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Abstract—In the backbone of large-scale networks, traffic
flows experience abrupt unusual changes which can result in
congestion, and limit the extent to which end-user quality of
service requirements are met. Diagnosing such traffic volume
anomalies is a crucial task towards engineering the traffic in the
network. This is challenging however, since the available data
are the superposition of unobservable origin-to-destination (OD)
flows per link. Leveraging the low intrinsic-dimensionality of OD
flows and the sparse nature of anomalies, a convex program is for-
mulated to unveil anomalies across flows and time. A centralized
solver is developed using the proximal gradient algorithm, which
offers provable iteration complexity guarantees. An equivalent
nonconvex but separable criterion enables in-network processing
of link-load measurements, when optimized via the alternating-
direction method of multipliers. The novel distributed iterations
entail reduced-complexity local tasks, and affordable message
passing between neighboring nodes. Interestingly, under mild
conditions the distributed algorithm approaches its centralized
counterpart. Numerical tests with synthetic and real network
data corroborate the effectiveness of the novel scheme.

I. INTRODUCTION

In the backbone of large-scale networks, origin-to-

destination (OD) traffic flows experience abrupt unusual

changes which can result in congestion, and limit the quality of

service provisioning of the end users. These so-termed traffic
volume anomalies could be due to external sources such as

network failures, denial of service attacks, or, intruders which

hijack the network services [12]. Unveiling such anomalies is

a crucial task towards engineering network traffic. This is a

challenging task however, since the available data are usually

high-dimensional noisy link-load measurements, which are the

superposition of unobservable OD flows.

Several studies have demonstrated the low intrinsic di-

mensionality of the traffic matrix, which is mainly due to

common temporal patterns across OD flows, and periodic

behaviors across time [7]. Exploiting the low-rank structure

of the anomaly-free traffic matrix, a principal component

analysis (PCA)-based method was put forth in [7] to identify

network anomalies. PCA-based methods require knowledge of

the rank of the traffic matrix, and face scalability issues [6].

A sequential detection-based approach was proposed in [4].

Most importantly, [7] and [4] have not exploited the sparsity
of anomalies across flows and time – anomalous traffic spikes

are rare, and tend to last for short periods of time relative to the

measurement horizon. In a nutshell, state-of-the-art anomaly
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detection algorithms rely on central processing, are unable to

identify anomalous flows, and do not capitalize on the sparsity

present.

In this context, the fresh look advocated here permeates

benefits from rank minimization and compressive sensing

to unveil traffic volume anomalies in large-scale networks.

Nuclear norm and �1-norm regularization have been widely

adopted as convex surrogates to the rank and �0-norm, respec-

tively, in a variety of problems pertaining to low-rank matrix

completion and variable selection. Recently, these ideas were

applied to split a given data matrix into its sparse and low-

rank components, with remarkable performance guarantees;

see e.g., [2] and [5].

Inspired by the features of OD flow traffic and anoma-

lies as well as recent advances in compressive sensing and

rank minimization, the goal of this paper is to efficiently

and accurately diagnose network anomalies in a distributed
fashion. To this end, a convex estimator is proposed which

optimizes the trade-off between data fit, (low-) rank of the

traffic matrix, and the sparsity of the anomalies across flows

and time. A centralized solver is developed using the proximal

gradient algorithm, which offers provable iteration complexity

guarantees [10], [8]. An equivalent nonconvex but separable

criterion enables in-network processing of link-load measure-

ments, when optimized via the alternating-direction method

of multipliers (AD-MoM) [1]. The novel distributed iterations

entail reduced-complexity local tasks, and affordable message

passing among neighboring nodes. Interestingly, under mild

conditions the distributed algorithm approaches its centralized

counterpart. Insightful tests with synthetic and real network

data corroborate the effectiveness of the novel scheme, and

their ability to outperform existing alternatives.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a backbone Internet protocol (IP) network with

topology represented by the directed graph G(N ,L), where L
and N denote the set of links and nodes (routers) of cardinality

|L| = L and |N | = N , respectively. In this network a

set of OD traffic flows F with |F| = F traverse the links

connecting different source-destination pairs. For backbone

networks, the number of network layer flows is much larger

than the number of physical links (F � L). Single-path

routing is considered to deliver the traffic flow from a source

to its intended destination. Accordingly, for a particular flow

multiple links connecting the corresponding source-destination
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pair are chosen to carry the traffic. Let {rl,f}f∈F
l∈L denote the

flow to link assignments (routing variables), which take the

value one whenever flow f goes through link l, and zero

otherwise. The routing matrix R := [rl,f ] ∈ R
L×F is assumed

fixed and given. Likewise, let xf,t denote the unknown traffic

rate of flow f at time t, measured in e.g., Mbps. The traffic

carried over link l is then the superposition of the flow rates

routed through link l, i.e.,
∑

f∈F rl,fxf,t.

