B,C}

∥ (Z−X) ∗∆∥2F +
µ

2

(
∥A∥2F + ∥B∥2F + ∥C∥2F

)
s. to Xp = Adiag

[
eT
p C

]
B, p = 1, . . . , P (6)

where ∥X∥2F :=
∑

m

∑
n

∑
p X

2(m,n, p) defines the tensor’s
Frobenious norm, and (X∗∆)(m,n, p) := X(m,n, p)∆(m,n, p)
the Hadamard product.

Different from the matrix case, it is unclear whether the pro-
posed regularization in (6) bears any relation with the tensor rank.
Interestingly, the analysis provided next corroborates the capability
of (6) to produce a low-rank tensor Ẑ, for sufficiently large µ. In
this direction, consider the alternative completion problem stated in
terms of the normalized tensor representation (4)

Ẑ
′
:= arg min

{X,γ,{ur},{vr},{wr}}
|| (Z−X) ∗∆||2F +

µ

2
∥γ∥2/32/3

s. to X =

R∑
r=1

γr(ur ◦ vr ◦wr) (7)

where γ := [γ1, . . . , γR]
T , the nonconvex ℓ2/3 (pseudo)-norm is

given by ∥γ∥2/3 :=
(∑R

r=1 |γr|
2/3

)3/2

, and the unit-norm con-
straint on the factors’ columns is left implicit. Problems (6) and (7)
are equivalent as established by the following proposition (a proof is
omitted due to lack of space; see [4])

Proposition 2: The solutions of (6) and (7) coincide, i.e., Ẑ
′
= Ẑ,

with optimal factors related by âr = 3
√
γ̂rûr , b̂r = 3

√
γ̂rv̂r , and

ĉr = 3
√
γ̂rŵr , r = 1, . . . , R.

To further stress the capability of (6) to produce a low-rank ap-
proximant tensor X, consider transforming (7) once more by rewrit-
ing it in the constrained-error form

Ẑ
′′
:= arg min

{X,γ,{ur},{vr},{wr}}
∥γ∥2/3 (8)

s. to || (Z−X) ∗∆||2F ≤ σ2, X =
R∑

r=1

γr(ur ◦ vr ◦wr).

For any value of σ2 there exists a corresponding Lagrange multi-
plier λ such that (7) and (8) yield the same solution, under the iden-
tity µ = 2/λ. [Since f(x) = x2/3 is an increasing function, the
exponent of ∥γ∥2/3 can be safely eliminated without affecting the
minimizer of (8).] The ℓ2/3-norm ∥γ∥2/3 in (8) produces a sparse
vector γ when minimized [7], sharing this well-documented prop-
erty of the ℓ1-norm as their norm-one balls, depicted in Fig. 2, share
the “pointy geometry” which is responsible for inducing sparsity.

With (6) equivalently rewritten as in (8), its low-rank inducing
property is now revealed. As γ in (8) becomes sparse, some of its
entries γr are zeroed, and the corresponding outer-products γr(ar ◦
br ◦ cr) drop from the sum in (4), thus lowering the rank of X.

Through (8), it is also possible to relate (6) with the atomic norm
in [6]. It is established in [6] that if R = R∗ is the rank of X,
then the ℓ1-norm of γ is a proper norm for X, named atomic norm
and denoted by ∥X∥⋆ := ∥γ∥1. Thus, by replacing ∥γ∥2/3 with
∥X∥⋆, (8) becomes a convex problem in the variable X. Still, the
complexity of solving such a variant of (8) resides in that finding
∥X∥⋆ through the PARAFAC decomposition is NP-hard [11]. In
this regard, it is remarkable that arriving to (8) had the sole pur-
pose of demonstrating the low-rank inducing property, and that (6)
is to be solved by the algorithm developed in the ensuing section.
Such an algorithm will neither require computing the PARAFAC
decomposition of the variable X, nor knowing its rank. Indeed,
the number of columns in A, B, and C can be set to an over-
estimate of the rank of Z, as for instance, the general overbound
R̄ := min{MN,NP, PM} ≥ rank(Z), and the low-rank of X
will be induced by regularization as argued earlier. To carry out a
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Fig. 2. ℓ2/3-norm ball compared to the ℓ0- and ℓ1-norm balls

fair comparison, only convergence to a stationary point of (6) will
be guaranteed in this paper.

