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Abstract—In the backbone of large-scale networks, origin-to-
destination (OD) traffic flows experience abrupt unusual changes
known as traffic volume anomalies, which can result in congestion
and limit the extent to which end-user quality of service require-
ments are met. As a means of maintaining seamless end-user
experience in dynamic environments, as well as for ensuring net-
work security, this paper deals with a crucial network monitoring
task termed dynamic anomalography. Given link traffic measure-
ments (noisy superpositions of unobserved OD flows) periodically
acquired by backbone routers, the goal is to construct an estimated
map of anomalies in real time, and thus summarize the network
‘health state’ along both the flow and time dimensions. Leveraging
the low intrinsic-dimensionality of OD flows and the sparse nature
of anomalies, a novel online estimator is proposed based on an
exponentially-weighted least-squares criterion regularized with
the sparsity-promoting -norm of the anomalies, and the nuclear
norm of the nominal traffic matrix. After recasting the non-sepa-
rable nuclear norm into a form amenable to online optimization, a
real-time algorithm for dynamic anomalography is developed and
its convergence established under simplifying technical assump-
tions. For operational conditions where computational complexity
reductions are at a premium, a lightweight stochastic gradient
algorithm based on Nesterov’s acceleration technique is developed
as well. Comprehensive numerical tests with both synthetic and
real network data corroborate the effectiveness of the proposed
online algorithms and their tracking capabilities, and demonstrate
that they outperform state-of-the-art approaches developed to
diagnose traffic anomalies.

Index Terms—Traffic volume anomalies, online optimization,
sparsity, network cartography, low rank.

I. INTRODUCTION

I N the backbone of large-scale networks, origin-to-destina-
tion (OD) traffic flows experience abrupt unusual changes

which can result in congestion, and limit QoS provisioning of
the end users. These so-termed traffic volume anomalies could
be due to unexpected failures in networking equipment, cyberat-
tacks (e.g., denial of service (DoS) attacks), or, intruders which
hijack the network services [37]. Unveiling such anomalies in
a promptly manner is a crucial monitoring task towards en-
gineering network traffic. This is a challenging task however,
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since the available data are usually high-dimensional, noisy and
possibly incomplete link-load measurements, which are the su-
perposition of unobservable OD flows. Several studies have ex-
perimentally demonstrated the low intrinsic dimensionality of
the nominal traffic subspace, that is, the intuitive low-rank prop-
erty of the traffic matrix in the absence of anomalies, which
is mainly due to common temporal patterns across OD flows,
and periodic behavior across time [22], [43]. Exploiting the
low-rank structure of the anomaly-free traffic matrix, a land-
mark principal component analysis (PCA)-based method was
put forth in [21] to identify network anomalies; see also [28] for
a distributed implementation. A limitation of the algorithm in
[21] is that it cannot identify multiple anomalous flows. Most
importantly, [21] has not exploited the sparsity of anomalies
across flows and time—anomalous traffic spikes are rare, and
tend to last for short periods of time relative to the measure-
ment horizon.
Capitalizing on the low-rank property of the traffic matrix

and the sparsity of the anomalies, the fresh look advocated here
permeates benefits from rank minimization [9]–[11], and com-
pressive sampling [12], [13], to perform dynamic anomalog-
raphy. The aim is to construct a map of network anomalies in
real time, that offers a succinct depiction of the network ‘health
state’ across both the flow and time dimensions (Section II).
Different from the batch centralized and distributed anomalog-
raphy algorithms in [26] and [25], the focus here is on devising
online (adaptive) algorithms that are capable of efficiently pro-
cessing link measurements and track network anomalies ‘on
the fly’; see also [4] for a ‘model-free’ approach that relies on
the kernel recursive LS (RLS) algorithm. Online monitoring al-
gorithms are attractive for operation in dynamic network en-
vironments, since they can cope with traffic nonstationarities
arising due to routing changes and missing data. Accordingly,
the novel online estimator entails an exponentially-weighted
least-squares (LS) cost regularized with the sparsity-promoting
-norm of the anomalies, and the nuclear norm of the nominal

traffic matrix. After recasting the non-separable nuclear norm
into a form amenable to online optimization (Section III.A), a
real-time algorithm for dynamic anomalography is developed
in Section IV based on alternating minimization. Each time a
new datum is acquired, anomaly estimates are formed via the
least-absolute shrinkage and selection operator (Lasso), e.g.,
([18], p. 68), and the low-rank nominal traffic subspace is re-
fined using RLS [36]. Convergence analysis is provided under
simplifying technical assumptions in Section IV.B. For situa-
tions where reducing computational complexity is critical, an
online stochastic gradient algorithm based on Nesterov’s acce-
laration technique [6], [30] is developed as well (Section V.A).
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The possibility of implementing the anomaly trackers in a dis-
tributed fashion is further outlined in Section V.B, where several
directions for future research are also delineated.
Extensive numerical tests involving both synthetic and real

network data corroborate the effectiveness of the proposed algo-
rithms in unveiling network anomalies, as well as their tracking
capabilities when traffic routes are slowly time-varying, and
the network monitoring station acquires incomplete link traffic
measurements (Section VI). Different from [42] which employs
a two-step batch procedure to learn the nominal traffic subspace
first, and then unveil anomalies via -norm minimization, the
approach here estimates both quantities jointly and attains better
performance as illustrated in Section VI.B. Concluding remarks
are given in Section VII, while most technical details relevant
to the convergence proof in Section IV.C are deferred to the
Appendix.
Notation: Bold uppercase (lowercase) letters will denote ma-