It is not uncommon for some of the OD flows to experience

unusual sudden changes. Let af,t denote the unknown traffic

volume anomaly of flow f at time t. In the presence of

anomalous flows, the measured link-layer traffic over link �
at time t is given by

yl,t =
∑
f∈F

rl,f (xf,t + af,t) + vl,t (1)

where vl,t accounts for noise and unmodeled dynamics.

Collecting T measurements and introducing matrices Y :=
[yl,t],V := [vl,t] ∈ R

L×T , and X := [xf,t],A := [af,t] ∈
R

F×T , the matrix model across T time slots is [cf. (1)]

Y = R (X + A) + V. (2)

Common temporal patterns among the traffic flows in

addition to their periodic behavior, render the traffic matrix

X typically low-rank [7]. Anomalies are expected to occur

sporadically over time, and only last for short periods relative

to the (possibly long) measurement period T . In addition, only

a small fraction of the flows are supposed to be anomalous at

a any given time instant. This renders the anomaly matrix A
sparse across both rows and columns. Given measurements

Y and the binary-valued routing matrix R, the primary goal

of this paper is to accurately estimate the anomaly matrix A,

leveraging the sparsity and low-rank attributes of A and X.

Upon forming the estimate Â, if |âf,t| > 0 the f th flow at

time t is declared anomalous.

III. CENTRALIZED APPROACH

In a different context, the problem of recovering A from the

observations modeled in (2) when R = IF (IF denotes the

F × F identity matrix) has been investigated in [2] and [5].

However, in the presence of the fat routing matrix R the

recovery task becomes more challenging, since the null space

of R compromises identifiability of X and A. For instance,

if any of the matrices X and A lies in the null space of R,

there is no chance of accurate estimation.

Inspired by the recent results in compressive sensing, there

is hope to recover a sufficiently sparse A; see e.g., [3]. Since

the primary goal is to recover A, define Xr := RX which

inherits the low-rank property from X, and consider [cf. (2)]

Y = Xr + RA + V. (3)

Notice that RA is not necessarily sparse even though A is

a sparse matrix. To find the estimates (X̂r, Â), the following

convex optimization problem is formulated

(P1) min
(Xr,A)

1
2
||Y−Xr−RA||2F +λ∗||Xr||∗+λ1||A||1 (4)

where ‖Xr‖∗ :=
∑

i σi(Xr) denotes the nuclear norm, and

‖A‖1 :=
∑

f

∑
t |af,t| is the �1-norm of matrix A. The

regularization terms ||Xr||∗ and ||A||1 promote the low-rank

property of Xr and the sparsity of A, respectively. The

corresponding tuning parameters λ∗ and λ1 control the rank

and sparsity levels in (X̂r, Â). A centralized algorithm to

solve (P1) is discussed next.

A. Accelerated proximal gradient-descent algorithm

Accelerated proximal gradient (APG) algorithms were orig-

inally studied in [10], and have been recently applied to

matrix-valued problems under the name (stable) principal

components pursuit (PCP) [13], [8]. APG algorithms offer

several attractive features, most notably a convergence rate

guarantee of O(1/
√

ε) iterations to return an ε−optimal solu-

tion. In addition, APG algorithms are first-order methods that

scale nicely to high-dimensional problems arising with large

networks.

The algorithm to be developed here extends the one in [8],

proposed to solve the stable PCP problem (P1) with L = F
and R = IL. For the matrix S := [X′

r, A′]′, define

f(S) :=
1
2
‖Y−Xr−RA‖2

F , g(S) := λ∗‖Xr‖∗+λ1‖A‖1.

