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Abstract—Extracting latent low-dimensional structure from
high-dimensional data is of paramount importance in timely
inference tasks encountered with “Big Data” analytics. However,
increasingly noisy, heterogeneous, and incomplete datasets, as
well as the need for real-time processing of streaming data, pose
major challenges to this end. In this context, the present paper
permeates benefits from rank minimization to scalable imputation
of missing data, via tracking low-dimensional subspaces and
unraveling latent (possibly multi-way) structure from incomplete
streaming data. For low-rank matrix data, a subspace estimator
is proposed based on an exponentially weighted least-squares
criterion regularized with the nuclear norm. After recasting the
nonseparable nuclear norm into a form amenable to online opti-
mization, real-time algorithms with complementary strengths are
developed, and their convergence is established under simplifying
technical assumptions. In a stationary setting, the asymptotic
estimates obtained offer the well-documented performance guar-
antees of the batch nuclear-norm regularized estimator. Under the
same unifying framework, a novel online (adaptive) algorithm is
developed to obtain multi-way decompositions of low-rank tensors
with missing entries and perform imputation as a byproduct. Sim-
ulated tests with both synthetic as well as real Internet and cardiac
magnetic resonance imagery (MRI) data confirm the efficacy of
the proposed algorithms, and their superior performance relative
to state-of-the-art alternatives.

Index Terms—Low rank, matrix and tensor completion, missing
data, streaming analytics, subspace tracking.

I. INTRODUCTION

N OWADAYS ubiquitous e-commerce sites, the Web, and
Internet-friendly portable devices generate massive vol-

umes of data. The overwhelming consensus is that tremendous
economic growth and improvement in quality of life can be
effected by harnessing the potential benefits of analyzing this
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large volume of data. As a result, the task of extracting the
most informative, yet low-dimensional structure from high-di-
mensional datasets is of paramount importance [21]. The sheer
volume of data and the fact that oftentimes observations are
acquired sequentially in time, motivate updating previously
obtained ‘analytics’ rather than re-computing new ones from
scratch each time a new datum becomes available [28], [36]. In
addition, due to the disparate origins of the data, subsampling
for faster data acquisition, or even privacy constraints, the
datasets are often incomplete [2], [12].
In this context, consider streaming data comprising incom-

plete and noisy observations of the signal of interest
at time . Depending on the application, these ac-
quired vectors could e.g., correspond to (vectorized) images,
link traffic measurements collected across physical links of a
computer network, or, movie ratings provided by Netflix users.
Suppose that the signal sequence lives in a low-dimen-
sional linear subspace of . Given the incomplete
observations that are acquired sequentially in time, this paper
deals first with (adaptive) online estimation of , and recon-
struction of the signal as a byproduct. This problem can be
equivalently viewed as low-rank matrix completion with noise
[12], solved online over indexing the columns of relevant ma-
trices, e.g., .
Modern datasets are oftentimes indexed by three or more

variables giving rise to a tensor, that is a data cube or a
mutli-way array, in general [24]. It is not uncommon that one of
these variables indexes time [32], [41], and that sizable portions
of the data are missing [2], [6], [19], [27], [34]. Various data
analytic tasks for network traffic, social networking, or medical
data analysis aim at capturing underlying latent structure, which
calls for high-order tensor factorizations even in the presence
of missing data [2], [6], [27]. It is in principle possible to
unfold the given tensor into a matrix and resort to either batch
[19], [33], or, online matrix completion algorithms as the ones
developed in the first part of this paper; see also [3], [14], [30].
However, tensor models preserve the multi-way nature of the
data and extract the underlying factors in each mode (dimen-
sion) of a higher-order array. Accordingly, the present paper
also contributes towards fulfilling a pressing need in terms of
analyzing streaming and incomplete multi-way data; namely,
low-complexity, real-time algorithms capable of unraveling
latent structures through parsimonious (e.g., low-rank) de-
compositions, such as the parallel factor analysis (PARAFAC)
model; see e.g. [24] for a comprehensive tutorial treatment on
tensor decompositions, algorithms, and applications.
Relation to prior work. Subspace tracking has a long history

in signal processing. An early noteworthy representative is the
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projection approximation subspace tracking (PAST) algorithm
[44]; see also [45]. Recently, an algorithm (termed GROUSE)
for tracking subspaces from incomplete observations was put
forth in [3], based on incremental gradient descent iterations
on the Grassmannian manifold of subspaces. Recent analysis
has shown that GROUSE can converge locally at an expected
linear rate [5], and that it is tightly related to the incremental
SVD algorithm [4]. PETRELS is a second-order recursive least-
squares (RLS)-type algorithm, that extends the seminal PAST
iterations to handle missing data [14]. As noted in [15], the
performance of GROUSE is limited by the existence of bar-
riers in the search path on the Grassmanian, which may lead
to GROUSE iterations being trapped at local minima; see also
[14]. Lack of regularization in PETRELS can also lead to un-
stable (even divergent) behaviors, especially when the amount
of missing data is large. Accordingly, the convergence results
for PETRELS are confined to the full-data setting where the
algorithm boils down to PAST [14]. Relative to all aforemen-
tioned works, the algorithmic framework of this paper perme-
ates benefits from rank minimization to low-dimensional sub-
space tracking and missing data imputation (Section III), offers
provable convergence and theoretical performance guarantees
in a stationary setting (Section IV), and is flexible to accommo-
date tensor streaming data models as well (Section V). While
algorithms to impute incomplete tensors have been recently pro-
posed in e.g., [2], [6], [19], [27], all existing approaches rely on
batch processing.
Contributions. Leveraging the low dimensionality of the

underlying subspace , an estimator is proposed based on an
exponentially-weighted least-squares (EWLS) criterion regu-
larized with the nuclear norm of . For a related data model,
similar algorithmic construction ideas were put forth in our
precursor paper [30], which dealt with real-time identification
of network traffic anomalies. Here instead, the focus is on
subspace tracking from incomplete measurements, and online
matrix completion. Upon recasting the non-separable nuclear
norm into a form amenable to online optimization as in [30],
real-time subspace tracking algorithms with complementary
strengths are developed in Section III, and their convergence
is established under simplifying technical assumptions. For
stationary data and under mild assumptions, the proposed
online algorithms provably attain the global optimum of
the batch nuclear-norm regularized problem (Section IV-C),
whose quantifiable performance has well-appreciated merits
[11], [12]. This optimality result as well as the convergence
of the (first-order) stochastic-gradient subspace tracker estab-
lished in Section IV-B, markedly broaden and complement the
convergence claims in [30].
The present paper develops for the first time an online al-