trices (column vectors), and calligraphic letters will be used for
sets. Operators , and ,
will denote transposition, matrix trace, minimum eigenvalue,
minimum singular value, projection onto the nonnegative or-
thant, and expectation, respectively; will be used for the
cardinality of a set, and the magnitude of a scalar. The positive
semidefinite matrix will be denoted by . The -norm
of is for . For two ma-
trices denotes their trace
inner product. The Frobenius norm of matrix

is
is the spectral norm, is the -norm, and

is the nuclear norm, where denotes
the -th singular value of . The identity matrix will be
represented by and its -th column by , while will stand
for the vector of all zeros, , and the support
set .

II. MODELING PRELIMINARIES AND PROBLEM STATEMENT

Consider a backbone Internet protocol (IP) network naturally
modeled as a directed graph , where and de-
note the sets of nodes (routers) and physical links of cardinality

and , respectively. The operational goal of
the network is to transport a set of OD traffic flows (with

) associated with specific source-destination pairs. For
backbone networks, the number of network layer flows is much
larger than the number of physical links . Single-path
routing is adopted here, that is, a given flow’s traffic is carried
through multiple links connecting the corresponding source-
destination pair along a single path. Let ,
denote the flow to link assignments (routing), which take the
value one whenever flow is carried over link , and zero other-
wise. Unless otherwise stated, the routing matrix

is assumed fixed and given. Likewise, let denote
the unknown traffic rate of flow at time , measured in e.g.,
Mbps. At any given time instant , the traffic carried over link
is then the superposition of the flow rates routed through link ,
i.e., .

It is not uncommon for some of the flow rates to experience
unusual abrupt changes. These so-termed traffic volume anom-
alies are typically due to unexpected network failures, or cyber-
attacks (e.g., DoS attacks) which aim at compromising the ser-
vices offered by the network [37]. Let denote the unknown
traffic volume anomaly of flow at time . In the presence of
anomalous flows, the measured traffic carried by link over a
time horizon is then given by

(1)

where the noise variables account for measurement errors
and unmodeled dynamics.
In IP networks, traffic volume can be readily measured on

a per-link basis using off-the-shelf tools such as the simple net-
work management protocol (SNMP) supported by most routers.
Missing entries in the link-level measurements may how-
ever skew the network operator’s perspective. SNMP packets
may be dropped for instance, if some links become congested,
rendering link count information for those links more impor-
tant, as well as less available [33]. To model missing link mea-
surements, collect the tuples associated with the available
observations in the set . In-
troducing the matrices , and

, the (possibly incomplete)
set of measurements in (1) can be expressed in compact matrix
form as

(2)

where the sampling operator sets the entries of its matrix
argument not in to zero, and keeps the rest unchanged. Matrix
contains the nominal traffic flows over the time horizon of in-

terest. Common temporal patterns among the traffic flows in ad-
dition to their periodic behavior, render most rows (respectively
columns) of linearly dependent, and thus typically has low
rank. This intuitive property has been extensively validated with
real network data; see e.g., [22]. Anomalies in are expected
to occur sporadically over time, and last shortly relative to the
(possibly long) measurement interval . In addition, only a
small fraction of the flows is supposed to be anomalous at a any
given time instant. This renders the anomaly traffic matrix
sparse across both rows (flows) and columns (time).
Given measurements adhering to (2) and the binary-

valued routing matrix , the main goal of this paper is to ac-
curately estimate the anomaly matrix , by capitalizing on the
sparsity of and the low-rank property of . Special focus will
be placed on devising online (adaptive) algorithms that are ca-
pable of efficiently processing link measurements and tracking
network anomalies in real time. This critical monitoring task
is termed dynamic anomalography, and the resultant estimated
map offers a depiction of the network’s ‘health state’ along
both the flow and time dimensions. If , the -th flow
at time is deemed anomalous, otherwise it is healthy. By ex-
amining the network operator can immediately determine the
links carrying the anomalous flows. Subsequently, planned con-
tingency measures involving traffic-engineering algorithms can
be implemented to address network congestion.
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III. UNVEILING ANOMALIES VIA SPARSITY AND LOW RANK

Consider the nominal link-count traffic matrix ,
which inherits the low-rank property from . Since the primary
goal is to recover , the following observation model

(3)

can be adopted instead of (2). A natural estimator leveraging
the low rank property of and the sparsity of will be sought
next. The idea is to fit the incomplete data to the model

in the least-squares (LS) error sense, as well as min-
imize the rank of , and the number of nonzero entries of
measured by its -(pseudo) norm. Unfortunately, albeit nat-
ural both rank and -norm criteria are in general NP-hard to
optimize [17], [29]. Typically, the nuclear norm and the
-norm are adopted as surrogates, since they are the

closest convex approximants to and , respec-
tively [12], [31], [38]. Accordingly, one solves

where are rank- and sparsity-controlling parameters.
When an estimate of the noise variance is available, guide-
lines for selecting and have been proposed in [44].
Being convex (P1) is appealing, and it yields reliable perfor-