Instead of directly optimizing the cost in (4), APG algo-

rithms minimize a sequence of overestimates of f(S) + g(S),
obtained at judiciously chosen points T. A Taylor approxima-

tion around T yields the following upper-bound of the cost

Q(S,T) :=
Lf

2
‖S − G‖2

F + g(S) + f(T) − 1
2Lf

‖∇f(T)‖2
F

where G := T−L−1
f ∇f(T) and Lf := λmax([IL R]′[IL R])

is a Lipschitz constant for ∇f(S). With k = 1, 2, . . . indexing

iterations, APG algorithms generate the sequence of iterates

Z[k] := arg min
S

Q(S,T[k]). (5)

There are two key aspects to the success of APG al-

gorithms. First is the selection of points T[k] where the

sequence of approximations Q(S,T[k]) are formed, since

these strongly determine the convergence rate. The choice

T[k] = Z[k] + t[k−1]−1
t[k] (Z[k] − Z[k − 1]), where t[k] =[

1 +
√

4t2[k − 1] + 1
]
/2, considerably accelerates the algo-

rithm [10]. The second key element stems from the possibility

of efficiently solving the sequence of subproblems (5). For the

particular case of (P1), note that (5) decomposes into

Xr[k + 1] := arg min
Xr

{
Lf

2
‖Xr − GX [k]‖2

F + λ∗‖Xr‖∗
}

A[k + 1] := arg min
A

{
Lf

2
‖A − GA[k]‖2

F + λ1‖A‖1

}

where G[k] := [G′
X [k] G′

A[k]]′. Letting Sτ (M) :=
sign(M)max(|M| − τ,0) denote the soft-thresholding opera-

tor, and UΣV′ = svd(GX [k]) the singular value decomposi-

tion of matrix GX [k], it follows that (see, e.g. [8])

Xr[k + 1] = USλ∗/Lf
[Σ]V′, A[k + 1] = Sλ1/Lf

[GA[k]].
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Algorithm 1 : APG solver for (P1)

input Y,R, λ∗, λ1, Lf = λmax([IL R]′[IL R])
initialize Xr[0] = Xr[−1] = 0L×T , A[0] = A[−1] = 0F×T ,
t[0] = t[−1] = 1, and set k = 0.
while not converged do

TX [k] = Xr[k] + t[k−1]−1
t[k]

(Xr[k] − Xr[k − 1]).

TA[k] = A[k] + t[k−1]−1
t[k]

(A[k] − A[k − 1]).

GX [k] = TX [k] + 1
Lf

(Y − TX [k] − RTA[k]).

GA[k] = TA[k] + 1
Lf

R′ (Y − TX [k] − RTA[k]).

UΣV′ = svd(GX [k]), Xr[k + 1] = USλ∗/Lf
(Σ)V′.

A[k + 1] = Sλ1/Lf
(GA[k]).

t[k + 1] =
[
1 +

√
4t2[k] + 1

]
/2

k ← k + 1
end while
return Xr[k], A[k]

The APG algorithm for unveiling network anomalies is tab-

ulated under Algorithm 1. Iterations terminate whenever the

distance between the origin and the set of subgradients of

the cost in (4), evaluated at X[k + 1], is below a prescribed

threshold [8].

Implementing Algorithm 1 presumes that network nodes

communicate their local link traffic measurements to a central

processing unit, which uses their aggregation in Y to deter-

mine network anomalies. Collecting all this information can be

challenging though, or even impossible in e.g., wireless sensor

networks operating under stringent power budget constraints.

Performing the optimization in a centralized fashion raises

robustness concerns as well, since the central node carrying

out the specific task at hand represents an isolated point of

failure. These reasons motivate devising distributed algorithms

for unveiling anomalies in large scale networks, whereby each

node carries out simple computational tasks locally, relying

only on its local measurements and messages exchanged with

its directly connected neighbors. This is the subject dealt with

next.

IV. DISTRIBUTED APPROACH

For node n ∈ N , let Jn denote the set of its single-

hop neighbors, where m ∈ Jn if and only if n ∈ Jm.

Let also Lout(n) denote the set of outgoing links, where

Lout(n) ∩ Lout(m) = ∅ for m 	= n, and L = ∪n∈NLout(n).
Node n ∈ N can measure the traffic rate of its outgoing

links Lout(n) over a time interval of length T . These local

measurements are collected in Yn := [y�,t]�∈Lout(n),t∈[1,T ].