gorithm for decomposing low-rank tensors with missing en-
tries; see also [32], [41] for an adaptive algorithm to obtain
PARAFAC decompositions with full data. Accurately approx-
imating a given incomplete tensor allows one to impute those
missing entries as a byproduct, by simply reconstructing the
data cube from the model factors (which for PARAFAC are
unique under relatively mild assumptions [8], [25]). Leveraging
stochastic gradient-descent iterations, a scalable, real-time al-
gorithm is developed in Section V under the same rank-min-
imization framework utilized for the matrix case, which here
entails minimizing an EWLS fitting error criterion regularized

by separable Frobenius norms of the PARAFAC decomposition
factors [6]. The proposed online algorithms offer a viable ap-
proach to solving large-scale tensor decomposition (and com-
pletion) problems, even if the data is not actually streamed but
they are so massive that do not fit in the main memory.
Simulated tests with synthetic as well as real Internet traffic

data corroborate the effectiveness of the proposed algorithms
for traffic estimation and anomaly detection, and its superior
performance relative to state-of-the-art alternatives (available
only for the matrix case [3], [14]). Additional tests with cardiac
magnetic resonance imagery (MRI) data confirm the efficacy of
the proposed tensor algorithm in imputing up to 75% missing
entries. Conclusions are drawn in Section VII.
Notation: Bold uppercase (lowercase) letters will denote ma-

trices (column vectors), and calligraphic letters will be used for
sets. Tensors or multi-way arrays are denoted by bold, under-
lined uppercase letters. Operators , , , , ,
and will denote transposition, matrix trace, statistical expec-
tation, maximum singular value, Hadamard product, and outer
product, respectively; will be used for the cardinality of
a set, and the magnitude of a scalar. The positive semidefi-
nite matrix will be denoted by . The -norm of

is for . For twomatrices
, denotes their trace inner

product, and is the Frobenious norm.
The identity matrix will be represented by , while
will stand for the vector of all zeros, , and

.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a sequence of high-dimensional data vectors, which
are corrupted with additive noise and some of their entries may
be missing. At time , the incomplete streaming observations
are modeled as

(1)

where is the signal of interest, and stands for
the noise. The set contains the indices of
available observations, while the corresponding sampling oper-
ator sets the entries of its vector argument not in to
zero, and keeps the rest unchanged; note that .
Suppose that the sequence lives in a low-dimensional

linear subspace , which is allowed to change slowly
over time. Given the incomplete observations ,
the first part of this paper deals with online (adaptive) estimation
of , and reconstruction of as a byproduct. The reconstruc-
tion here involves imputing the missing elements, and denoising
the observed ones.

A. Challenges Facing Large-Scale Nuclear Norm
Minimization
Collect the indices of available observations up to time in

the set , and the actual batch of observations in
the matrix ; see
also Fig. 1. Likewise, introduce matrix containing the signal
of interest. Since lies in a low-dimensional subspace, is
(approximately) a low-rank matrix. A natural estimator lever-
aging the low rank property of attempts to fit the incomplete
data to in the least-squares (LS) sense, as well as
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Fig. 1. Matrix data with missing entries. (Left) Batch data available
at time . (Right) Streaming data, where vectors become available for

.

minimize the rank of . Unfortunately, albeit natural the rank
criterion is in general NP-hard to optimize [33]. This motivates
solving for [12]

where the nuclear norm ( is the -th
singular value) is adopted as a convex surrogate to
[16], and is a (possibly time-varying) rank-controlling pa-
rameter. Scalable imputation algorithms for streaming obser-
vations should effectively overcome the following challenges:
(c1) the problem size can easily become quite large, since the
number of optimization variables grows with time; (c2) ex-
isting batch iterative solvers for (P1) typically rely on costly
SVD computations per iteration; see e.g., [11]; and (c3) (colum-
nwise) nonseparability of the nuclear-norm challenges online
processing when new columns arrive sequentially
in time. In the following subsection, the ‘Big Data’ challenges
(c1)–(c3) are dealt with to arrive at an efficient online algorithm
in Section III.

B. A Separable Low-Rank Regularization

To limit the computational complexity and memory storage
requirements of the algorithm sought, it is henceforth assumed
that the dimensionality of the underlying time-varying subspace

is bounded by a known quantity . Accordingly, it is natural
to require . As argued later in Remark 1, the
smaller the value of , the more efficient the algorithm becomes.
Because , one can factorize the matrix decision
variable as , where and are and
matrices, respectively. Such a bilinear decomposition suggests

is spanned by the columns of , while the rows of are the
projections of onto .
To address (c1) and (c2) [along with (c3) as it will become

clear in Section III], consider the following alternative charac-
terization of the nuclear norm [39], [40]

(2)

The optimization (2) is over all possible bilinear factorizations
of , so that the number of columns of and is also a vari-
able. Leveraging (2), the following nonconvex reformulation of
(P1) provides an important first step towards obtaining an on-
line algorithm:

The number of variables is reduced from in (P1) to
in (P2), which can be significant when is small, and both
and are large. Most importantly, it follows that adopting the
separable (across the time-indexed columns of ) Frobenius-

norm regularization in (P2) comes with no loss of optimality
relative to (P1), provided .
By finding the global minimum of (P2), one can recover the

optimal solution of (P1). However, since (P2) is nonconvex, it
may have stationary points which need not be globally optimum.
Interestingly, results in [10], [29] offer a global optimality cer-
tificate for stationary points of (P2). Specifically, if is a
stationary point of (P2) (obtained with any practical solver) sat-
isfying the qualification inequality
, then is the globally optimal solution of (P1)

[10], [29].

III. ONLINE RANK MINIMIZATION FOR MATRIX IMPUTATION

In ‘Big Data’ applications the collection of massive amounts
of data far outweigh the ability of modern computers to store
and analyze them as a batch. In addition, in practice (possibly
incomplete) observations are acquired sequentially in time
which motivates updating previously obtained estimates rather
than re-computing new ones from scratch each time a new
datum becomes available. As stated in Section II, the goal is to
recursively track the low-dimensional subspace , and sub-
sequently estimate per time from historical observations

, naturally placing more importance on recent
measurements. To this end, one possible adaptive counterpart
to (P2) is the exponentially-weighted LS (EWLS) estimator
found by minimizing the empirical cost

where , , and
is the so-termed forgetting factor. When , data in the

distant past are exponentially downweighted, which facilitates
tracking in nonstationary environments. In the case of infinite
memory , the formulation (P3) coincides with the batch
estimator (P2). This is the reason for the time-varying factor
weighting .
We first introduced the basic idea of performing online rank-

minimization leveraging the separable nuclear-norm regulariza-
tion (2) in [30] (and its conference precursor), in the context of
unveiling network traffic anomalies. Since then, the approach
has gained popularity in real-time non-negative matrix factor-
ization for singing voice separation from its music accompani-
ment [38], and online robust PCA [17], to name a few exam-
ples. Instead, the novelty here is on subspace tracking from in-
complete measurements, as well as online low-rank matrix and
tensor completion.