mance when full data are available, i.e., [26]. In the pres-
ence of missing data, one has to ensure that the sampled subset
of links provides sufficient information to identify anomalous
flows. Intuitively, for high estimation accuracy each flow must
traverse sufficiently many links, whereas network links should
not be overloaded by too many flows. These properties typi-
cally hold for large-scale networks with distant OD node pairs,
and routing paths that are sufficiently ‘spread-out.’ Developing
identifiability conditions when link measurements are incom-
plete is an open problem, and constitutes an interesting future
research direction.
Model (3) and its estimator (P1) are quite general, as dis-

cussed in the ensuing remark.
Remark 1 (Subsumed Paradigms): When there is no missing

data and , one is left with an under-determined
sparse signal recovery problem typically encountered with com-
pressive sampling (CS); see e.g., [12] and the tutorial account
[13]. The decomposition corresponds to principal
component pursuit (PCP), also referred to as robust principal
component analysis (RPCA) [9], [14]. PCP was adopted for net-
work anomaly detection using flow (not link traffic) measure-
ments in [2]. For the idealized noise-free setting ,
sufficient conditions for exact recovery are available for both
of the aforementioned special cases [9], [12], [14]. However,
the superposition of a low-rank plus a compressed sparse ma-
trix in (3) further challenges identifiability of ; see [26]
for early results. Going back to the CS paradigm, even when
is nonzero one could envision a variant where the measure-

ments are corrupted with correlated (low-rank) noise [15]. Last
but not least, when and is noisy, the recovery of
subject to a rank constraint is nothing but PCA—arguably,

the workhorse of high-dimensional data analytics. This same

formulation is adopted for low-rank matrix completion, to im-
pute the missing entries of a low-rank matrix observed in noise,
i.e., [10].
Albeit convex, (P1) is a non-smooth optimization problem

(both the nuclear and -norms are not differentiable at the
origin). In addition, scalable algorithms to unveil anomalies in
large-scale networks should effectively overcome the following
challenges: (c1) the problem size can easily become quite large,
since the number of optimization variables is ; (c2)
existing iterative solvers for (P1) typically rely on costly SVD
computations per iteration; see e.g., [26]; and (c3) different
from the Frobenius and -norms, (columnwise) nonsepara-
bility of the nuclear-norm challenges online processing when
new columns of arrive sequentially in time. In the
remainder of this section, the ‘big data’ challenges (c1) and
(c2) are dealt with to arrive at an efficient batch algorithm
for anomalography. Tracking network anomalies is the main
subject of Section IV.
To address (c1) and reduce the computational complexity and

memory storage requirements of the algorithms sought, it is
henceforth assumed that an upper bound is a
priori available [ is the estimate obtained via (P1)]. As argued
next, the smaller the value of , the more efficient the algorithm
becomes. Small values of are well motivated due to the low
intrinsic dimensionality of network flows. For instance, experi-
ments with Internet-2 network data [1] show that suffices
[21]; see also [22]. Because , (P1)’s search space
is effectively reduced and one can factorize the decision variable
as , where and are and matrices, re-
spectively. It is possible to interpret the columns of (viewed
as points in ) as belonging to a low-rank ‘nominal traffic sub-
space’, spanned by the columns of . The rows of are thus
the projections of the columns of onto the traffic subspace.
Adopting this reparametrization of in (P1), and defining

, one arrives at
an equivalent optimization problem

which is non-convex due to the bilinear terms . The number
of variables is reduced from in (P1), to
in (P2). The savings can be significant when is small, and
both and are large. Note that the dominant -term in the
variable count of (P2) is due to , which is sparse and can be
efficiently handled even when both and are large.

A. A Separable Low-Rank Regularization

To address (c2) [along with (c3) as it will become clear in
Section IV], consider the following alternative characterization
of the nuclear norm [31], [32]

(4)

The optimization (4) is over all possible bilinear factorizations
of , so that the number of columns of and is also a
variable. Leveraging (4), the following reformulation of (P2)
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provides an important first step towards obtaining an online al-
gorithm:

As asserted in [25, Lemma 1], adopting the separable Frobe-
nius-norm regularization in (P3) comes with no loss of opti-
mality relative to (P1), provided . By finding the
global minimum of (P3) [which could have considerably less
variables than (P1)], one can recover the optimal solution of
(P1). However, since (P3) is non-convex, it may have stationary
points which need not be globally optimum. Interestingly, the
next proposition shows that under relatively mild assumptions
on and the noise variance, every stationary point of
(P3) is globally optimum for (P1). For a proof, see [25, App.
A], .
Proposition 1: Let be a stationary point of (P3).

If , then
is the globally optimal solution of (P1).
The qualification condition

captures tacitly the role of . In particular, for sufficiently small
the residual becomes large and con-
sequently the condition is violated [unless is large enough,
in which case a sufficiently low-rank solution to (P1) is ex-
pected]. The condition on the residual also implicitly enforces

, which is necessary for the equivalence between
(P1) and (P3). Note also that selecting a large value of does
not ensure satisfaction of the condition in Proposition 1. In fact,
other factors such as the noise variance and routingmatrix struc-
ture are critical as well.

