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Abstract—A novel regularizer of the PARAFAC decomposition
factors capturing the tensor’s rank is proposed in this paper,
as the key enabler for completion of three-way data arrays
with missing entries. Set in a Bayesian framework, the tensor
completion method incorporates prior information to enhance its
smoothing and prediction capabilities. This probabilistic approach
can naturally accommodate general models for the data distribu-
tion, lending itself to various fitting criteria that yield optimum
estimates in the maximum-a-posteriori sense. In particular, two
algorithms are devised for Gaussian- and Poisson-distributed
data, that minimize the rank-regularized least-squares error
and Kullback-Leibler divergence, respectively. The proposed
technique is able to recover the “ground-truth” tensor rank when
tested on synthetic data, and to complete brain imaging and yeast
gene expression datasets with 50% and 15% of missing entries
respectively, resulting in recovery errors at and .

Index Terms—Bayesian inference, low-rank, missing data,
Poisson process, tensor.

I. INTRODUCTION

I MPUTATION of missing data is a basic task arising in var-
ious Big Data applications as diverse as medical imaging

[15], bioinformatics [3], as well as social and computer net-
working [11], [24]. The key idea rendering recovery feasible is
the “regularity” present in missing and available data. Low rank
is an attribute capturing this regularity, and can be readily ex-
ploited when data are organized in a matrix. A natural approach
to the low-rank matrix completion problem is to minimize the
rank of a target matrix, subject to a constraint on the error in fit-
ting the observed entries [7]. Since rank minimization is gener-
ally NP-hard [39], the nuclear norm has been advocated recently
as a convex surrogate to the rank [14]. Beyond tractability, nu-
clear-norm minimization offers desirable merits both in theory
as well as in practice [7]. Several iterative solvers have been pro-
posed in this context, and are effective for low- to medium-size
matrix completion problems; see e.g., [6]. The corresponding

Manuscript received December 31, 2012; revised May 11, 2013; accepted
August 06, 2013. Date of publication August 15, 2013; date of current version
October 14, 2013. The associate editor coordinating the review of this manu-
script and approving it for publication was Prof. Ana Perez-Neira. This work
was supported by NSF EARS Grant No. 1343248, MURI Grant No. AFOSR
FA9550-10-1-0567, and NIH Grant No. 1R01GM104975-01. Parts of the paper
appeared in the IEEE Workshop on Statistical Signal Processing, Ann Arbor,
MI, USA, August 5–8, 2012, and in the International Conference on Acoustics,
Speech and Signal Processing, Vancouver, Canada, May 26–31, 2013.
The authors are with the Department of ECE and the Digital Technology

Center, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
bazer002@umn.edu; mate0058@umn.edu; georgios@umn.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2013.2278516

algorithms however, require computation of a singular-value
decomposition (SVD) per iteration and become prohibitively
expensive when dealing with high-dimensional data. Scalable
distributed algorithms for matrix completion were developed in
[30] and [24], while real-time online algorithms for imputation
of streaming data are also available; see e.g., [4], [12], [25].
The goal of this paper is imputation of missing entries

of tensors (also known as multi-way arrays), which are
high-order generalizations of matrices frequently encountered
in chemometrics, medical imaging, and networking [13], [21].
Leveraging the low-rank structure for tensor completion is
challenging, since even computing the tensor rank is NP-hard
[18]. Defining a nuclear norm surrogate is not obvious either,
since singular values as defined by the Tucker decomposition
are not generally related with the rank. Traditional approaches
to finding low-dimensional representations of tensors include
unfolding the multi-way data and applying matrix factoriza-
tions such as the SVD [3], [10], [38], or, employing the parallel
factor (PARAFAC) decomposition [22], [33], [34], [37]. In the
context of tensor completion, approaches falling under the first
category can be found in [15] and [38], while imputation using
PARAFAC was dealt with in [2].
The imputation approach presented in this paper builds on a

novel regularizer accounting for the tensor rank, that relies on
an alternative characterization of the nuclear norm based on a
low-rank factorization of its matrix argument. The contribution
is two-fold. First, it is established that the low-rank inducing
property of the regularizer carries over to tensors by promoting
sparsity in the factors of the tensor’s PARAFAC decomposition.
In passing, this analysis allows for drawing a neat connection
with the atomic-norm in [8]. The second contribution is the in-
corporation of prior information, with a Bayesian approach that
endows tensor completion with extra smoothing and prediction
capabilities. A parallel analysis in the context of reproducing
kernel Hilbert spaces (RKHS) further explains these acquired
capabilities, provides an alternative means of obtaining the prior
information, and establishes a useful connection with collabo-
rative filtering approaches [1] when reduced to the matrix case.
While least-squares (LS) is typically utilized as the fitting

criterion for matrix and tensor completion, implicitly assuming
Gaussian data, the adopted probabilistic framework supports the
incorporation of alternative data models. Targeting count pro-
cesses available in the form of network traffic data, genome se-
quencing, and social media interactions, which are modeled as
Poisson distributed, the maximum a posteriori (MAP) estimator
is expressed in terms of the Kullback-Leibler (K-L) divergence
[11]. Approaches to non-negative matrix and tensor factoriza-
tion based on KL-divergence minimization include those in [23]
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Fig. 1. Tensor slices along the row, column, and tube dimensions.