Remark 1 From a probabilistic vantage point, adoption of an LS
criterion in (6) implicitly assumes that the random variation in Z
adheres to a Gaussian distribution. The next section deals with
Poisson-distributed tensor data, a natural alternative to the Gaus-
sian model when integer data is obtained by counting independent
events [8]. Interpreting the Frobenius-norm regularization in (6)
as N (0, (1/µ)I) priors on the independent columns of the factor
matrices, the model in Section 4 also incorporates general per-factor
covariance matrices; see e.g., [3].

4. INFERENCE FOR LOW-RANK POISSON TENSORS

Suppose that the entries zmnp of Z are Poisson distributed, i.e.,

P (zmnp = k) =
xk
mnpe

−xmnp

k!
(9)

with means given by the corresponding entries in tensor X. For
mutually-independent {zmnp}, the log-likelihood l∆(Z;X) of X
given data Z only on the entries specified by ∆, takes the form

l∆(Z;X) =

M∑
m=1

N∑
n=1

P∑
p=1

δmnp[zmnp log(xmnp)− xmnp] (10)

after dropping terms log(zmnp!) that do not depend on X.
The choice of a Poisson distribution (9) over a Gaussian one

for counting data, prompts for minimization of the Kullback-Leibler
divergence (10) instead of LS as a more suitable criterion [8]. Still,
the entries of X are unconnected in model (10), and a binding
PARAFAC modeling assumption is natural for feasibility of the
tensor approximation task under missing data. On top of that, aug-
menting (10) with a Frobenius-norm regularizing term on the model
factors offers an attractive way of controlling the rank of the solu-
tion Ẑ [4], and avoid well-known indeterminacies of the PARAFAC
model [1]. Accordingly, the maximum-a-posteriori (MAP) estima-
tor of X given Poisson-distributed data (entries of Z indexed by ∆),
and with Gaussian priors for the PARAFAC factors of X, becomes

Ẑ := arg min
{X,A,B,C}

M∑
m=1

N∑
n=1

P∑
p=1

δmnp(xmnp − zmnp log(xmnp))

+
µ

2

[
Tr

(
ATK−1

A A
)
+ Tr

(
BTK−1

B B
)
+ Tr

(
CTK−1

C C
)]

s. to Xp = Adiag
[
eT
p C

]
BT , p = 1, . . . , P. (11)

It is apparent from (11) that the mutually-independent columns of
A are modeled as ar ∼ N (0,KA), and likewise for B and C.

Algorithm 1 : Low-rank Poisson-tensor imputation (LRPTI)
1: function UPDATE FACTOR(A,K,Π,∆,Z, µ)
2: Set λ = λmax(K

−1)
3: Unfold ∆ and Z over dimension of A into ∆ and Z
4: Compute S = A

λµ
∗
(

∆∗Z
AΠT Π

)
(element-wise division)

5: Compute T = 1
2λµ

(
µ(λI−K−1)A−∆Π

)
6: Update A with entries amr = tmr +

√
t2mr + smr

7: return A
8: end function
9: Initialize A, B and C randomly.

10: while |cost− cost old| < ϵ do
11: A = UPDATE FACTOR(A,KA, (C⊙B),∆,Z, µ)
12: B = UPDATE FACTOR(B,KB , (A⊙C),∆,Z, µ)
13: C = UPDATE FACTOR(C,KC , (B⊙A),∆,Z, µ)
14: Recalculate cost in (11)
15: end while
16: return X with slices X̂p = Adiag(eT

p C)BT

Relative to (6), through these covariances one can incorporate side
information in the form of correlations among tensor slices (along
the row, column, and tube dimensions), and enhance the estimation
performance when large amounts of data are missing. Interestingly,
this also endows (11) with prediction (or extrapolation) capabilities,
useful when full slices of data in Z are not observed [4]. With the
aid of Representer’s Theorem, it is also possible to interpret (11) as
a variational estimator in reproducing-kernel Hilbert spaces [3].