A. Alternating Recursive LS for Subspace Tracking From
Incomplete Data

Towards deriving a real-time, computationally efficient,
and recursive solver of (P3), an alternating-minimization
(AM) method is adopted in which iterations coincide with
the time-scale of data acquisition. A justification in terms of
minimizing a suitable approximate cost function is discussed
in detail in Section IV-A. Per time instant , a new datum

is drawn and is estimated via

(3)
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which is an -norm regularized LS (ridge-regression) problem.
It admits the closed-form solution

(4)

where diagonal matrix is such that
if , and is zero elsewhere. In the second step of the AM
scheme, the updated subspace matrix is obtained by mini-
mizing (P3) with respect to , while the optimization variables

are fixed and take the values , namely

(5)
Notice that (5) decouples over the rows of which are obtained
in parallel via

(6)
for , where denotes the -th diagonal
entry of . For and fixed , subproblems
(6) can be efficiently solved using recursive LS (RLS) [37].
Upon defining ,

, and , one
updates

and forms , for .
However, for the regularization term

in (6) makes it impossible to express in terms of
plus a rank-one correction. Hence, one cannot resort to the ma-
trix inversion lemma and update with quadratic com-
plexity only. Based on direct inversion of each , the al-
ternating recursive LS algorithm for subspace tracking from in-
complete data is tabulated under Algorithm 1.

Algorithm 1: Alternating LS for subspace tracking from
incomplete observations

input , , and .

initialize , , and
at random.

for do

.

.

.

.

.

return .

end for

Remark 1 (Computational Cost): Careful inspection of Algo-
rithm 1 reveals that the main computational burden stems from

inversions to update the subspace matrix . The per
iteration complexity for performing the inversions is
(which could be further reduced if one leverages also the sym-
metry of ), while the cost for the rest of operations in-
cluding multiplication and additions is . The overall
cost of the algorithm per iteration can thus be safely estimated as

, which can be affordable since is typically small (cf.
the low rank assumption). In addition, for the infinite memory
case where the RLS update is employed, the overall cost
is further reduced to .
Remark 2 (Tuning ): To tune one can resort to the

heuristic rules proposed in [12], which apply under the
following assumptions: i) ; ii) elements
of are independently sampled with probability ; and,
iii) and are large enough. Accordingly, one can pick

, where is the
effective time window. Note that naturally increases with
time when , whereas for a fixed value is
well justified since the data window is effectively finite.

B. Low-Complexity Stochastic-Gradient Subspace Updates

Towards reducing Algorithm’s 1 computational complexity
in updating the subspace , this section aims at developing
lightweight algorithms which better suit the ‘Big Data’ land-
scape. To this end, the basic AM framework in Section III-Awill
be retained, and the update for will be identical [cf. (4)].
However, instead of exactly solving an unconstrained quadratic
program per iteration to obtain [cf. (5)], the subspace es-
timates will be obtained via stochastic-gradient descent (SGD)
iterations. As will be shown later on, these updates can be traced
to inexact solutions of a certain quadratic program different
from (5).
For , it is shown in Section IV-A that Algorithm 1’s

subspace estimate is obtained by minimizing the empirical
cost function , where

(7)

By the law of large numbers, if data are sta-
tionary, solving yields the desired mini-
mizer of the expected cost , where the expectation is
taken with respect to the unknown probability distribution of
the data. A standard approach to achieve this same goal—typ-
ically with reduced computational complexity—is to drop the
expectation (or the sample averaging operator for that matter),
and update the subspace via SGD; see e.g., [37]

(8)

where is the step size, and
. The subspace update is nothing but

the minimizer of a second-order approximation
of around the previous subspace , where
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To tune the step size, the backtracking rule is adopted, whereby
the non-increasing step size sequence decreases ge-
ometrically at certain iterations to guarantee the quadratic func-
tion majorizes at the new update .
Other choices of the step size are discussed in Section IV. It is
observed that different from Algorithm 1, no matrix inversions
are involved in the update of the subspace . In the context
of adaptive filtering, first-order SGD algorithms such as (7) are
known to converge slower than RLS. This is expected since RLS
can be shown to be an instance of Newton’s (second-order) op-
timization method [37, Ch. 4].

Algorithm 2: Online SGD for subspace tracking from
incomplete observations

input , .

initialize at random, , , and
.

for do

Find the smallest nonnegative integer such that with

holds, and set .

.

.

.

end for

return .

Building on the increasingly popular accelerated gra-
dient methods for batch smooth optimization [7], [31], the
idea here is to speed-up the learning rate of the estimated
subspace (8), without paying a penalty in terms of com-
putational complexity per iteration. The critical difference
between standard gradient algorithms and the so-termed
Nesterov’s variant, is that the accelerated updates take the
form , which relies on a
judicious linear combination of the previous pair
of iterates . Specifically, the choice

, where
, has been shown to sig-

nificantly accelerate batch gradient algorithms resulting in
convergence rate no worse than ; see e.g., [7] and
references therein. Using this acceleration technique in con-
junction with a backtracking stepsize rule [9], a fast online
SGD algorithm for imputing missing entries is tabulated under
Algorithm 2. Clearly, a standard (non accelerated) SGD algo-
rithm with backtracking step size rule is subsumed as a special
case, when , . In this case, complexity is

mainly due to update of , while the accelerated

algorithm incurs an additional cost for the subspace
extrapolation step.

IV. PERFORMANCE GUARANTEES

This section studies the performance of the proposed first-
and second-order online algorithms for the infinite memory spe-
cial case; that is . In the sequel, to make the analysis
tractable the following assumptions are adopted:

(A1) Processes and are indepen-
dent and identically distributed (i.i.d.);
(A2) Sequence is uniformly bounded; and
(A3) Iterates lie in a compact set.