and [41]. Different from the PARAFAC decomposition algo-
rithm for sparse count data in [11], the novel algorithm of this
paper focuses on the imputation of missing count data, and al-
lows one to incorporate prior information through rank regular-
ization.
The remainder of the paper is organized as follows. Section II

offers the necessary background on nuclear-norm regulariza-
tion for matrices, the PARAFAC decomposition, and the def-
inition of tensor rank. Section III presents the tensor comple-
tion problem, establishing the low-rank inducing property of
the proposed regularization. Prior information is incorporated
in Section IV, with Bayesian and RKHS formulations of the
tensor imputation method, leading to the low-rank tensor-im-
putation (LRTI) algorithm. Section V develops the method for
Poisson tensor data, and redesigns the algorithm tominimize the
rank-regularized K-L divergence. Finally, Section VI presents
numerical tests carried out on synthetic and real data, including
expression levels in yeast, and brain magnetic resonance images
(MRI). Conclusions are drawn in Section VII, while most tech-
nical details are deferred to the Appendix.
The notation adopted throughout includes bold lowercase and

capital letters for vectors and matrices , respectively, with
superscript denoting transposition. Tensors are underlined as
e.g., , and their slices carry a subscript as in ; see also
Fig. 1. Both the matrix and tensor Frobenius norms are repre-
sented by . Symbols , , , and , denote the Kronecker,
Khatri-Rao, Hadamard (entry-wise), and outer product, respec-
tively.

II. PRELIMINARIES

A. Nuclear-Norm Minimization for Matrix Completion

Low-rank approximation is a popular method for estimating
missing values of a matrix , which capitalizes on
“regularities” across the data [14]. For the imputation to be fea-
sible, a binding assumption that relates the available entries with
the missing ones is required. An alternative is to postulate that
has low rank . The problem of finding ma-

trix with rank not exceeding , which approximates in the
given entries specified by a binary matrix , can
be formulated as

(1)

The low-rank property of matrix implies that the vector
of its singular values is sparse. Hence, the rank constraint is
equivalent to , where the -(pseudo)norm
equals the number of nonzero entries of its vector argument.
Aiming at a convex relaxation of the NP-hard problem (1),

one can leverage recent advances in compressive sampling [14]
and surrogate the -norm with the -norm, which here equals

the nuclear norm of defined as . With this
relaxation, the Lagrangian counterpart of (1) is

(2)

where is a rank-controlling parameter. Problem (2) can
be further transformed by considering the following character-
ization of the nuclear norm [35]

(3)

For arbitrary with SVD , the minimum in (3) is
attained for and . The optimization in
(3) is over all possible bilinear factorizations of , so that the
number of columns of and is also a variable.
For given , note that the factorization with

and implies . Introducing
the aforementioned bilinear factorization of , and replacing

in (2) with the Frobenius-norm regularization dictated by
(3), one arrives at the following reformulation of (2) [24]

(4)

Problems (2) and (4) can be readily proved equivalent [cf.
Proposition 1-a)], in the sense that by finding the global min-
imum of (4), one can recover the optimal solution of (2).
However, since (4) is nonconvex, it may have multiple sta-
tionary points that need not be globally optimal. Interestingly,
the next result provides global optimality conditions for these
stationary points [parts a) and b) are proved in Appendix A,
while the proof for c) can be found in [24].]
Proposition 1: If , then problems (2) and (4)

are equivalent, in the sense that:
a) global minima coincide: ;
b) all local minima of (4) are globally optimal; and,
c) stationary points of (4) satisfying
are globally optimal.

This result plays a critical role in this paper, as the Frobenius-
norm regularization for controlling the rank in (4) will be useful
to obtain its tensor counterparts in Section III.
Remark 1: Without missing data, all entries of are equal

to one, and (1) boils down to principal component analysis. In
this case, (1) can be solved by truncating the SVD of , so that
only its largest singular values are retained. The presence of
missing entries changes the problem profoundly, as (1) becomes
NP-hard [39]. This highlights the importance of the nuclear
norm regularizer (2) as a clever alternative to rank minimiza-
tion in the presence of missing data. Reduced complexity alter-
natives to SVD are also available; e.g., the truncated multi-stage
Wiener filter (MSWF) [16]. MSWF offers an attractive alterna-
tive to (1) for matrix (and even tensor) dimensionality reduction.
This approach is not pursued here however, since redesigning
the MSWF to cope with missing data may prove challenging
[cf. (1) with and without missing data.] Conversely, exploring
variants of (2) for reduced-rank Wiener filtering in the presence
of missing data, constitutes an interesting direction for future
research.
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B. PARAFAC Decomposition

The PARAFAC decomposition of a tensor is
at the heart of the proposed imputation method, since it offers
a means to define its rank [22], [37]. Given , consider
matrices , , and , such that

(5)

The rank of is the minimum value of for which this de-
composition is possible. For , the PARAFAC
decomposition is given by the corresponding factor matrices

(all with columns), so that (5) holds with
.
To appreciate why the aforementioned rank definition is nat-

ural, rewrite (5) as , where , , and
represent the -th columns of , , and , respectively; and

the outer products have entries
. The rank of a tensor

is thus the minimum number of outer products (rank one factors)
required to represent the tensor. It is not uncommon to adopt an
equivalent normalized representation

(6)

by defining unit-norm vectors , ,
, and weights ,

.
Let denote the -th slice of along its

third (tube) dimension, such that ; see
Fig. 1. The following compact form of the PARAFAC decom-
position in terms of slice factorizations will be used in the sequel

(7)

where the diagonal matrix has the vector on its
diagonal, and is the -th row of the identity
matrix. The PARAFAC decomposition is symmetric [cf.
(5)], and one can also write , or,

in terms of slices along the first
(row), or, second (column) dimensions. Given , under
some technical conditions then are unique up to a
common column permutation and scaling (meaning PARAFAC
is identifiable); see e.g., [22], [32], [36], [37].