B. Batch Block Coordinate-Descent Algorithm

The block coordinate-descent (BCD) algorithm is adopted
here to solve the batch non-convex optimization problem (P3).
BCD is an iterative method which has been shown efficient
in tackling large-scale optimization problems encountered with
various statistical inference tasks, see e.g., [7]. The proposed
solver entails an iterative procedure comprising three steps per
iteration

[S1] Update the anomaly map:

[S2] Update the nominal traffic subspace:

[S3] Update the projection coefficients:

To update each of the variable groups, the cost of (P3) is
minimized while fixing the rest of the variables to their most

up-to-date values. The minimization in [S1] decomposes
over the columns of . At iteration , these
columns are updated in parallel via Lasso

(5)

where and respectively denote the -th column of and
, while the diagonal matrix contains a one on

its -th diagonal entry if is observed, and a zero otherwise.
To keep computational complexity at a minimum, in practice
each iteration of the proposed algorithm minimizes (5) inex-
actly. This is achieved for each , by performing a
single pass of the cyclic coordinate-descent algorithm in [18, p.
92] over each one of the scalar entries in ; see Algo-
rithm 1 for the resulting iterations, and Appendix A for further
details. As shown at the end of this section, this inexact mini-
mization suffices to claim convergence to a stationary point of
(P3).

Algorithm 1: Batch BCD algorithm for unveiling network
anomalies

input , and .

initialize and at random.

for do

[S1] Update the anomaly map:

for do

.

.

end for

,

.

[S2] Update the nominal traffic subspace:

.

.

[S3] Update the projection coefficients:

.

.

end for

return and .

Similarly, in [S2] and [S3] the minimizations that give rise
to and are separable over their respective
rows. For instance, the -th row of the traffic subspace matrix
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is updated as the solution of the following
ridge-regression problem

(6)

where and represent the -th row of and , re-
spectively. The -th diagonal entry of the diagonal matrix

is an indicator variable testing whether measurement
is available. Because (6) is an unconstrained convex quadratic
program, the first-order optimality condition yields the closed-
form solution tabulated under Algorithm 1. A similar regular-
ized LS problem yields ; see Algo-
rithm 1 for the details and a description of the overall BCD
solver. The novel batch scheme for unveiling network anoma-
lies is less complex computationally than the accelerated prox-
imal gradient algorithm in [26], since Algorithm 1’s iterations
are devoid of SVD computations. Different from [26], Algo-
rithm 1 can also accommodate missing link measurements.
Despite being non-convex and non-differentiable, (P3) has

favorable structure which facilitates convergence of the iter-
ates generated by Algorithm 1. Specifically, the resulting cost is
convex in each block variable when the rest are fixed. The non-
smooth -norm is also separable over the entries of its matrix
argument. Accordingly, [39, Theorem 5.1] guarantees conver-
gence of the BCD algorithm to a stationary point of (P3). This
result together with Proposition 1 establishes the next claim.
Proposition 2: If a subsequence

of iterates generated by Algorithm 1 satisfies
, then it converges to the optimal solution set of

(P1) as .
In practice, it is desirable to monitor anomalies in real time

and accomodate time-varying traffic routes. These reasons mo-
tivate devising algorithms for dynamic anomalography, the sub-
ject dealt with next.

IV. DYNAMIC ANOMALOGRAPHY

Monitoring of large-scale IP networks necessitates collecting
massive amounts of data which far outweigh the ability of
modern computers to store and analyze them in real time. In
addition, nonstationarities due to routing changes and missing
data further challenge identification of anomalies. In dynamic
networks routing tables are constantly readjusted to effect
traffic load balancing and avoid congestion caused by e.g.,
traffic anomalies or network infrastructure failures. To account
for slowly time-varing routing tables, let denote
the routing matrix at time 1. In this dynamic setting, the
partially observed link counts at time adhere to [cf. (3)]

(7)

1Fixed size routing matrices are considered here for convenience, where
and correspond to upper bounds on the number of physical links and flows

transported by the network, respectively. If at time some links are not used at
all, or, less than flows are present, the corresponding rows and columns of

will be identically zero.

Fig. 1. Internet-2 network topology graph.

where the link-level traffic , for from the (low-di-
mensional) traffic subspace. In general, routing changes may
alter a link load considerably by e.g., routing traffic completely
away from a specific link. Therefore, even though the network-
level traffic vectors live in a low-dimensional subspace,
the same may not be true for the link-level traffic when the
routing updates are major and frequent. In backbone networks
however, routing changes are sporadic relative to the time-scale
of data acquisition used for network monitoring tasks. For in-
stance, data collected from the operation of Internet-2 network,
shown in Fig. 1, reveals that only a few rows of change per
week [1]. It is thus safe to assume that still lies in a low-di-
mensional subspace, and exploit the temporal correlations of the
observations to identify the anomalies.
On top of the previous arguments, in practice link mea-

surements are acquired sequentially in time, which motivates
updating previously obtained estimates rather than re-com-
puting new ones from scratch each time a new datum becomes
available. The goal is then to recursively estimate
at time from historical observations ,
naturally placing more importance to recent measurements.
To this end, one possible adaptive counterpart to (P3) is the
exponentially-weighted LS estimator found by minimizing the
empirical cost

(8)

in which is the so-termed forgetting factor.
When data in the distant past are exponentially down-
weighted, which facilitates tracking network anomalies in
nonstationary environments. In the case of static routing

and infinite memory , the
formulation (8) coincides with the batch estimator (P3). This is
the reason for the time-varying factor weighting .