Likewise, node n’s local routing table is denoted by Rn :=
[r�,f ]�∈Lout(n),f∈F , which indicates the end-to-end flows car-

ried by the outgoing links in Lout(n). Observe that both Yn

and Rn correspond to a subset of the rows of the global

matrices Y and R, respectively. Specifically, it is possible to

write Y = Π [Y′
1, . . . ,Y

′
N ]′, where Π is a suitably chosen

row permutation matrix, and likewise for R. In this context,

the problem addressed in this section is: given Yn and Rn per

node n ∈ N , and under the constraint of local communications

within neighborhoods Jn, how can one efficiently solve (P1)

in a distributed fashion? The main issue is for each network

node to form its own estimate Ân ∈ R
F×T of the anomalies,

across all flows and measurement time instants. Moreover,

local estimates should consent on the global optimum solution

of (P1), that is Â = Â1 = . . . = ÂN .

To facilitate reducing computational complexity and mem-

ory storage requirements of the distributed algorithm sought,

it is henceforth assumed that an upper bound rank(X̂r) ≤ ρ
is known a priori, where X̂r is the estimated traffic matrix

obtained via (P1). Because rank(X̂r) ≤ ρ, (P1)’s search space

is effectively reduced and one can factorize Xr = LQ′,
where L and Q are L × ρ and T × ρ matrices, respectively.

Adopting this reparametrization of Xr in (P1) and defining

rn(Ln,Q,A) := 1
2‖Yn − LnQ′ − RnA‖2

F one obtains the

following equivalent optimization problem

(P3) min
{L,Q,A}

N∑
n=1

{
rn(Ln,Q,A) +

λ∗
N

‖LQ′‖∗ +
λ1

N
‖A‖1

}
.

Note that (P3) is non-convex due to the bilinear term LnQ′,
where L := Π [L′

1, . . . ,L
′
N ]′. However, the number of vari-

ables is reduced from LT + FT in (P1), to ρ(L + T ) + FT
in (P3). The savings can be significant when ρ is in the order

of a few dozens and both L and T are large. Also note that

the dominant FT -term in the variable count of (P3) is due to

A, which is sparse and can be efficiently handled even when

both F and T are large.

A. A separable regularization

Problem (P3) is still not amenable for distributed imple-

mentation due to: (i) the non-separable nuclear norm present

in the cost function; and (ii) the global variables Q and A
coupling the per-node summands. To address (i), consider the

following separable characterization of the nuclear norm [11]

‖X‖∗ := min
{L,Q}

1
2

{‖L‖2
F + ‖Q‖2

F

}
, s. to X = LQ′. (6)

The optimization (6) is over all possible bilinear factorizations

of X, so that the number of columns of L and Q is not treated

as fixed. Building on (6), the following reformulation of (P3)

provides an important first step towards obtaining a distributed

estimator for unveiling network anomalies (un(Ln,Q) :=
N‖Ln‖2

F + ‖Q‖2
F )

(P4) min
{L,Q,A}

N∑
n=1

{
rn(Ln,Q,A) +

λ∗
2N

un(Ln,Q) +
λ1

N
‖A‖1

}
.

As asserted in the following lemma, adopting the separable

regularization in (P4) comes with no loss of optimality, pro-

vided the upper bound ρ is chosen large enough.1

Lemma 1: If (X̂r, Â) denotes the minimizer of (P1) and
rank(X̂r) ≤ ρ, then (P4) is equivalent to (P1).

Lemma 1 implies that by finding the global minimum of

(P4) [which could have considerably less variables than (P1)],

one can recover the optimal solution of (P1). However, since

1Proofs are omitted here due to space limitation; see [9].
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(P4) is non-convex, it may have stationary points which need

not be globally optimum. Interestingly, the next proposition

establishes that under relatively mild assumptions, every sta-

tionary point of (P4) is globally optimum for (P1).

Proposition 1: If (L̄, Q̄, Ā) is a stationary point of (P4), and
‖Y− L̄Q̄′−RĀ‖2 ≤ λ∗/2 holds, then (X̂ := L̄Q̄′, Â := Ā)
is the optimal solution of (P1).

Notice that for given λ∗, the condition ‖Y−L̄Q̄′−RĀ‖2 ≤
λ∗/2 implicitly lower bounds ρ and upper bounds the noise

variance. To decompose the cost in (P4), in which summands

are coupled through the global variables Q and A [cf. (ii) at

the beginning of this section], introduce auxiliary variables

{Qn,An}N
n=1 representing local estimates of {Q,A} per

node n. These local estimates are utilized to form the separable

constrained minimization problem (P5)

min
{L,Qn}
{An,Bn}

N∑
n=1

{
rn(Ln,Qn,Bn) +

λ∗
2N

un(Ln,Qn) +
λ1

N
‖An‖1

}

s. to Bn = An, n ∈ N
Qn = Qm, An = Am, m ∈ Jn, n ∈ N .