III. RANK REGULARIZATION FOR TENSORS

Generalizing the nuclear-norm regularization technique (2)
from low-rank matrix to tensor completion is not straightfor-
ward, since singular values of a tensor (given by the Tucker
decomposition) are not related to the rank [21]. Fortunately,
the Frobenius-norm regularization outlined in Section II-A of-
fers a viable option for low-rank tensor completion under the
PARAFAC model, by solving

(8)

where the Frobenius norm of a tensor is defined as
, and the Hadamard

product as .
Different from the matrix case, it is unclear whether the regu-

larization in (8) bears any relation with the tensor rank. Interest-
ingly, the following analysis corroborates the capability of (8)
to produce a low-rank tensor , for sufficiently large . In this
direction, consider an alternative completion problem stated in
terms of the normalized tensor representation (6)

(9)

where ; the nonconvex (pseudo)-norm
is given by ; and the unit-norm
constraint on the factors’ columns is left implicit. Problems (8)
and (9) are equivalent as established by the following proposi-
tion (see Appendix B for a proof.)
Proposition 2: The solutions of (8) and (9) coincide, i.e.,

, with optimal factors related by ,
, and , .

To further stress the capability of (8) to produce a low-rank
approximant tensor , consider transforming (9) once more by
rewriting it in the constrained-error form

(10)

For any value of there exists a corresponding Lagrange mul-
tiplier such that (9) and (10) yield the same solution, under the
identity . [Since is an increasing func-
tion, the exponent of can be safely eliminated without
affecting the minimizer of (10).] The key observation is that
minimizing in (10) yields a sparse vector [9]. As with
the well-known sparsity-promoting -norm, the unit -norm
ball exhibits a “pointy geometry” at the axes responsible for in-
ducing sparsity; see Fig. 2.
With (8) equivalently rewritten as in (10), its low-rank in-

ducing property is now revealed. As in (10) becomes sparse,
some of its entries are nulled, and the corresponding outer-
products drop from the sum in (6), thus low-
ering the rank of .
The next property is a direct consequence of the low-rank

promoting property of (8) as established in Proposition 2; see
Appendix C for a proof.
Corollary 1: Let denote the solution of (8). If

, then .
Corollary 1 asserts that if is chosen large enough, the rank

is reduced to the extreme case . To see why this is
a non-trivial property, it is prudent to think of linear models and
ridge-regression estimates which entail similar quadratic regu-
larizers, but an analogous property does not hold. In ridge re-
gression one needs to let in order to obtain an all-zero
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Fig. 2. The unit -norm ball compared to its - and -norm counterparts.

solution. Characterization of is also of practical relevance
as it provides a frame of reference for tuning the regularization
parameter.
Using (10), it is also possible to relate (8) with the atomic

norm in [8]. Indeed, the infimum -norm of is a proper norm
for , named atomic norm, and denoted by [8].
Thus, by replacing with , (10) becomes convex
in . Still, the complexity of solving such a variant of (10) re-
sides in that is generally intractable to compute [8]. In
this regard, it is remarkable that arriving to (10) had the sole
purpose of demonstrating the low-rank inducing property, and
that (8) is to be solved by the algorithm developed in the ensuing
section. Such an algorithm will neither require computing the
atomic norm or PARAFAC decomposition of , nor knowing
its rank. The number of columns in , , and can be set
to an overestimate of the rank of , such as the upper bound

, and the low-rank of
will be induced by regularization as argued earlier. It is also

fair to say that only convergence to a stationary point of (8) will
be established in this paper.
Remark 2: These insights foster future research di-

rections for the design of a convex regularizer of the
tensor rank. Specifically, substituting

for the regularization term in
(8), turns into in the equivalent (10). It is
envisioned that with such a modification in place, the acquired
convexity of (10) would enable a reformulation of Proposition
1 for the tensor case, providing conditions for global optimality
of the stationary points of (8).
Remark 3: Feasibility of the imputation task relies fundamen-

tally on assuming a low-dimensional data model, to couple the
available and missing entries as well as reduce the effective de-
grees of freedom in the problem. Under the low-rank assump-
tion for instance, a rough idea on the frac-
tion of missing data that can be afforded is obtained by com-
paring the number of unknowns with the number
of available data samples (equations) . Ensuring
that , implies that the tensor
can be recovered even if a fraction

of entries is missing. Different low-dimensional

models would lead to alternative imputation methods, as the un-
folded tensor regularization in [15], or the truncatedMSWF [16]
discussed in Remark 1. The comparative performance of these
methods would depend on the accuracy of their modeling as-
sumptions. This paper focuses on low-rank tensors, hence (8) is
expected to outperform its competitors. This intuition is corrob-
orated by numerical tests in Section VI.
Still, a limitation of (8) is that it does not allow for incorpo-

rating side information that could be available in addition to the
given entries .
Remark 4: In the context of recommender systems, a descrip-

tion of the users and/or products through attributes (e.g., gender,
age) or measures of similarity, is typically available. It is thus
meaningful toexploitbothknownpreferencesanddescriptions to
model the preferences of users [1]. In three-way (samples, genes,
conditions) microarray data analysis, the relative position of
single-nucleotide polymorphisms in the DNA molecule implies
degrees of correlation among genotypes [31]. These correlations
could be available either through a prescribedmodel, or, through
estimates obtained using a reference tensor .Aprobabilistic ap-
proach to tensor completion capable of incorporating such types
ofextra informationis thesubjectof theensuingsection.