A. Tracking Network Anomalies

Towards deriving a real-time, computationally efficient, and
recursive solver of (8), an alternating minimization method
is adopted in which iteration coincides with the time scale
of data acquisition. A justification in terms of minimizing
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a suitable approximate cost function is discussed in detail in
Section IV.B. Per time instant , a new datum is
drawn and are jointly estimated via

(9)

It turns out that (9) can be efficiently solved. Fixing to carry
out the minimization with respect to first, one is left with an
-norm regularized LS (ridge-regression) problem

(10)

Note that is an affine function of , and the update rule for
is not well defined until is replaced with . Towards

obtaining an expression for , define
for notational convenience, and sub-

stitute (10) back into (9) to arrive at the Lasso estimator

(11)

where . The
diagonal matrix was defined in Section III.B, see the discus-
sion after (5).
In the second step of the alternating-minimization scheme,

the updated subspace matrix is obtained by minimizing (8)
with respect to , while the optimization variables
are fixed and take the values . This yields

(12)

Similar to the batch case, (12) decouples over the rows of
which are obtained in parallel via

(13)

where denotes the -th diagonal entry of . For ,
subproblems (13) can be efficiently solved using the RLS al-
gorithm [36]. Upon defining

, and
, with one simply updates

and forms , for .
However, for the regularization term

in (13) makes it impossible to express in terms of
plus a rank-one correction. Hence, one cannot resort to the ma-
trix inversion lemma and update with quadratic com-
plexity only. Based on direct inversion of ,
the overall recursive algorithm for tracking network anomalies
is tabulated under Algorithm 2. The per iteration cost of the
inversions (each , which could be further reduced if one
leverages also the symmetry of ) is affordable for moderate
number of links, because is small when estimating low-rank
traffic matrices. Still, for those settings where computational
complexity reductions are at a premium, an online stochastic
gradient descent algorithm is described in Section V.A.

Algorithm 2: Online algorithm for tracking network
anomalies

input , and .

initialize , and
at random.

for do

.

.

.

.

.

.

.

return and .

end for

Remark 2 (Robust Subspace Trackers): Algorithm 2
is closely related to timely robust subspace trackers,
which aim at estimating a low-rank subspace from
grossly corrupted and possibly incomplete data, namely

. In the absence
of sparse ‘outliers’ , an online algorithm based on
incremental gradient descent on the Grassmannian manifold
of subspaces was put forth in [5]. The second-order RLS-type
algorithm in [16] extends the seminal projection approximation
subspace tracking algorithm [41] to handle missing data. When
outliers are present, robust counterparts can be found in [15],
[19], [27]. Relative to all aforementioned works, the estimation
problem here is more challenging due to the presence of the fat
(compression) matrix ; see [26] for fundamental identifia-
bility issues related to the model (3).

B. Convergence Analysis

This section studies the convergence of the iterates generated
by Algorithm 2, for the infinite memory special case i.e., when

. Upon defining the function

(14)
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in addition to , when Al-
gorithm 2 aims at minimizing the following average cost func-
tion at time

(15)

Normalization (by ) ensures that the cost function does not
grow unbounded as time evolves. For fixed routing

, (15) it is essentially identical to the batch estimator in
(P3) up to a scaling, which does not affect the value of the mini-
mizers. Note that as time evolves, minimization of becomes
increasingly complex computationally. Even evaluating is
challenging for large , since it entails solving Lasso problems
to minimize all and defining the functions .
Hence, at time the subspace estimate is obtained by min-
imizing the approximate cost function [cf. (12) when ]

(16)

in which are obtained based on the prior subspace
estimate after solving [cf. (9)]

(17)

Obtaining this way resembles the projection approximation
adopted in [41], and can only be evaluated after is obtained
[cf. (10)]. Since is a smooth convex function, the mini-
mizer is the solution of the quadratic
equation .
So far, it is apparent that the approximate cost func-

tion overestimates the target cost , for
. However, it is not clear whether the dictionary

iterates converge, and most importantly, how well
can they optimize the target cost function . The good news
is that asymptotically approaches , and the
subspace iterates null as well, both as . The
latter result is summarized in the next proposition, which is
proved in the next section.
Proposition 3: Assume that: a1) and

are independent and identically distributed (i.i.d.) random
processes; a2) is uniformly bounded; a3) it-
erates are in a compact set ; a4)

is positive definite, namely for
some ; and a5) , where the matrix

contains the columns of
associated with the elements in , and is a positive
constant. Then almost surely
(a.s.), which implies that the subspace iterates
asymptotically coincide with the stationary points of (P3) when
the routing remains invariant, i.e., when .
To clearly delineate the scope of the analysis, it is worth com-

menting on the assumptions a1)–a5) and the factors that influ-
ence their satisfaction. Regarding a1), the acquired data is as-
sumed statistically independent across time as it is customary
when studying the stability and performance of online (adap-
tive) algorithms [35], [36]. While independence is required for
tractability, a1) may be grossly violated because OD flows are

correlated across time (cf. the low-rank property of and ).
Still, in accordance with the adaptive filtering folklore e.g., [35,
p. 321], as the upshot of the analysis based on i.i.d. data
extends accurately to the pragmatic setting whereby the link-
counts and missing data patterns exhibit spatiotemporal corre-
lations. Uniform boundedness of [cf. a2)] is satisfied
in practice, since the traffic is always limited by the (finite) ca-
pacity of the physical links. The bounded subspace requirement
in a3) is a technical assumption that simplifies the arguments of
the ensuing proof, and has been corroborated via extensive com-
puter simulations including those in Section VI. It is apparent
that the sampling set plays a key role towards ensuring that
a4) and a5) are satisfied. Intuitively, if the missing entries tend
to be only few and somehow uniformly distributed across links
and time, they will not markedly increase coherence of the re-
gression matrices , and thus compromise the uniqueness
of the Lasso solutions. This also increases the likelihood that