As will be clear later, additional variables {Bn}N
n=1 were

introduced to split the �2−norm fitting-error part of the cost in

(P5), from the �1−norm regularization on the An’s. The set

of additional constraints Bn = An ensures that, in this sense,

nothing changes in going from (P4) to (P5). Most importantly,

(P4) and (P5) are equivalent optimization problems provided

the network graph G(N ,L) is connected.

B. The alternating-direction method of multipliers

To minimize (P5) in a distributed fashion, a variation of

the alternating-direction method of multipliers (AD-MoM)

will be adopted here. Accordingly, the constraints in (P5)

are dualized through the dual variables collected in M :=
{Mn,Pn,On}N

n=1. The weighted �2-norms of the constraints

are also added to the cost as a penalty, to form the aug-

mented Lagrangian. The primal variables are then split in

three groups V1 := {Qn,An}N
n=1, V2 := {Ln}N

n=1, and

V3 := {Bn}N
n=1. The AD-MoM iteratively minimizes the aug-

mented Lagrangian using a block-coordinate descent scheme

that cycles through V1 → V2 → V3, with additional dual

variable updates.

Reformulating the estimator (P1) to its equivalent form (P5)

renders the augmented Lagrangian highly decomposable [9].

The separability comes in two flavors, both with respect to

the variable groups V1, V2, and V3, as well as across the

network nodes n ∈ N . This in turn leads to highly parallelized,

simplified recursions. Specifically, it is shown in [9] that if the

multipliers are initialized to zero, one arrives at the distributed

iterations tabulated as Algorithm 2.

The main computational burden stems from repeated inver-

sions of (small) ρ × ρ matrices, and simple soft-thresholding

operations. Conceivably the number of flows F can be large,

thus inverting the F × F matrix R′
nRn + cIF to update

Bn[k] could be computationally demanding. Fortunately, the

Algorithm 2 : AD-MoM solver at node n ∈ N
input Yn,Rn, λ∗, λ1, c
initialize Mn[0] = Pn[0] = An[1] = Bn[1] = 0F×T , O[0] =
0T×ρ, and Ln[1], Qn[1] at random.
for k = 1, 2,. . . do

Receive {Qm[k],Am[k]} from neighbors m ∈ Jn

Step 1) update the dual variables
Mn[k] = Mn[k − 1] + c(Bn[k] − An[k])
On[k] = On[k − 1] + c

∑
m∈Jn

(Qn[k] − Qm[k])

Pn[k] = Pn[k − 1] + c
∑

m∈Jn
(An[k] − Am[k])

Step 2) update the primal variables
Qn[k + 1] = [L′

n[k]Ln[k] + (λ∗/N + 2c)Iρ]
−1 {Y′

nLn[k]−
B′

n[k]R′
nLn[k] − On[k] + c

∑
m∈Jn

(Qn[k] + Qm[k])
}

En[k] =Mn[k]+cBn[k]−Pn[k]+c
∑

m∈Jm
(An[k]+Am[k])

An[k + 1] = [c(1 + 2|Jn|)]−1Sλ1/N (En[k]))

In[k + 1] = [Q′
n[k + 1]Qn[k + 1] + λ∗Iρ]

−1

Ln[k + 1] = (Yn − RnBn[k])Qn[k + 1]In[k + 1]

Bn[k + 1] = [R′
nRn + cIF ]−1

×{R′
n(Yn − Ln[k + 1]Q′

n[k + 1]) − Mn[k] + cAn[k + 1]}
Broadcast {Qn[k + 1],An[k + 1]} to neighbors m ∈ Jn

end for
return An,Qn,Ln

inversion needs to be carried out once, and can be performed

off-line.

On a per iteration basis, network nodes communicate their

updated local estimates {Qn[k],An[k]} with their neighbors,

in order to carry out updates of the primal and dual variables

during the next iteration. Regarding communication cost,

Qn[k] is a T × ρ matrix and its transmission does not incur

significant overhead for small values of ρ. In addition, the

F × T matrix An[k] is sparse, and can be communicated

efficiently. Note that the dual variables need not be exchanged.