To clearly delineate the scope of the analysis, it is worth com-
menting on (A1)–(A3) and the factors that influence their satis-
faction. Regarding (A1), the acquired data is assumed statisti-
cally independent across time as it is customary when studying
the stability and performance of online (adaptive) algorithms
[37]. While independence is required for tractability, (A1) may
be grossly violated because the observations are cor-
related across time (cf. the fact that lies in a low-dimen-
sional subspace). Still, in accordance with the adaptive filtering
folklore e.g., [37], as or the upshot of
the analysis based on i.i.d. data extends accurately to the prag-
matic setting whereby the observations are correlated. Uniform
boundedness of [cf. (A2)] is natural in practice as it is
imposed by the data acquisition process. The bounded subspace
requirement in (A3) is a technical assumption that simplifies
the analysis, and has been corroborated via extensive computer
simulations.

A. Convergence Analysis of the Second-Order Algorithm
Convergence of the iterates generated by Algorithm 1 (with

) is established first. Upon defining

in addition to , Algorithm 1 aims at
minimizing the following average cost function at time

(9)

Normalization (by ) ensures that the cost function does not
grow unbounded as time evolves. For any finite , (9) is essen-
tially identical to the batch estimator in (P2) up to a scaling,
which does not affect the value of the minimizer. Note that as
time evolves, minimization of becomes increasingly com-
plex computationally. Hence, at time the subspace estimate

is obtained by minimizing the approximate cost function

(10)

in which is obtained based on the prior subspace estimate
after solving [cf. (3)].

Obtaining this way resembles the projection approximation
adopted in [44]. Since is a smooth convex quadratic func-
tion, the minimizer is the solution of the
linear equation .
So far, it is apparent that since

, the approximate cost function overestimates the
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target cost , for . However, it is not clear
whether the subspace iterates converge, and most im-
portantly, how well can they optimize the target cost function
. The good news is that asymptotically approaches

, and the subspace iterates null as well, both
as . This result is summarized in the next proposition.

Proposition 1: Under (A1)–(A3) and in Algorithm 1,
if and for some , then

almost surely (a.s.), i.e., the sub-
space iterates asymptotically fall into the stationary
point set of the batch problem (P2).

It is worth noting that the pattern and the amount of misses,
summarized in the sampling sets , play a key role towards
satisfying the Hessian’s positive semi-definiteness condi-
tion. In fact, random misses are desirable since the Hessian

is more likely
to satisfy , for some .
The proof of Proposition 1 is inspired by [28] which estab-

lishes convergence of an online dictionary learning algorithm
using the theory of martingale sequences. Details can be found
in our companion paper [30], and in a nutshell the proof proce-
dure proceeds in the following two main steps:

(S1) Establish that the approximate cost sequence
asymptotically converges to the target cost

sequence . To this end, it is first proved that
is a quasi-martingale sequence, and hence

convergent a.s. This relies on the fact that is a
tight upper bound approximation of at the previous
update , namely, ,
and .
(S2) Under certain regularity assumptions on ,
establish that convergence of the cost sequence

yields convergence of the
gradients , which subse-
quently results in .

B. Convergence Analysis of the First-Order Algorithm
Convergence of the SGD iterates (without Nesterov’s accel-

eration) is established here, by resorting to the proof techniques
adopted for the second-order algorithm in Section IV-A. The
basic idea is to judiciously derive an appropriate surrogate
of , whose minimizer coincides with the SGD update for
in (8). The surrogate then plays the same role as , associ-
ated with the second-order algorithm towards the convergence
analysis. Recall that . In this
direction, in the average cost [cf.
(P3) for ], with one
can further approximate using the second-order Taylor ex-
pansion at the previous subspace update . This yields

(11)

where
.

It is useful to recognize that the surrogate is a tight
approximation of in the sense that: (i) it globally ma-
jorizes the original cost function , i.e.,

; (ii) it is locally tight, namely
; and, (iii) its gradient is lo-

cally tight, namely .
Consider now the average approximate cost

(12)

where due to (i) it follows that holds
for all . The subspace update is then obtained as

, which amounts to nulling the
gradient [cf. (11) and (12)]

After defining , the first-order optimality con-
dition leads to the recursion

(13)

Upon choosing the step size sequence , the
recursion in (8) readily follows.
Now it only remains to verify that the main steps of the proof

outlined under (S1) and (S2) in Section IV-A, carry over for the
average approximate cost . Under (A1)–(A3) and thanks to
the approximation tightness of as reflected through (i)–(iii),
one can follow the same arguments in the proof of Proposition 1
(see also [30, Lemma 3]) to show that is a quasi-mar-
tingale sequence, and .More-
over, assuming the sequence is bounded and under the
compactness assumption (A3), the quadratic function fulfills
the required regularity conditions [30, Lemma 1] so that (S2)
holds true. All in all, the SGD algorithm is convergent as for-
malized in the following claim.

Proposition 2: Under (A1)–(A3) and for , if
for some constant and

hold, the subspace iter-
ates (8) satisfy a.s., i.e.,
asymptotically coincides with the stationary points of the batch
problem (P2).

Remark 3 (Convergence of Accelerated SGD): Paralleling
the steps of the convergence proof for the SGD algorithm out-
line before, one may expect similar claims can be established for
the accelerated variant tabulated under Algorithm 2. However,
it is so far not clear how to construct an appropriate surrogate

based on the available subspace updates , whose mini-
mizer coincides with the extrapolated estimates . Recently, a
variation of the accelerated SGD algorithmwas put forth in [35],
which could be applicable to the subspace tracking problem
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studied in this paper. Adopting a different proof technique, the
algorithm of [35] is shown convergent, and this methodology
could be instrumental in formalizing the convergence of Algo-
rithm 2 as well. However, this goes beyond the scope of this
paper.

C. Optimality
Beyond convergence to stationary points of (P2), one may

ponder whether the online estimator offers performance guar-
antees of the batch nuclear-norm regularized estimator (P1), for
which stable/exact recovery results are well documented e.g.,
in [11], [12]. Specifically, given the learned subspace and
the corresponding [obtained via (3)] over a time window
of size , is an optimal solution of (P1) as

? This in turn requires asymptotic analysis of the op-
timality conditions for (P1) and (P2), and a positive answer is
established in the next proposition whose proof is deferred to the
Appendix. Additionally, numerical tests in Section VI indicate
that Algorithm 1 attains the performance of (P1) after a modest
number of iterations.
Proposition 3: Consider the subspace iterates

generated by either Algorithm 1 (with ), or Algo-
rithm 2. If there exists a subsequence for
which (c1) a.s., and (c2)

hold, then the
sequence satisfies the optimality condi-
tions for (P1) [normalized by ] as a.s.
Regarding condition (c1), even though it holds for a time

invariant rank-controlling parameter as per Proposition 1, nu-
merical tests indicate that it still holds true for the time-varying
case (e.g., when is chosen as suggested in Remark 2). Under
(A2) and (A3) one has ,
which implies that the quantity on the left-hand side of
(c2) cannot grow unbounded. Moreover, upon choosing

as per Remark 2 the term in the right-hand side
of (c2) will not vanish, which suggests that the qualification
condition can indeed be satisfied.