holds. As argued in [24], if needed one could incorporate
additional regularization terms in the cost function to enforce
a4) and a5). Before moving on to the proof, a remark is in order.
Remark 3 (Performance Guarantees): In line with Proposi-

tion 2, one may be prompted to ponder whether the online es-
timator offers the performance guarantees of the nuclear-norm
regularized estimator (P1), for which stable/exact recovery have
been well documented e.g., in [9], [26], [44]. Specifically, given
the learned traffic subspace and the corresponding and
[obtained via (9)] over a time window of size , is

an optimal solution of (P1) when ?
This in turn requires asymptotic analysis of the optimality con-
ditions for (P1), and is left for future research. Nevertheless, em-
pirically the online estimator attains the performance of (P1), as
evidenced by the numerical tests in Section VI.

C. Proof of Proposition 3

Themain steps of the proof are inspired by [24], which studies
convergence of an online dictionary learning algorithm using
the theory of martingale sequences; see e.g., [23]. However, rel-
ative to [24] the problem here introduces several distinct ele-
ments including: i) missing data with a time-varying pattern ;
ii) a non-convex bilinear term where the tall subspace matrix
plays a role similar to the fat dictionary in [24], but the multi-
plicative projection coefficients here are not sparse; and iii) the
additional bilinear terms which entail sparse coding of
as in [24], but with a known regression (routing) matrix. Hence,
convergence analysis becomes more challenging and demands,
in part, for a new treatment. Accordingly, in the sequel emphasis
will be placed on the novel aspects specific to the problem at
hand.
The basic structure of the proof consists of three prelimi-

nary lemmata, which are subsequently used to establish that
a.s. through a simple argument.

The first lemma deals with regularity properties of functions
and , which will come handy later on; see Appendix B for a
proof.
Lemma 1: If a2) and a5) hold, then the functions:

i) , ii) ,
iii) , and iv) are Lipschitz continuous for
( is a compact set), with constants independent of .
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The next lemma (proved in Appendix C) asserts that the dis-
tance between two subsequent traffic subspace estimates van-
ishes as , a property that will be instrumental later on
when establishing that a.s.
Lemma 2: If a2)–a5) hold, then .

The previous lemma by no means implies that the subspace
iterates converge, which is a much more ambitious objective
that may not even hold under the current assumptions. The final
lemma however, asserts that the cost sequence indeed converges
with probability one; see Appendix D for a proof.
Lemma 3: If a1)–a5) hold, then converges a.s.

Moreover, a.s.
Putting the pieces together, in the sequel it is shown that the

sequence converges a.s. to zero,
and since by algorithmic construction, the
subspace iterates coincide with the stationary points
of the target cost function . To this end, it suffices to prove that
every convergent subsequence nulls the gradient asymp-
totically, which in turn implies that the entire sequence con-
verges to the set of stationary points of the batch problem (P3).
Since is compact by virtue of a3), one can always pick

a convergent subsequence whose limit point is
, say2. Consider the positive-valued decreasing sequence

that converges to zero slower than
does, and recall that for
any . From the mean-value theorem and for arbitrary
, expanding both sides of the inequality around the point

one arrives at

for some on the line segment connecting
and . Taking limit as and applying

Lemma 3 it follows that

(18)

For the quadratic function , uniform boundedness of the Hes-
sian
implies that is Lipschitz. Furthermore, since is Lips-
chitz as per Lemma 1, is Lipschitz as well. Consequently,
according to the Cauchy-Schwarz inequality

(19)

for some constant , where (a) holds since is a convex
combination of and . Likewise, one can bound

2Formally, the subsequence should be denoted as , but a slight
abuse of notation is allowed for simplicity.

the second term on the left-hand-side of (18). Accordingly, it
holds that

All in all, the second and third terms in (18) vanish and one is
left with

(20)

Because is arbitrary, (20) can only hold if
a.s., which com-

pletes the proof.

V. FURTHER ALGORITHMIC ISSUES

For completeness, this section outlines a couple of additional
algorithmic aspects relevant to anomaly detection in large-scale
networks. Firstly, a lightweight first-order algorithm is devel-
oped as an alternative to Algorithm 2, which relies on fast Nes-
terov-type gradient updates for the traffic subspace. Secondly,
the possibility of developing distributed algorithms for dynamic
anomalography is discussed.