IV. BAYESIAN LOW-RANK TENSOR APPROXIMATION

A. Bayesian PARAFAC Model

A probabilistic approach is developed in this section in order
to integrate the available statistical information into the tensor
imputation setup. To this end, suppose that the observation noise
is zero-mean, white, Gaussian; that is the noisy tensor measure-
ments are given by

(11)

Since vectors in (6) are interchangeable, identical distribu-
tions are assigned across , and they are modeled as
independent from each other, zero-mean Gaussian distributed
with covariance matrix . Similarly, vectors
and are uncorrelated and zero-mean, Gaussian, with covari-
ance matrix and , respectively. In addition , , and
are assumed mutually uncorrelated. Since scale ambiguity is

inherently present in the PARAFAC model, vectors , , and
are set to have equal power; that is,

(12)

where denotes the matrix trace operator.
Under these assumptions, the posterior dis-

tribution can be factorized as
and is thus pro-

portional to , where

and with as in (5).
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The MAP estimator of is defined as the maximizer
of [20, p. 350]. Equivalently, the MAP estimator
of follows from minimizing w.r.t. , , ,
and , with (5) as a constraint; i.e.,

(13)

reducing to (8) when , , and .
Remark 5: From this Bayesian vantage point, the regulariza-

tion parameter [cf. (8)] can be interpreted as the noise vari-
ance, which is useful in practice to select . This parameter
choice is complemented by the guidelines to obtain the prior
covariances which are outlined in Section IV-C.
First, the ensuing section explores the advantages of incorpo-

rating prior information to the imputation method.

B. Nonparametric Tensor Decomposition

Incorporating the information conveyed by , , and
, together with a practical means of finding these matrices

can be facilitated by interpreting (13) in the context of RKHS
[40]. In particular, the analysis presented next will use the Rep-
resenter Theorem, interpreted as an instrument for finding the
best interpolating function in a Hilbert space spanned by ker-
nels, just as interpolation with sinc-kernels is carried out in the
space of bandlimited functions for the purpose of reconstructing
a signal from its samples [27].
In this context, it is instructive to look at a tensor

as a function of three variables , and , living
in measurable spaces , and , respectively. Generalizing
(8) to this nonparametric framework, low-rank functions are
formally defined to belong to the following family

where , , and are Hilbert spaces constructed from
specified kernels , and , defined over , , and ,
while is an initial overestimate of the rank of .
The following nonparametric fitting criterion is adopted for

finding the best interpolating data

(14)

It is shown in Appendix D that leveraging the Representer The-
orem, the minimizer of (14) admits a finite dimensional repre-
sentation in terms of , and ,

(15)

where vector ,
, and matrix has entries ,

. Likewise, , , , and
are correspondingly defined in terms of and . It

is also shown in Appendix D that the coefficient matrices
, , and in (15) can be found

by solving

(16)

Problem (16) reduces to (8) when the side information is dis-
carded by selecting , and as Kronecker deltas, in
which case , , and are identity matrices. In the
general case, (16) yields the sought nonlinear low-rank approx-
imation method for when combined with (15), evi-
dencing the equivalence between (14) and (13).
Interpreting (14) as an interpolator renders (13) a natural

choice for tensor completion, where in general, missing entries
are to be imputed by connecting them to surrounding points on
the three-dimensional arrangement. Relative to (8), this RKHS
perspective also highlights (13)’s extra smoothing and extrap-
olation capabilities. Indeed, by capitalizing on the similarities
captured by , and , (16) can recover completely
missing slices. This feature is not shared by imputation methods
that leverage low-rank only, since these require at least one
point in the slice to build on colinearities. Extrapolation is also
possible in this sense. If for instance can be expanded to
capture a further point not in the original set, then a new
slice of data can be predicted by (15) based on its correlation

with the available entries. These extra capabilities
will be exploited in Section VI-C, where correlations are lever-
aged for the imputation of MRI data. The method described
by (13) and (16) can be applied to matrix completion by just
setting entries of to one, and can be extended to higher-order
dimensions with a straightforward alteration of the algorithms
and propositions throughout this paper.
Identification of covariance matrices , , and with

kernel matrices , and is the remaining aspect to
clarify in the connection between (13) and (16). It is apparent
from (13) and (16) that correlations between columns of the
factors are reflected in similarities between the tensor slices,
giving rise to the opportunity of obtaining one from the other.
This aspect is explored next.

C. Covariance Estimation

To implement (13), matrices , , and must be
postulated a priori, or alternatively replaced by their sample
estimates. Such estimates need a training set of vectors ,

, and abiding to the Bayesian model described in
Section IV-A, and this requires PARAFAC decomposition of
training data. In order to abridge this procedure, it is convenient
to inspect how , , and are related to their kernel
counterparts.
Based on the equivalence between the standard RKHS in-

terpolator and the linear mean-square error estimator [28], it
is useful to re-visit the probabilistic framework and identify
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kernel similarities between slices of , with their mutual co-
variances. Focusing on the tube dimension of , one can write

, that is, the covariance between
slices and taking as the standard
inner product in the matrix space. Under this alternative defini-
tion for , and corresponding definitions for , and ,
it is shown in Appendix E that

(17)

and that is related to the second-order moment of by

(18)

Since sample estimates for , , , and
can be readily obtained from the tensor data, (17) and (18) pro-
vide an agile means of estimating , , and without re-
quiring PARAFAC decompositions over the set of training ten-
sors; see also the numerical tests in Section VI-C.
This strategy remains valid when kernels are not estimated

from data. One such case emerges in collaborative filtering of
user preferences [1], where the similarity of two users is mod-
eled as a prescribed function of a few attributes, such as age or
income [1].