While a formal convergence analysis is beyond the scope of

this work, the following proposition proved in [9] asserts that

upon convergence, Algorithm 2 achieves global optimality.

Proposition 2: If the iterates generated by Algorithm 2
converges to {Q̄n, L̄n, Ān}n∈N , and ‖Y− L̄Q̄′

1−RĀ1‖2 ≤
λ∗/2 holds, then: i) Q̄i = Q̄j , Āi = Āj , ∀i, j ∈ N ; and
ii) Â = Ā1 and X̂r = L̄Q̄′

1, where (Â, X̂r) is the global
optimum of (P1).

V. NUMERICAL TESTS

Performance of the proposed estimator is assessed in this

section via numerical tests using both synthetic and real

network data. To generate synthetic data, network topologies

with randomly placed nodes are simulated. For each candidate

OD pair, shortest-path routes are considered to form R. The

i.i.d. entries of matrix V are zero-mean Gaussian distributed,

with variance σ2. Low-rank matrices are generated as X0 =
W1W′

2, where W1 ∈ R
F×r and W2 ∈ R

T×r contain i.i.d.

zero-mean Gaussian entries with variance 10 σ/
√

FT . Every

entry of A0 is picked randomly from the set {−1, 0, 1} with

Pr(ai,j = −1) = Pr(ai,j = 1) = ρ/2.
Real OD flow data are collected from the operations of the

Abilene network (backbone of the Internet 2 protocol) during
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Fig. 1. Performance for synthetic data. (a) ROC curves of the proposed
versus the PCA-based method with ρ = 0.001, σ2 = 0.01, N = 20, L =
108, F = 360, T = 760. (b) Amplitude of the true and estimated anomalies
for Pf = 10−4 and Pd = 0.97. Lines with open and filled circle markers
denote the true and estimated anomalies, respectively.

Dec. 8–28, 2008 [7]. The link loads in Y are obtained based on

(2) and the Abilene routing matrix. The available OD flows are

a superposition of ‘clean’ and anomalous traffic, i.e., X0+A0,

and thus the anomalies are not recognizable. However, this

data is the sum of low rank plus sparse matrices which respects

the considered model in (2) when R = IF . Therefore, the

proposed algorithms are applied to find a reasonably precise

estimate of the “ground-truth” traffic and anomaly matrices.

A. Comparison with a PCA-based method

To highlight the merits of the proposed anomaly detection

algorithm, its performance is compared with the PCA-based

approach of [7]. The crux of this method is that the anomaly-

free data is expected to be low-rank, whereas the presence

of anomalies considerably increases the rank of Y. PCA

requires a priori knowledge of the rank of the anomaly-free

traffic matrix, and is unable to identify anomalous flows, i.e.,

the scope of [7] is limited to a single anomalous flow per

time slot. Different from [7], the developed framework here

enables identifying multiple anomalous flows per time instant.

To assess performance, the detection rate will be used as figure

of merit, which measures the algorithm’s success in identifying

anomalies across both flows and time instants.

For the synthetic data case, ROC curves are depicted in Fig.

1 (a), for different values of the rank required to run the PCA-

based method. It is apparent that the proposed scheme detects

accurately the anomalies, even at low false alarm rates. For the

particular case of Pf = 10−4, Pd = 0.97, Fig. 1 (b) illustrates

the magnitude of the true and estimated anomalies across flows

and time. Similar results are depicted for the Abilene data in

Fig. 2, where it is also evident that proposed method markedly

outperforms PCA in terms of detection performance. For an

instance of Pf = 0.03 and Pd = 0.92, Fig. 2 (b) shows the

effectiveness of the proposed algorithm in terms of unveiling

the anomalous flows and time instants.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced an efficient algorithm for in-network

unveiling of anomalies present in OD flows. To this end, an
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Fig. 2. Performance for Abilene network data. (a) ROC curves of the
proposed versus the PCA-based method. (b) Amplitude of the true and
estimated anomalies for Pf = 0.04 and Pd = 0.93.

estimator resulting from a convex problem was developed

first using the proximal gradient method. For in-network

operation a distributed algorithm was also developed based on

the AD-MOM method which can afford low computational

complexity. Interestingly, the distributed estimator can attain

the centralized performance.

The ongoing research includes: i) studying the exact recov-

ery performance of the proposed estimator in the absence of

noise; and ii) extending the distributed approach to the general

matrix completion problem.
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