V. ONLINE TENSOR DECOMPOSITION AND IMPUTATION

As modern and massive datasets become increasingly com-
plex and heterogeneous, in many situations one encounters data
structures indexed by three or more variables giving rise to a
tensor, instead of just two variables as in the matrix settings
studied so far. A few examples of time-indexed, incomplete
tensor data include [2]: (i) dynamic social networks represented
through a temporal sequence of network adjacency matrices,
meaning a data cube with entries indicating whether e.g., two
agents coauthor a paper or exchange emails during time interval
, while it may be the case that not all pairwise interactions can
be sampled; (ii) Electroencephalogram (EEG) data, where each
signal from an electrode can be represented as a time-frequency
matrix; thus, data from multiple channels is three-dimensional
(temporal, spectral, and spatial) and may be incomplete if elec-
trodes become loose or disconnected for a period of time; and
(iii) multidimensional nuclear magnetic resonance (NMR) anal-
ysis, where missing data are encountered when sparse sampling
is used in order to reduce the experimental time.
Many applications in the aforementioned domains aim at cap-

turing the underlying latent structure of the data, which calls for

high-order factorizations even in the presence of missing data
[2], [6]. Accordingly, the desiderata for analyzing streaming and
incomplete multi-way data are low-complexity, real-time algo-
rithms capable of unraveling latent structures through parsimo-
nious (e.g., low-rank) decompositions, such as the PARAFAC
model described next. In the sequel, the discussion will be fo-
cused on three-way tensors for simplicity in exposition, but ex-
tensions to higher-way arrays are possible.

A. Low-Rank Tensors and the PARAFAC Decomposition

For three vectors , , and , the
outer product is an rank-one three-way array
with -th entry given by . Note that this
comprises a generalization of the matrix case, where
is a rank-one matrix. The rank of a tensor is defined as the
minimum number of outer products required to synthesize .
The PARAFAC model is arguably the most basic tensor

model because of its direct relationship to tensor rank. Based
on the previous discussion it is natural to form a low-rank
approximation of tensor as

(14)

When the decomposition is exact, (14) is the PARAFAC decom-
position of . Accordingly, the minimum value for which the
exact decomposition is possible is (by definition) the rank of .
PARAFAC is the model of choice when one is primarily inter-
ested in revealing latent structure. Considering the analysis of a
dynamic social network for instance, each of the rank-one fac-
tors could correspond to communities that e.g., persist or form
and dissolve periodically across time. Different from the matrix
case, there is no straightforward algorithm to determine the rank
of a given tensor, a problem that has been shown to be NP-com-
plete. For a survey of algorithmic approaches to obtain approx-
imate PARAFAC decompositions, the reader is referred to [24].
With reference to (14), introduce the factor matrix

, and likewise for and
. Let denote the -th slice of along its

third (tube) dimension, such that . The
following compact matrix form of the PARAFAC decomposi-
tion in terms of slice factorizations will be used in the sequel

(15)

where denotes the -th row of (recall that instead de-
notes the -th column of ). It is apparent that each slice can
be represented as a linear combination of rank-one matrices

, which constitute the bases for the tensor fiber sub-
space. The PARAFAC decomposition is symmetric [cf. (14)],
and one can likewise write , or,

in terms of slices along the first (row), or, second
(column) dimensions—once more, stands for the -th row
of , and likewise for . Given , under some technical con-
ditions matrices are unique up to a common column
permutation and scaling (meaning PARAFAC is identifiable);
see e.g. [8], [25].
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Fig. 2. Tensor data with missing entries. (Left) Batch data, and slice
along the time (tube) dimension. (Right) Streaming data, where slices
become available for .

Building on the intuition for the matrix case, feasibility of the
imputation task relies fundamentally on assuming a low-dimen-
sional PARAFAC model for the data, to couple the available
and missing entries as well as reduce the effective degrees of
freedom in the problem. Under the low-rank assumption for in-
stance, a rough idea on the fraction of missing data that can
be afforded is obtained by comparing the number of unknowns

in (14) with the number of available data sam-
ples . Ensuring that

, roughly implies that the tensor can be potentially
recovered even if a fraction
of entries is missing.
Different low-dimensional tensor models would lead to

alternative imputation methods, such as the unfolded tensor
regularization in [19], [27], [43] for batch tensor completion.
The algorithm in the following section offers a novel approach
for decomposing and imputing low-rank streaming tensors with
missing data.

B. Algorithm for Streaming Tensor Data

Let be a three-way tensor, and likewise let
denote a binary {0,1}-tensor with -th

entry equal to 1 if is observed, and 0 otherwise.
One can thus represent the incomplete data tensor compactly
as ; see also Fig. 2 (left). Generalizing the
nuclear-norm regularization technique in (P1) from low-rank
matrix to tensor completion is not straightforward if one also
desires to unveil the latent structure in the data. The notion of
singular values of a tensor (given by the Tucker3 decomposi-
tion) are not related to the rank [24]. Interestingly, it was ar-
gued in [6] that the Frobenius-norm regularization outlined in
Section II-B offers a viable option for batch low-rank tensor
completion under the PARAFAC model, by solving [cf. (P2)
and (15)]

The regularizer in (P4) provably encourages low-rank tensor de-
compositions, in fact with controllable rank by tuning the pa-
rameter [6]. Note that similar to the matrix case there is no
need for the true rank in (P4). In fact, any upperbound
can be used for the column size of the sought matrix variables

as long as is tuned appropriately.
Consider now a real-time setting where the incomplete tensor

slices are acquired sequentially over time

[i.e., streaming data as depicted in Fig. 2 (right)]. Leveraging the
batch formulation (P4) one can naturally broaden the subspace
tracking framework in Section III, to devise adaptive algorithms
capable of factorizing tensors ‘on the fly’. To this end, one can
estimate the PARAFAC model factors as the
minimizers of the following EWLS cost [cf. (P3)]

Once more, the normalization ensures
that for the infinite memory setting and , (P5)
coincides with the batch estimator (P4).
Paralleling the algorithmic construction steps adopted for the

matrix case, upon defining the counterpart of corre-
sponding to (P5) as

(16)
the minimizer is readily obtained in
closed form, namely

(17)