4.1. Block successive upper-bound minimization algorithm

A block coordinate-descent algorithm is developed in this section,
that provably converges to a stationary point of (11). This iterative
alternating-minimization procedure sequentially optimizes (11) with
respect to one factor matrix, while holding the others fixed.

In the sequel, the goal is to arrive at a suitable expression for
the cost function in (11), when viewed only as a function of e.g.,
A. To this end, let matrix Z := [Z1, . . . ,ZP ] ∈ NM×NP denote
the unfolding of Z along its third (tube) dimension, and likewise for
∆ := [∆1, . . . ,∆P ] ∈ {0, 1}M×NP and X := [X1, . . . ,XP ] ∈
RM×NP

+ . Based on these definitions, (10) can be written as

l∆(Z;X) = 1T
M (∆∗[X− Z∗ log(X)])1NP (12)

where 1M , 1NP are all-one vectors of dimensions M and NP re-
spectively, and log(·) should be understood as an element-wise op-
erator. The log-likelihood function (12) can be expressed in terms
of the factors A, B, and C by resorting to the Khatri-Rao product
Π := C⊙B := [c1⊗b1, . . . cR⊗bR], defined by the column-wise
Kronecker products cr ⊗ br . The following identity [8] is useful

X := [X1, . . . ,XP ] = AΠT . (13)

Substituting (13) into (12) one arrives at the desired expression for
the cost in (11) as a function of A, namely

f(A) := 1T
M (∆∗[AΠ− Z∗ log(AΠT )])1NP+

µ

2
Tr(ATK−1

A A).

(14)

A closed-form minimizer A⋆ for f(A) is not available, but since
f(A) is convex one could in principle resort to an iterative proce-
dure to obtain A⋆. To avoid extra inner iterations, the approach here
relies on the so-termed block successive upper-bound minimization
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(BSUM) algorithm [14]. In BSUM one minimizes a judiciously cho-
sen upper-bound g(A, Ā) of f(A), which: i) depends on the current
iterate Ā; ii) should be simpler to optimize; and iii) satisfies certain
local-tightness technical conditions; see also Lemma 1 and [14].

For Ā given, consider the separable function

g(A, Ā) := µλ

M∑
m=1

R∑
r=1

(a2
mr

2
− 2tmramr − smr log(amr) + umr

)
(15)

where λ := λmax(K
−1
A ) is the largest eigenvalue of KA, and the

parameters srm, trm, and urm are defined in terms of Ā, Z, ∆, Π,
and Θ :=

(
1
λ
I−K−1

A

)
Ā by

smr :=
1

λµ

NP∑
k=1

δmkzmkāmrπkr∑R
r′=1 āmr′πkr′

,

tmr :=
1

2λµ

(
µθmr −

NP∑
k=1

πkrδmk

)
and umr := 1

λµ

(
θmrāmr +

∑NP
k=1 δmkzmkāmrπkrυmrk

)
, with

υmrk := (log(āmrπkr)−log(
∑R

r′=1 āmr′πkr′))/
∑R

r′=1 āmr′πkr′ .
As asserted in the following lemma, function g(A, Ā) majorizes
f(A) at Ā and satisfies the technical conditions required for the
convergence of BSUM (see [4] for a proof).
Lemma 1: Function g(A, Ā) satisfies the following properties

i) f(Ā) = g(Ā, Ā);

ii) d
dA

f(A)|A=Ā = d
dA

g(A, Ā)|A=Ā; and,

iii) f(A) ≤ g(A, Ā), ∀A.