A. Fast Stochastic-Gradient Algorithm

Reduction of the computational complexity in updating the
traffic subspace is the subject of this section. The basic al-
ternating minimization framework in Section IV.A will be re-
tained, and the updates for will be identical to those
tabulated under Algorithm 2. However, instead of solving an
unconstrained quadratic program per iteration to obtain [cf.
(12)], the refinements to the subspace estimate will be given by
a (stochastic) gradient algorithm.
As discussed in Section IV.B, in Algorithm 2 the subspace es-

timate is obtained by minimizing the empirical cost func-
tion , where

(21)

By the law of large numbers, if data are sta-
tionary, solving yields the desired mini-
mizer of the expected cost , where the expectation is
taken with respect to the unknown probability distribution of
the data. A standard approach to achieve this same goal—typ-
ically with reduced computational complexity—is to drop the
expectation (or the sample averaging operator for that matter),
and update the nominal traffic subspace via a stochastic gradient
iteration [36]

(22)

where is a stepsize,
, and
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. In the context of adaptive fil-
tering, stochastic gradient algorithms such as (21) are known to
converge typically slower than RLS. This is expected since RLS
can be shown to be an instance of Newton’s (second-order) op-
timization method [36].
Building on the increasingly popular accelerated gradient

methods for (batch) smooth optimization [6], [30], the idea
here is to speed-up the learning rate of the estimated traffic
subspace (22), without paying a penalty in terms of com-
putational complexity per iteration. The critical difference
between standard gradient algorithms and the so-termed
Nesterov’s variant, is that the accelerated updates take the
form , which relies on a ju-
dicious linear combination of the previous pair
of iterates . Specifically, the choice

,
where , has been shown to
significantly accelerate batch gradient algorithms resulting
in convergence rate no worse than ; see e.g., [6]
and references therein. Using this acceleration technique in
conjunction with a backtracking stepsize rule [7], a fast online
stochastic gradient algorithm for unveiling network anomalies
is tabulated under Algorithm 3. Different from Algorithm 2,
no matrix inversions are involved in the update of the traffic
subspace . Clearly, a standard (non accelerated) stochastic
gradient descent algorithm with backtracking stepsize rule is
subsumed as a special case, when

Algorithm 3: Online stochastic gradient algorithm for
unveiling network anomalies

input .

initialize at random, , and
.

for do

Find the smallest nonnegative integer such that with

holds, and set .

.

.

.

end for

return .

Convergence analysis of Algorithm 3 is beyond the scope of
this paper, and will only be corroborated using computer simu-
lations in Section VI. It is worth pointing out that since a non-di-
minishing stepsize is adopted, asymptotically the iterates gen-
erated by Algorithm 3 will hover inside a ball centered at the

minimizer of the expected cost, with radius proportional to the
step size.

B. In-Network Anomaly Trackers

Implementing Algorithms 1–3 presumes that network nodes
continuously communicate their local link traffic measurements
to a central monitoring station, which uses their aggregation in

to unveil network anomalies. While for the most
part this is the prevailing operational paradigm adopted in cur-
rent network technologies, it is fair to say there are limitations
associated with this architecture. For instance, collecting all this
information centrally may lead to excessive protocol overhead,
especially when the rate of data acquisition is high at the routers.
Moreover, minimizing the exchanges of rawmeasurements may
be desirable to reduce unavoidable communication errors that
translate to missing data. Performing the optimization in a cen-
tralized fashion raises robustness concerns as well, since the
central monitoring station represents an isolated point of failure.
These reasons motivate devising fully-distributed iterative al-

gorithms for dynamic anomalography in large-scale networks,
embedding the network anomaly detection functionality to the
routers. In a nutshell, per iteration nodes carry out simple com-
putational tasks locally, relying on their own link count mea-
surements (a few entries of the network-wide vector corre-
sponding to the router links). Subsequently, local estimates are
refined after exchanging messages only with directly connected
neighbors, which facilitates percolation of local information to
the whole network. The end goal is for network nodes to con-
sent on a global map of network anomalies, and attain (or at
least come close to) the estimation performance of the central-
ized counterpart which has all data available.
Relying on the alternating-directions method of multipliers

as the basic tool to carry out distributed optimization, a general
framework for in-network sparsity-regularized rank minimiza-
tion was put forth in a companion paper [25]. In the context of
network anomaly detection, results therein are encouraging yet
there is ample room for improvement and immediate venues for
future research open up. For instance, the distributed algorithms
of [25] can only tackle the batch formulation (P3), so extensions
to a dynamic network setting, e.g., building on the ideas here
to devise distributed anomaly trackers seems natural. To obtain
desirable tradeoffs in terms of computational complexity and
speed of convergence, developing and studying algorithms for
distributed optimization based on Nesterov’s acceleration tech-
niques emerges as an exciting and rather pristine research di-
rection; see [20] for early work dealing with separable batch
optimization.

VI. PERFORMANCE TESTS

Performance of the proposed batch and online estimators is
assessed in this section via computer simulations using both
synthetic and real network data.
Selection of Tuning Parameters: In the batch case, and
are tuned to optimize the relative error ,

with and denoting the true and estimated anomaly
matrices, respectively. In particular, one needs to perform a
grid search over the bounded two-dimensional region

.
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Fig. 2. Synthetic network topology graph, and the paths used for routing three
flows.

The corresponding bounds are derived from the optimality
conditions for (P1), which indicate that for
the optimal solution is . Practical rules that
do not require knowledge of can be devised along the
lines of [3] and [10]. Supposing that the true values are zero,
choosing and the
estimator (P1) outputs . This mit-
igates noise, but it may overshrink the true values. To avoid
overshrinking, these parameters can be chosen close to their
corresponding lower bounds, e.g., pick and

. One can further simplify the candidate
parameters by making the following reasonable assumptions:
i) Gaussian noise , ii) uniform sampling with
each entry of chosen independently with probability ,
and iii) large dimensions . It is then known that

, almost surely, see e.g.,
[10], and thus one can pick . Also,
large-deviation tail bounding implies that

with high probability, which sug-
gests selecting . The said
regularization parameters can also be used for online pro-
cessing (upon setting ), where they naturally increase as
time evolves.