Accordingly, the factor matrices that can be interpreted
as bases for the fiber subspace are the minimizers of the cost
function

(18)
Note that as per (17), so minimizing
becomes increasingly complex computationally as grows.
Remark 4 (Challenges Facing a Second-Order Algorithm):

As discussed in Section III, one can approximate
with the upper bound to de-
velop a second-order algorithm that circumvents the aforemen-
tioned increasing complexity roadblock. Unlike the matrix case
however, (18) is a nonconvex problem due to the bilinear nature
of the PARAFAC decomposition (when, say, is fixed); thus,
finding its global optimum efficiently is challenging. One could
instead think of carrying out alternating minimizations with re-
spect to each of the three factors per time instant , namely up-
dating: (i) first, given ; (ii) then
given and ; and (iii) finally with fixed

and . While each of these subtasks boils down to
a convex optimization problem, the overall procedure does not
necessarily lead to an efficient algorithm since one can show
that updating and recursively is impossible.
Acknowledging the aforementioned challenges and the desire

of computationally-efficient updates compatible with Big Data
requirements, it is prudent to seek instead a (first-order) SGD al-
ternative. Mimicking the steps in Section III-B, let

denote the -th summand
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in (18), for and . The factor matrices
are obtained via the SGD iteration

(19)

with the stepsize , and
. It is instructive to recognize that

the quadratic surrogate has the following properties: (i) it
majorizes , namely ; while
it is locally tight meaning that (ii)

, and (iii)
. Accordingly, the minimizer of amounts

to a correction along the negative gradient , with
stepsize [cf. (19)].

Algorithm 3: Online SGD algorithm for tensor
decomposition and imputation

input , , , and .

initialize at random, and .

for do

and

end for

.

Putting together (17) and (19), while observing that the com-
ponents of are expressible as

(20)

(21)

one arrives at the SGD iterations tabulated under Algorithm 3.
Close examination of the recursions reveals that updating
and demands operations, while updating in-
curs a cost of . The overall complexity per iteration
is thus .
Remark 5 (Forming the Tensor Decomposition ‘on-the-Fly’):

In a stationary setting the low-rank tensor decomposition can
be accomplished after the tensor subspace matrices are learned;
that is, when the sequences converge to the limit
points, say . The remaining factor
is then obtained by solving for
the corresponding tensor slice , which yields a simple

closed-form solution as in (17). This requires revisiting the past
tensor slices. The factors then form a low-rank ap-
proximation of the entire tensor . Note also that
after the tensor subspace is learned say at time , e.g.,
from some initial training data, the projection coefficients
can be calculated ‘on-the-fly’ for ; thus, Algorithm 3 of-
fers a decomposition of the tensor containing slices to
‘on-the-fly’.
Convergence of Algorithm 3 is formalized in the next propo-

sition, and can be established using similar arguments as in the
matrix case detailed in Section IV-B. Furthermore, empirical
observations in Section VI suggest that the convergence rate can
be linear.

Proposition 4: Suppose slices and the cor-
responding sampling sets are i.i.d., and while

. If (c1) live in a compact set, and (c2) the
step-size sequence satisfies

for some , where (c3)
for some , then , a.s.; i.e.,

the tensor subspace iterates asymptotically coincide with
the stationary points of (P4).
Before closing this section, a remark is in order.

Remark 6 (Tucker Multilinear Rank): If the goal is to im-
pute tensors with missing data one could alternatively leverage
that the tensor exhibits low Tucker multilinear rank [19] (which
is different from tensor rank). Interestingly, convex surrogates
exist for batch multilinear rank minimization; see e.g., [19],
[43]. Different from [19], [43], the nonconvex PARAFAC for-
mulation (P4) is separable across time, thus facilitating online
implementation. In addition, the PARAFACmodel offers a low-
rank decomposition of the tensor as a byproduct, which can be
useful to unravel latent structure in the data.

VI. NUMERICAL TESTS
The convergence and effectiveness of the proposed algo-

rithms is assessed in this section via computer simulations.
Both synthetic and real data tests are carried out in the sequel.

A. Synthetic Matrix Data Tests

The signal is generated from the low-dimen-
sional subspace , with Gaussian i.i.d. entries

, and projection coefficients . The ad-
ditive noise is i.i.d., and to simulate the misses
per time , the sampling vector is formed, where
each entry is a Bernoulli random variable, taking value one with
probability (w.p.) , and zero w.p. , which implies that

entries are missing. The observations at time
are generated as .
Throughout, fix and , while different values

of and are examined. The time evolution of the average
cost in (9) for various amounts of misses and noise
strengths is depicted in Fig. 3(a) . For validation pur-
poses, the optimal cost [normalized by the window size ] of the
batch estimator (P1) is also shown. It is apparent that
converges to the optimal objective of the nuclear-norm regular-
ized problem (P1), corroborating that Algorithm 1 attains the
performance of (P1) in the long run. This observation in addi-
tion to the low cost of Algorithm 1 [ per iteration]
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TABLE I
COMPUTATIONAL COMPLEXITY PER ITERATION

Fig. 3. Performance of Algorithm 1. (a) Evolution of the average cost
versus the batch counterpart. (b) Relative estimation error for different schemes
when and .

suggest it as a viable alternative for solving large-scale matrix
completion problems.
Next, Algorithm 1 is compared with other state-of-the-art

subspace trackers, including PETRELS [13] and GROUSE
[3], discussed in Section I. In essence, these algorithms
need the dimension of the underlying subspace, say , to
be known/estimated a priori. Fix , , and
introduce an abrupt subspace change at time to assess
the tracking capability of the algorithms. The figure of merit
depicted in Fig. 3(b) is the running-average estimation error

. It is first observed that
upon choosing identical subspace dimension for all three
schemes, Algorithm 1 attains a better estimation accuracy,
where a constant step size was adopted for PE-
TRELS and GROUSE. Albeit PETRELS performs well when
the true rank is known, namely , if one overestimates the
rank the algorithm exhibits erratic behaviors for large fraction
75% of missing observations. As expected, for the ideal choice
of , all three schemes achieve nearly identical estimation
accuracy. The smaller error exhibited by PETRELS relative
to Algorithm 1 may pertain to the suboptimum selection of .
Nonetheless, for large amount of misses both GROUSE and

PETRELS are numerically unstable as the LS problems to
obtain the projection coefficients become ill-conditioned,
whereas the ridge-regression type regularization terms in
(P3) render Algorithm 1 numerically stable. The price paid
by Algorithm 1 is however in terms of higher computational
complexity per iteration, as seen in Table I which compares the
complexity of various algorithms.