D. Block Successive Upper-Bound Minimization Algorithm

An iterative algorithm is developed here for solving (13),
by cyclically minimizing the cost over . This
alternating-minimization procedure is typically adopted to fit
PARAFAC models, and is also known as block-coordinate de-
scent (BCD) in the optimization parlance [29]. In the first step
of the cycle the cost in (13) is minimized with respect to (w.r.t.)
, considering and as fixed parameters taking on their pre-

vious iteration values. Accordingly, the partial cost to minimize
reduces to the convex function

(19)

where was identified with and substituted for . Function
(19) is quadratic in and can be readily minimized after
re-writing it in terms of . However, such an ap-
proach becomes computationally infeasible for other than small
datasets, since it involves storing matrices of dimensions

, and solving a square linear system of equa-
tions. The alternative pursued here relies on the so-called block
successive upper-bound minimization (BSUM) algorithm [29].
As it will become clear later on, this way the computational
complexity in updating is reduced from to

per iteration, and likewise for and .
BSUM follows the same cyclic architecture as BCD, but

one instead minimizes a judiciously chosen upper-bound
of . As such, it blends the properties of BCD

and majorization-minimization algorithms. The majorizing
function depends on the current iterate , and should
be crafted such that: i) it is simpler to optimize than ; and
ii) satisfies certain local-tightness conditions; see also [29] and
properties i)-iii) in Lemma 1.

For given , consider the function

(20)

where is the maximum eigenvalue of ,
and . The following properties of
imply that it majorizes at , satisfying the technical con-
ditions required for the convergence of BSUM (see Appendix F
for a proof).
Lemma 1: Function in (20) satisfies the following

properties
i) ;
ii) ; and,
iii) .
The computational advantage of minimizing

instead of comes from the separability of
across rows of . To appreciate this, consider the Khatri-Rao
product , defined
by the column-wise Kronecker products . Let also
matrix denote the mode-1
unfolding of (along its tube dimension; see e.g., [13, p.30],)
and likewise for and

. Using the following identity
that relates the unfolded tensor with its factors [11]

(21)

it is possible to rewrite (20) as

which can be decomposed as

(22)

where , , , , and , represent the -th rows of ma-
trices , , , , and , respectively. Not only (22) evidences
the separability of (20) across rows of , but it also presents
each of its summands in a standardized quadratic form that can
be readily minimized by equating their gradients to zero, namely
(define for convenience)

Accordingly, the majorization strategy reduces the computa-
tional load to systems of equations that can be solved in
parallel, where is typically small (cf. the low tensor rank as-
sumption). Collecting the solution of such quadratic programs
into the rows of a matrix yields the minimizer of (20), and
the update for the BSUM cycle. Such a procedure is
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Algorithm 1: Low-rank tensor imputation (LRTI)

1: function

2: Set

3: Unfold and over dimension of into and

4: Set

5: for do

6: Select rows , , and , and set

7: Compute

8: Update with row

9: end for

10: return

11: end function

12: Initialize , and randomly.

13: while do

14:

15:

16:

17: Recalculate cost in (13)

18: end while

19: return with slices

presented in Algorithm 1, where analogous updates for and
are carried out cyclically per iteration.
Remark 6: A different algorithm for solving (13) was put

forth in the conference precursor of this paper [5], which
cyclically minimizes the columns of , and . Distinct
from Algorithm 1 that entails parallel row-wise updates
per factor, iterates in [5] involve sequential updates across
columns and factors, thus incurring a per iteration complexity
of . Because the factor matrices are
tall [ ], the aforementioned computational
load is markedly higher than the one incurred by Algorithm 1,
namely .
By virtue of properties i)-iii) in Lemma 1, convergence of

Algorithm 1 follows readily from that of the BSUM algorithm
[29].
Proposition 3: The iterates for , and generated by

Algorithm 1 converge to a stationary point of (13).

V. INFERENCE FOR LOW-RANK POISSON TENSORS

Adoption of the LS criterion in (8) assumes in a Bayesian set-
ting that the random is Gaussian distributed conditioned on .
This section deals with a Poisson-distributed tensor , a natural
alternative to the Gaussian model when integer-valued data are
obtained by counting independent events [11]. Such a model is
also well-suited for sparse tensor data, since the Poisson distri-
bution has mass at the origin.

Suppose that the entries of are Poisson distributed,
with probability mass function

(23)

and means given by the corresponding entries in tensor . For
mutually-independent , the log-likelihood of
given data only on the entries specified by , takes the

form

(24)
after dropping terms that do not depend on .
The choice of the Poisson distribution in (23) over a Gaussian

one for counting data, prompts minimization of the K-L diver-
gence (24) instead of LS [cf. (8)] as a more suitable criterion
[11]. Still, the entries of are not coupled in (24), and a binding
PARAFAC modeling assumption is natural for feasibility of the
tensor approximation task under missing data. Mimicking the
method for Gaussian data, (nonnegative) Gaussian priors are
assumed for the factors of the PARAFAC decomposition. Ac-
cordingly, the MAP estimator of given Poisson-distributed
data (entries of indexed by ) becomes

(25)

over the feasible set

where the symbol should be understood to imply entry-wise
nonnegativity.
Remark 7: The parameter in (25) was introduced to add

flexibility in varying the sparsity level of . However, deriva-
tion of the Poisson MAP estimator with Gaussian priors leads
to , which is used as the default value in the applications
of Section VI and is corroborated to be a reasonable choice in
Fig. 4. The reason behind taking a specific value is that in the
Poisson distribution (23) the mean and variance are related (in
fact they are equal). This should be contrasted with the MAP
estimator in Section IV, where equals which is a free pa-
rameter under the Gaussian data model (11).
With the aid of the Representer Theorem, it is also possible

to interpret (25) as a variational estimator in RKHS, with K-L
analogues to (14)–(16), so that the conclusions thereby re-
garding smoothing, prediction and prior covariance estimation
carry over to the low-rank Poisson imputation method (25).