Moreover, g(A, Ā) is minimized at A = A⋆
g with entries a⋆

g,mr :=

tmr +
√
t2mr + smr .

Lemma 1 highlights the convenience of adopting g(A, Ā) in the
proposed block-coordinate descent algorithm, since it is separable
across the entries of its matrix argument [cf. (15)], and hence it ad-
mits a closed-form minimizer given by the MR scalars a⋆

g,mr . The
updates A ← A∗

g are tabulated under Algorithm 1 for solving (11),
where analogous updates for B and C are carried out cyclically.

By virtue of properties i)-iii) in Lemma 1, convergence of Algo-
rithm 1 follows readily from the general converge theory available
for the BSUM algorithm [14].
Proposition 3: The iterates A, B and C generated by Algorithm 1
converge to a stationary point of (11).

5. NUMERICAL TESTS

5.1. Simulated Poisson data

Synthetic tensor-data of dimensions M × N × P = 16 × 4 × 4
were generated according to the low-rank Poisson-tensor model de-
scribed in Section 4. Specifically, entries of Z consist of realizations
of Poisson random variables generated according to (9), with means
specified by entries of X. Tensor X is constructed from factors A,
B and C as in (5). Matrices A,B, and C have R = 2 columns con-
taining realizations of independent uniform random variables scaled
to yield E[xmnp] = 1, 000.

Half of the entries of Z were removed at random and reserved
to evaluate performance. The remaining half of the data was used to
recover Z considering the removed data as missing entries. Method

10
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10
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10
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µ

10
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10
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10
1

10
2

µ

Fig. 3. Performance of the low-rank Poisson imputation method as
function of the regularizing parameter µ; (top) rank of the recovered
tensor, (bottom) relative recovery error.

Fig. 4. Imputation of sequencing count data via LRPTI; (left) origi-
nal data; (center) data with missing entries; (right) recovered tensor.

(11) was employed for recovery, as implemented in the LRPTI Algo-
rithm, with regularization µ/2(∥A∥2F + ∥B∥2F + ∥C∥2F ), obtained
by setting KA = IM , KB = IN , and KC = IP .

The relative recovery error between the recovered tensor and
data Z was computed, along with the rank of the recovered tensor,
as a measure of performance. Fig. 3 shows these figures of merit
averaged over 100 repetitions of the experiment, across values of
the parameter µ varying on the interval 0.01 to 100. Fig 3 (bot-
tom) shows that the LRPTI algorithm is successful in recovering the
Poisson tensor up to −15dB for a wide range of values of µ, pre-
senting a minimum at µ = 1. This result is consistent with Fig. 3
(top), which shows that rank R∗ = 2 is recovered at the minimum
error. Fig. 3 (top) also corroborates the low-rank inducing effect
(6), with the recovered rank varying from the general upperbound
R = R̄ = NP = 16 to R = 1, as µ is increased.

5.2. RNA sequencing data

The RNA-Seq method described in [13] exhaustively counts the
number of Ribonucleic acid (RNA) transcripts from yeast cells. The
reverse transcription of RNA molecules into cDNA is achieved by
P = 2 alternative methods, differentiated by the use of oligo-dT,
or random-hexonucleotide primers. These cDNA molecules are
sequenced to obtain counts of RNA molecules across M = 6, 604
genes on the yeast genome. The experiment was repeated in [13]
for a biological and a technological replicate of the original sample
totalling N = 3 instances per primer selection. The data is thus
organized in a tensor of dimensions 6, 604 × 3 × 2 as shown in
Fig. 4 (left), with integer data that are modeled as Poisson counts.
Fifteen percent of the data is removed and reserved for assessing
performance. The missing data is represented in white in Fig. 4
(center).

The LRPTI algorithm is run with the data available in Fig. 4
(center) producing the recovered tensor depicted in Fig. 4 (right).
The recovery error for this experiment was −12dB (∼ 6% ).
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