B. Real Matrix Data Tests
Accurate estimation of origin-to-destination (OD) flow

traffic in the backbone of large-scale Internet Protocol (IP)
networks is of paramount importance for proactive network
security and management tasks [23]. Several experimental
studies have demonstrated that OD flow traffic exhibits a
low-intrinsic dimensionality, mainly due to common temporal
patterns across OD flows, and periodic trends across time [26].
However, due to the massive number of OD pairs and the high
volume of traffic, measuring the traffic of all possible OD flows
is impossible for all practical purposes [23], [26]. Only the
traffic level for a small fraction of OD flows can be measured
via the NetFlow protocol [26].
Here, aggregate OD-flow traffic is collected from the opera-

tion of the Internet-2 network (Internet backbone across USA)
during December 8–28, 2003 containing 121 OD pairs [1]. The
measured OD flows contain spikes (anomalies), which are dis-
carded to end up with a anomaly-free data stream .
The detailed description of the considered dataset can be found
in [30]. A subset of entries of are then picked randomly with
probability to yield the input of Algorithm 1. The evolution of
the running-average traffic estimation error is depicted
in Fig. 4(a) for different schemes and under various amounts
of missing data. Evidently, Algorithm 1 outperforms the com-
peting alternatives when is tuned adaptively as per Remark
2 for . When only 25% of the total OD flows are sam-
pled by Netflow, Fig. 4(b) depicts how Algorithm 1 accurately
tracks three representative OD flows.

C. Synthetic Tensor Data Tests
To form the -th ‘ground truth’ tensor slice

, the factors and are generated
independently with Gaussian i.i.d. columns
and ; likewise, the coefficients .
The sampling matrix also contains random Bernoulli
entries taking value one w.p. , and zero w.p. .
Gaussian noise is also considered with i.i.d. entries

. Accordingly, the -th acquired slice
is formed as . Fix and
the true rank , while different values of
are examined. Performance of Algorithm 3 is tested for im-
putation of streaming tensor slices of relatively large size

, where a constant step size
is adopted. Various amounts of misses are examined, namely

. Also, in accordance with the
matrix completion setup select ; see e.g.,
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Fig. 4. Traffic estimation performance for Internet-2 data when
and . (a) Average estimation error for (thin line) and

(thick line). (b) Algorithm 1’s estimated (dashed red) versus true (solid
blue) OD flow traffic for 75% misses .

[12]. Fig. 5 depicts the evolution of the estimation error
, where it is naturally seen that

as more data become available the tensor subspace is learned
faster. It is also apparent that after collecting sufficient amounts
of data the estimation error decreases geometrically, where
finally the estimate falls in the -neighborhood of the
‘ground truth’ slice . This observation suggests the linear
convergence of Algorithm 3, and highlights the effectiveness
of estimator (P4) in accurately reconstructing a large fraction
of misses.
Here, Algorithm 3 is also adopted to decompose large-scale,

dense tensors and hence find the factors . For
and for different slice sizes and

, the tensor may not even fit in main memory to
apply batch solvers naively. After running Algorithm 3 instead,
Table II reports the run-time under various amount of misses.
One can see that smaller values of lead to shorter run-times
since one needs to carry out less computations per iteration
[c.f. ]. Note that the MATLAB codes for these ex-
periments are by no means optimized, so further reduction in
run-time is possible with a more meticulous implementation.
Another observation is that for decomposition of low-rank ten-
sors, it might be beneficial from a computational complexity
standpoint to keep only a small subset of entries. Note that if
instead of employing a higher-order decomposition one unfolds

Fig. 5. Relative estimation error versus (a) iterations and (b) run-time under
various amounts of misses for , and .

TABLE II
TENSOR DECOMPOSITION RUN-TIME (SECONDS) FOR VARIOUS SIZES AND

AMOUNTS OF MISSES WHEN ,

the tensor and resorts to the subspace tracking schemes devel-
oped in Section III for the sake of imputation, each basis vector
entails variables. On the other hand, using tensor models
each basis (rank-one) matrix entails only variables.
Once again, for comparison purposes there is no alternative on-
line scheme that imputes the missing tensor entries, and offers a
PARAFAC tensor decomposition after learning the tensor sub-
space (see also Remark 5).

D. Real Tensor Data Tests
Two real tensor data tests are carried out next, in the context

of cardiac MRI and network traffic monitoring applications.
Dynamic cardiac MRI. Cardiac MRI nowadays serves as

a major imaging modality for noninvasive diagnosis of heart
diseases in clinical practice [18]. However, quality of MRI im-
ages is degraded as a result of fast acquisition process which
is mainly due to patient’s breath-holding time. This may render
some image pixels inaccurate or missing, and thus the acquired
image only consists of a subset of pixels of the high-resolution
‘ground truth’ cardiac image. With this in mind, recovering the
‘ground truth’ image amounts to imputing the missing pixels.
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Low-rank tensor completion is well motivated by the low-in-
trinsic dimensionality of cardiac MRI images [20].
Algorithm 3 is tested here using an in vivoMRI dataset com-

prising dynamic cardiac cine images of size 200 256 across
256 frames. The k-space data was acquired in full but retro-
spectively randomly undersampled by a factor of . The 2-D
k-space data per time slot were split into 20 patches of size
40 46, resulting in a moderate-sized tensor of size

. Batch imputation of dense tensors may be infea-
sible because of memory limitations. The online Algorithm 3
is however a viable alternative, which performs only
operations on average per time step, and requires storing only

variables. The formed complex-valued tensor can
be expressed as . Both the real and imaginary
parts and exhibit low rank, and thus they are imputed
separately in parallel.
The reconstructed image at the 146-th frame is compared

against the gold standard (full acquisition) in Fig. 6 under var-
ious percentages of misses and postulated rank values. The pro-
posed method is seen capable of accurately reconstructing the
image from 25% available -space samples, resulting in the ac-
curacy when . To further quantify
the real-time performance Fig. 7 depicts the reconstruction error

against the run-time under different scenarios for misses
and rank values. The same fixed step-size is
adopted. It is seen that after around 100 seconds, the low-rank
tensor subspace is learned and the reconstructed images reveal
details of the cardiac snapshot.
Tracking network-traffic anomalies. In the backbone of

large-scale IP networks, OD flows experience traffic volume
anomalies due to e.g., equipment failures and cyberattacks
which can congest the network [42]. Consider a network whose
topology is represented by a directed graph , where
and denote the set of links and nodes of cardinality
and , respectively. Upon associating the weight

with the -th link, can be completely
described by the weighted adjacency matrix . For
instance can represent the link loads as will be shown
later. In the considered network, a set of OD traffic flows
with traverses the links connecting OD pairs. Let

denote the fraction of -th flow traffic at time ,
say , measured in e.g., packet counts, carried by link . The
overall traffic carried by link is then the superposition of the
flow rates routed through link , namely, . It is
not uncommon for some of OD flows to experience anomalies.
If denotes the unknown traffic volume anomaly of flow
at time , the measured link counts over link at time are then
given by