A. BSUM Algorithm

A K-L counterpart of the LRTI algorithm is developed in this
section, that provably converges to a stationary point of (25). An
alternating-minimization scheme is adopted once again, which
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optimizes (a suitable upper-bound of) (25) cyclically w.r.t. one
factor matrix, while holding the others fixed.
In the sequel, the goal is to arrive at a suitable expression for

the cost in (25), when viewed only as a function of e.g., . To
this end, let matrix denote the
mode-1 unfolding of , and likewise for

and . Based on
these definitions, (24) can be written as

(26)

where , are all-one vectors of dimensions and
respectively, and should be understood entry-wise. The
log-likelihood in (26) can be expressed in terms of , and the
Khatri-Rao product by resorting again to (21).
Substituting (21) into (26) one arrives at the desired expression
for the cost in (25) as a function of , namely

A closed-form minimizer for is not available, but
since is convex one could in principle resort to an iter-
ative procedure to obtain . To avoid extra inner iterations,
the approach here relies again on the BSUM algorithm [29].
For given, consider the separable function

(27)
where , and parameters , , and are
defined in terms of , , , and by

and ,
with

. As
asserted in the following lemma, majorizes at
and satisfies the technical conditions required for the

convergence of BSUM (see the Appendix G for a proof.)
Lemma 2: Function in (27) satisfies the following

properties
i) ;
ii) ; and,
iii) .

Moreover, is minimized at with entries
.

Lemma 2 highlights the reason behind adopting the ma-
jorizing function in the proposed BSUM algorithm:
(27) is separable across the entries of its matrix argument, and
hence it admits a closed-form minimizer given by the

Algorithm 2: Low-rank Poisson-tensor imputation (LRPTI)

1: function

2: Set

3: Unfold and over dimension of into and

4: Compute (element-wise division)

5: Compute

6: Update with entries

7: return

8: end function

9: Initialize , and randomly.

10:while do

11:

12:

13:

14: Recalculate cost in (25)

15: end while

16: return with slices

scalars . The resulting updates are tabulated
under Algorithm 2, where analogous updates for and are
carried out cyclically per iteration.
By virtue of properties i)–iii) in Lemma 2, convergence of Al-

gorithm 2 follows readily from the general convergence theory
available for the BSUM algorithm [29].
Proposition 4: The iterates for , and generated by

Algorithm 2 converge to a stationary point of (25).
A related algorithm, abbreviated as CP-APR can be found in

[11], where the objective is to find the tensor’s low-rank fac-
tors per se. The LRPTI algorithm here generalizes CP-APR by
focusing on recovering missing data, and incorporating prior in-
formation through rank regularization. In terms of convergence
to a stationary point, the added regularization allows for lifting
the assumption on the linear independence of the rows of , as
required by CP-APR [11] – an assumption without a straightfor-
ward validation since iterates are not accessible beforehand.

VI. NUMERICAL TESTS

A. Simulated Gaussian Data

Synthetic tensor-data of dimensions
were generated according to the Bayesian tensor model

described in Section IV. Specifically, entries of consist of re-
alizations of Gaussian random variables generated according to
(11), with means specified by entries of and variance scaled
to yield an SNR of . Tensor is constructed from fac-
tors , and , as in (7). Matrices , and have
columns containing realizations of independent zero-mean,

unit-variance, Gaussian random variables.
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Fig. 3. Performance of the low-rank tensor imputation method as a function of
; (top) rank of the tensor as recovered by (8) averaged over 100 test repetitions,
compared to the DR-TR algorithm in [15]; (bottom) relative recovery error.

A quarter of the entries of were removed at random and
reserved to evaluate performance. The remaining seventy five
percent of the data were used to recover considering the re-
moved data as missing entries. Method (8) was employed for
recovery, as implemented by the LRTI Algorithm, with regu-
larization resulting from setting

, , and .
The relative recovery error between and data was com-

puted, along with the rank of the recovered tensor, as a mea-
sure of performance. Fig. 3 depicts these figures of merit aver-
aged over 100 repetitions of the experiment, across values of
varying on the interval to , which is computed
as in Corollary 1. The blue dotted line in Fig. 3 (bottom) shows
that the LRTI algorithm is successful in recovering the missing
entries of up to for a wide range of values of , pre-
senting a minimum at . This result is consistent
with Fig. 3 (top, blue dotted line), which shows that rank
is approximately recovered at the minimum error. Fig. 3 (top)
also corroborates the low-rank inducing effect of (8), with the
recovered rank varying from the upper bound to

, as is increased, and confirms that the recovered tensor
is null at as asserted by Corollary 1.
Fig. 3 (bottom) also depicts the imputation error that re-

sults from applying the Douglas-Rachford (DR-TR) method
for tensor recovery in [15]. Since the DR-TR method is not
designed to capture the PARAFAC rank, the LRTI offers better

Fig. 4. Performance of the low-rank Poisson imputation method as function of
the regularizing parameter ; (top) rank of the recovered tensor averaged over
100 test repetitions, (bottom) relative recovery error.

performance in terms of recovery error when indeed abides
to a low-rank model. In addition, Fig. 3 depicts the LRTI
results obtained for a larger tensor of dimensions ,

, , and rank . Similar to the prior
simulation setting where , , and , the
minimum error is again attained at a similar value of ,
where the true rank is recovered.

B. Simulated Poisson Data

The synthetic example just described was repeated for the
low-rank Poisson-tensor model described in Section V. Specif-
ically, tensor data of dimensions
were generated according to the low-rank Poisson-tensor model
of Section V. Entries of consist of realizations of Poisson
random variables generated according to (23), with means spec-
ified by entries of . Tensor is again constructed as in (7)
from factors , and having columns, containing
the absolute value of realizations of independent Gaussian
random variables scaled to yield . Half of the
entries of were considered missing to be recovered from
the remaining half. Method (25) was employed for recovery,
as implemented by the LRPTI Algorithm, with regularization

.
Fig. 4 shows the estimated rank and recovery error over 100

realizations of the experiment, for in the interval 0.01 to 100.
The recovery error in Fig. 4 (bottom) exhibits a minimum of

at , where the rank is recovered [cf. Fig. 4



5698 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 22, NOVEMBER 15, 2013

Fig. 5. Results of applying (14) to the MRI brain data set 657 [19]. (top) Orig-
inal and recovered fibers and for . (center) Input fiber
with missing data, and covariance matrix . (bottom) Original and recovered
columns and for the position in which the whole input slice is
missing ).

(top).] The low-rank inducing effect of (8) is again corroborated
by the decreasing trend in Fig. 4 (top), but in this case the rank
is lower bounded by , because the K-L fitting criterion
prevents (25) from yielding a null estimate .

C. MRI Data

Estimator (14) was tested against a corrupted version of the
MRI brain data set 657 from the Internet brain segmentation
repository [19]. The tensor to be estimated corresponds to a
three-dimensional MRI scan of the brain comprising a set of

images, each of pixels. Fifty
percent of the data is removed uniformly at random together
with the whole slice . Fig. 5 depicts the results of
applying estimator (14) to the remaining data, which yields a
reconstruction error of . The original slice
, its corrupted counterpart, and the resulting estimate are shown
on top and center left.
Parameter is set equal to as per Remark 5. The noise

variance is estimated from 150 entries at each corner of
, which are assumed to contain background noise only.

Covariance matrices , and are estimated from six
additional tensor samples containing complementary scans of

the brain also available at [19]. Fig. 5 (center right) represents
the covariance matrix for column slices perpendicular to
, showing a structure that reflects symmetries of the brain.

This correlation is the key enabler for the method to recover the
missing slice up to (see Fig. 5 (bottom)) by interpo-
lating its a priori similar parallel counterparts.
For , , i.e., the rank is not

reduced but remains equal to the number of columns set
for , , and . The results are weakly dependent on the
selection of , with a reconstruction error in the interval

for between 50 and 200. If is
increased the rank of the estimated tensor is reduced, but the re-
covery error is increased. For instance, selecting
as suggested by the simulation studies of Section VI-A, results
in , but the recovery error slightly increases
to . Further increasing up to 0.1 , results in a
lower , with a larger error at . It is
thus noticed that (14) is able to regularize the tensor taking into
account correlations, but without necessarily forcing a reduced
rank.
These properties are further appreciated when comparing the

performance of LRTI with state-of-the-art methods for tensor
completion. The missing entries of were imputed via the
CP-WOPT algorithm in the Tensor Toolbox 2.5 [2]. CP-WOPT
was run 100 times with candidate values for the rank between
1 and 100, yielding higher reconstruction errors in the interval

.
All in all, the experiment evidences the merits of low-rank

PARAFAC decomposition for modeling a tensor, the ability of
the Bayesian estimator (13) in recovering missing data, and the
usefulness of incorporating correlations as side information.
On account of the comprehensive analysis of three-way MRI

data arrays in [13], and the nonnegative PARAFAC decompo-
sition advanced thereby, inference of tensors with nonnegative
continuous entries will be pursued as future research, combining
methods and algorithms in Sections IV and V of this paper.

D. RNA Sequencing Data

The RNA-Seq method described in [26] exhaustively counts
the number of RNA transcripts from yeast cells. The reverse
transcription of RNA molecules into cDNA is achieved by
alternative methods, differentiated by the use of oligo-dT, or

random-hexonucleotide primers. These cDNA molecules are
sequenced to obtain counts of RNA molecules across ,
604 genes on the yeast genome. The experiment was repeated
in [26] for a biological and a technological replicate of the orig-
inal sample totalling instances per primer selection. The
data are thus organized in a tensor of dimensions 6, 604 3 2
as shown in Fig. 6 (top), with integer data that are modeled as
Poisson counts. Fifteen percent of the data is removed and re-
served for assessing performance. The missing data are repre-
sented in white in Fig. 6 (center).
The LRPTI algorithm is run with the data available in Fig. 6

(center) producing the recovered tensor depicted in Fig. 6
(bottom). The parameter is set equal to 1 as per Remark
7, resulting in and a recovery error of

.
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Fig. 6. Imputation of sequencing count data via LRPTI; (top) original data;
(center) data with missing entries; (bottom) recovered tensor.

VII. CONCLUDING SUMMARY

It was shown in this paper that regularizing with the Frobe-
nius-norm square of the PARAFAC decomposition factors,
controls the tensor’s rank by inducing sparsity in the vector of
amplitudes of its rank-one components. A Bayesian method
for tensor completion was developed based on this property,
introducing priors on the tensor factors. It was argued, and
corroborated numerically, that this prior information endows
the completion method with extra capabilities in terms of
smoothing and extrapolation. It was also suggested through
a parallelism between Bayesian and RKHS inference, that
the prior covariance matrices can be obtained from (sample)
correlations among the tensor’s slices. In such a probabilistic
context, generic distribution models for the data lead to mul-
tiple fitting criteria. Gaussian and Poisson processes were
especially considered by developing algorithms that minimize
the regularized LS and K-L divergence, respectively.
Numerical tests on synthetic data corroborated the low-rank

inducing property, and the ability of the completion method to
recover the “ground-truth” rank, while experiments with brain
images and gene expression levels in yeast served to evaluate
the method’s performance on real datasets.
Although the results and algorithms in this paper were

presented for three-way arrays, they are readily extendible to
higher-order tensors or reducible to the matrix case.