(22)

where accounts for measurement errors and unmodeled dy-
namics. In practice, missing link counts are common due to e.g.,
packet losses, and thus per time only a small fraction of links
(indexed by ) are measured. Note that only a small group of
flows are anomalous, and the anomalies persist for short periods
of time relative to the measurement horizon. This renders the
anomaly vector sparse.
In general, one can collect the partial link counts per time in-

stant in a vector to form a (vector-valued) time-series, and sub-

Fig. 6. Results of applying Algorithm 3 to in vivo MRI data. (a) Ground truth
image at , (b) acquired -space data undersampled randomly by a factor
of 4, reconstructed image frame for with (c) 25% and (d) 40% avail-
able data; reconstructed image frame for with (e) 25% and (f) 40%
available data.

Fig. 7. Frame reconstruction error, averaged over 10 random realizations,
versus run-time for various percentages of misses and rank levels.

sequently apply the subspace tracking algorithms developed in
e.g., [30] to unveil the anomalies in real time. Instead, to fully
exploit the data structure induced by the network topology, the
link counts per time can be collected in an adjacency matrix

, with [edge corresponds to link ]. This
matrix naturally constitutes the -th slice of the tensor . Capi-
talizing on the spatiotemporal low-rank property of the nominal
traffic as elaborated in Section VI-B, to discern the anomalies
a low-rank approximation of the incomplete tensor

is obtained first in an online fashion using Algorithm 3.
Anomalies are then unveiled from the residual of the approxi-
mation as elaborated next.
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Fig. 8. Tracking Internet-2 traffic anomalies for . (a) Evolution of
average detection (solid) and false-alarm (dashed) rates. (b) Estimated (dashed)
versus true (solid) anomalies for three representative OD flows when .

Let denote the factors of the low-dimen-
sional tensor subspace learned at time , and

the corresponding (imputed)
low-rank approximation of the -th slice. Form the residual
matrix , which is (approximately) zero in the
absence of anomalies. Collect the nonzero entries of into
the vector , and the routing variables [cf. (22)]
into matrix . According to (22), one can postulate
the linear regression model to estimate the
sparse anomaly vector from the imputed link counts.
An estimate of can then be obtained via the least-absolute
shrinkage and selection operator (LASSO)

where controls the sparsity in that is tantamount to the
number of anomalies. In the absence of missing links counts,
[22] has recently considered a batch tensor model of link traffic
data and its Tucker decomposition to identify the anomalies.
The described tensor-based approach for network anomaly

detection is tested on the Internet-2 traffic dataset described in
Section VI-B, after fixing . Each tensor slice

contains only 41 nonzero entries corresponding to the
physical links. Define the sets

and

for some prescribed threshold . To evaluate the detection
performance, the adopted figures of merit are the running-av-
erage detection and false-alarm rates
and , respectively. Fig. 8(a) depicts
the time evolution of and for (fully available
data), and . As more data becomes available, the
traffic subspace is learned more accurately, and thus less false
alarms are declared. For three representative OD flows, namely
WASH-WASH,WASH--HSTN, and CHIN--CHIN, the true and
estimated anomalies are depicted in Fig. 8(b). One can see that
the significant anomalies are correctly picked in real-time by
the proposed estimator. Note that the online formulation (P5)
can even accommodate slowly-varying network topologies in
the tensor model, which is desirable for monitoring the ‘health
state’ of dynamic networks.

VII. CONCLUDING SUMMARY

This paper leverages recent advances in rank minimization
for subspace tracking, and puts forth streaming algorithms
for real-time, scalable decomposition of highly-incomplete
multi-way Big Data arrays. For low-rank matrix data, a
subspace tracker is developed based on an EWLS criterion
regularized with the nuclear norm. Leveraging a separable
characterization of nuclear-norm, both first- and second-order
algorithms with complementary strengths are developed. In
a stationary setting, the proposed algorithms asymptotically
converge and provably offer the well-documented performance
guarantees of the batch nuclear-norm regularized estimator.
Under the same umbrella, an online algorithm is proposed for
decomposing low-rank tensors with missing entries, which can
accurately impute cardiac MRI images with up to 75% missing
entries.
There are intriguing unanswered questions beyond the scope

of this paper, but worth pursuing as future research. One such
question pertains to the convergence analysis of the accelerated
SGD algorithm either by following the adopted proof method-
ology, or, e.g., the alternative techniques used in [35]. Real-time
incorporation of the spatiotemporal correlation between the un-
knowns by means of kernels or suitable statistical models is an-
other important avenue to explore. Also, relaxing the qualifica-
tion constraint for optimality is important for real-time appli-
cations in dynamic environments, where the learned subspace
could conceivably change with time.

APPENDIX

Proof of Proposition 3: For the subspace sequence
suppose that . Then, due to the unique-
ness of , Danskin’s Theorem [9] im-
plies that

(23)

holds true almost surely, where satisfies
(24)

Consider now a subsequence which satisfies
(23), (24) as well as the qualification constraint

. The rest of the proof then verifies that
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asymptotically fulfills the optimality conditions
for (P1). To begin with, the following equivalent formulation
of (P1) is considered at time , which no longer involves the
non-smooth nuclear norm.

To explore the optimality conditions for (P5), first form the
Lagrangian

(25)

where denotes the dual variables associated with the posi-
tive semi-definiteness constraint in (P5). For notational conve-
nience, partition into four blocks, namely ,

, , and , in accor-
dance with the block structure of in (P5), where and

are and matrices. The optimal solution to
(P1) must: (i) null the (sub)gradients

(26)

(27)

(28)

(ii) satisfy the complementary slackness condition
; (iii) primal feasibility ; and (iv) dual feasibility
.
Introduce the candidate primal variables

, and ;
and the dual variables , ,

, and
. Then, it can be readily verified that (i), (iii)

and (iv) hold. Moreover, (ii) holds since

where the last equality is due to (24). Putting pieces together,
the Cauchy-Schwartz inequality implies that

holds almost surely due to (23), and (A3) which says
is bounded. All in all, , which com-
pletes the proof.
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