APPENDIX

A. Proof of Proposition 1

The equivalence between (2) and (4) stated in a) follows im-
mediately from (3). Indeed, if (4) is minimized in two steps

(28)

it is apparent that the LS part of the cost does not depend on the
inner minimization variables. Hence, (28) can be rewritten as

(29)
and by recognizing (3) as the problemwithin the square brackets
in (29), the equivalence follows.
To establish b), consider the cost in (4) at the local minimum

where . Arguing by contradiction, suppose that
there is a different local minimum such that

. Without loss of generality set
so that , which can be ex-
panded to

(30)

Setting this inequality aside for now, consider the augmented
matrix in terms of generic matrices and :

(31)

and the corresponding defined in terms of and . For each
value of consider the convex combination

(32)

As both and are positive semi-definite, so is and by
means of the Choleski factorization one obtains

(33)

which defines , and .
Expanding the cost difference as in (30) results in

From the definitions (31)–(33) it follows that
, , and

, so that
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Using (30), can be expressed in terms of as

Since is strictly negative, so is , and
hence

But then in every neighborhood of there is a point
such that , meaning

cannot be a local minimum. This contradiction implies that
for any pair of local minima, which

completes the proof.

B. Proof of Proposition 2

The Frobenius norms squared of , , and are separable
across columns; hence, the penalty in (8) can be rewritten as

(34)

where , , , .
Without loss of generality, can be expressed in terms of the

normalized outer products (6) with . Substituting
(6) and (34) for the tensor and the penalty respectively, (8) re-
duces to

(35)

Focus first on the inner minimization w.r.t. norms , , and
, for arbitrary fixed directions , , and , as well

as for fixed products . The constraints and hence
the LS part of the cost depend on only, and not on their par-
ticular factorizations . Thus, the penalty is the only term
that varies when is constant, rendering the inner-most mini-
mization in (35) equivalent to

(36)

The arithmetic-mean geometric-mean inequality yields the
solution to (36), since for scalars , , and it holds that

with equality when . This implies that the min-
imum of (36) is attained at .
Substituting the corresponding

into (35) yields (9). Equivalence of
optimization problems is transitive; hence, showing that both
(9) and (8) are equivalent to (35) proves them equivalent to
each other, as desired.

C. Proof of Corollary 1

The following result on the norm of the matrix inverse will
be used in the proof of the corollary.

Lemma 3: [17, p.58] If satisfies ,
then is invertible, and .
For any value of , and with being the minimizers

of (8), the useful inequality

(37)

follows by comparing the cost at the minimum and at the origin
A second characterization of the minimum of (8) can be ob-

tained from the first-order optimality condition. Upon vector-
izing , the cost in (8) can be rewritten as

(38)
where , , and denote the vectorizations of matrices ,
, and , respectively. Additional regularization terms that

vanish when taking derivatives w.r.t. were removed from
(38). Nulling the gradient of (38) w.r.t. yields

with

The norms of and can be bounded by using the sub-mul-
tiplicative property of the norm, and the Cauchy-Schwarz in-
equality, which results in

According to Lemma 3, if is chosen large enough so that
, then the norm of is bounded by

(39)
which constitutes the sought second characterization of the min-
imum of (8).
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Yet a third characterization was obtained in Appendix B,
where the norm of the factor columns were shown equal to
each other, so that

(40)

Substituting (40) into (37) and (39) yields

(41)

(42)

Form (42), two complementary cases arise:

(43)

To argue that c2) is impossible, substitute (41) into (43) and
square the result to obtain

(44)

But by hypothesis so that ,
and the right-hand side of (44) is bounded by 0.43, so that (44)
does not hold. This implies that c1); i.e.,

, must hold, which completes the proof.
Still, the bound at 0.43 can be pushed to one by further

reducing , and the proof remains valid under the slightly
relaxed condition

.

D. RKHS Imputation

Recursive application of the Representer Theorem yields
finitely-parameterized minimizers , , and of (14), given
by

Defining vectors ,
and correspondingly ,
and , along with matrices

, ,
and , it follows that

(45)

Matrices , , and are further obtained by solving

which is equivalent to (16) after changing variables
, , and , just as (45)

becomes (15).

E. Covariance Estimation

Inspection of the entries of
under the PARAFAC model, yields

After summing over , one obtains

(46)

In addition, by incorporating the equal power assumption (12),
(46) further simplifies to

as stated in (18).

F. Proof of Lemma 1

Towards establishing properties i)–iii) in Lemma 1, consider
expanding the difference between and . One
readily obtains

which is nonnegative from the definition of and, together with
its gradient, vanish at .
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G. Proof of Lemma 2

Function in (27) is formed from after substi-
tuting for , and for , respec-
tively, as defined by

(47)

(48)

where and , and

(49)

(50)

with . Hence, properties
i)-iii) will be satisfied by the functions and in
Lemma 2, as long as they are satisfied both by the pairs (47)-(48)
and (49)-(50).
Focusing on the first pair, the arguments in Appendix F imply

that properties i)-iii) are satisfied by and . Con-
sidering the second pair, and expanding yields

(51)

where the logarithm can be rewritten as (see also [11])

(52)

(53)

and the inequality holds because of the concavity of the loga-
rithm and the coefficients summing up to one. Since
substituting (53) for (52) in (51) results in (50), it follows that

and satisfy property iii). The proof is complete
after evaluating the pair of functions and their derivatives at
to confirm that properties i) and ii) hold too.
The minimum is obtained

readily after equating to zero the derivative of the corresponding
summand in (27), and selecting the nonnegative root.
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