A. Synthetic Network Data Tests

Synthetic Network Example: A network of nodes
is considered as a realization of the random geometric graph
model with agents randomly placed on the unit square, and
two agents link if their Euclidean distance is less than a pre-
scribed communication range of ; see Fig. 2. The
network graph is bidirectional and comprises links,
and OD flows. For each candidate
OD pair, minimum hop count routing is considered to form the
routing matrix . Entries of are i.i.d., zero-mean, Gaussian
with variance ; i.e., . Flow-traffic vectors
are generated from the low-dimensional subspace
with i.i.d. entries , and projection coefficients

such that . Every entry of is ran-
domly drawn from the set , with

. Entries of are sampled uniformly at

Fig. 3. Performance of the batch estimator (P3) for and different
amounts of missing data. (a) Cost of the estimators (P1) and (P3) versus iteration
index when . (b) ROC curves when .

randomwith probability to form the diagonal sampling matrix
. The observations at time instant are generated according

to . Unless otherwise stated,
, and are used throughout. Different

values of and are tested.
Performance of the Batch Estimator: To demonstrate the

merits of the batch BCD algorithm for unveiling network
anomalies (Algorithm 1), simulated data are generated for a
time interval of size . For validation purposes, the
benchmark estimator (P1) is iteratively solved by alternating
minimization over (which corresponds to Lasso) and .
The minimizations with respect to can be carried out using
the iterative singular-value thresholding (SVT) algorithm [8].
Note that with full data, SVT requires only a single SVD
computation. In the presence of missing data however, the SVT
algorithm may require several SVD computations until conver-
gence, rendering the said algorithm prohibitively complex for
large-scale problems. In contrast, Algorithm 1 only requires
simple inversions. Fig. 3(a) depicts the convergence of the
respective algorithms used to solve (P1) and (P3), for different
amounts of missing data (controlled by ). It is apparent that
both estimators attain identical performance after a few tens
of iterations, as asserted by Proposition 1. To corroborate the
effectiveness of Algorithm 1 in unveiling network anomalies
across flows and time, the ROC curves are plotted for various
percentages of missing link observations in Fig. 3(b) when

. To discard spurious estimates, the hypothesis test
is considered, with anomalous and anomaly-free

hypotheses and , respectively. Apparently, an inferior
detection performance is expected as the percentage of missing
data increases. Note that when link observations are missing

, some flows may not be identifiable because they
may traverse none of the observed links. For such flows, the
anomalous traffic is assumed zero. Hence, as it is seen in
Fig. 3(b), the maximum achievable detection probability equals
the fraction of (partially) observed flows. For the instances of

and
corresponding to and , respectively, Fig. 4
depicts the magnitude of the true and estimated anomalies.
Performance of the Online Algorithms: To confirm the con-

vergence and effectiveness of the online Algorithms 2 and 3,
simulation tests are carried out for infinite memory and
invariant routing matrix . Fig. 5(a) depicts the evolutions of
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Fig. 4. Amplitude of the true (blue) and estimated (red) anomalies for
. (a) (no missing data), and . (b)

and .

Fig. 5. Performance of the online estimator for
, and . (a) Evolution of the average cost of

the online algorithms versus the batch counterpart (P3). (b) Amplitude of true
(solid) and estimated (circle markers) anomalies via the online Algorithm 2, for
three representative flows when (no missing data).

the average cost in (15) for different amounts of missing
data when the noise level is . It is evi-
dent that for both online algorithms the average cost converges
(possibly within a ball) to its batch counterpart in (P3) normal-
ized by the window size . Impressively, this observation
together with the one in Fig. 3(a) corroborate that the online esti-
mators can attain the performance of the benchmark estimator,
whose stable/exact recovery performance is well documented
e.g., in [11], [26], [44]. It is further observed that the more data
are missing, the more time it takes to learn the low-rank nom-
inal traffic subspace, which in turn slows down convergence.
To examine the tracking capability of the online estimators,

Fig. 5(b) depicts the estimated versus true anomalies over
time as Algorithm 2 evolves for three representative flows
indicated on Fig. 2, namely corresponding to the

-th rows of . Setting the detection threshold
to the value 0.1 as before, for the flows Algo-
rithm 2 attains detection rate at false alarm
rate , respectively. As expected,
more false alarms are declared at early iterations as the low-rank
subspace has not been learnt accurately. Upon learning the
subspace performance improves and almost all anomalies
are identified. Careful inspection of Fig. 5(b) reveals that the
anomalies for are better identified visually than those for .
As shown in Fig. 2, is carried over links (1, 2), (2, 4), (4,
14), (14, 3) each one carrying 33, 31, 35, 22 additional flows,
respectively, whereas is aggregated over link (1, 3) with only

2 additional flows. Hence, identifying ’s anomalies from the
highly-superimposed load of links (1, 2), (2, 4), (4, 14), (14, 3)
is a more challenging task relative to link (1, 3). This simple
example manifests the fact that the detection performance
strongly depends on the network topology and the routing
policy implemented, which determine the routing matrix. In
accordance with [26], the coherence of sparse column subsets
of the routing matrix plays an important role in identifying the
anomalies. In essence, the more incoherent the column subsets
of are, the better recovery performance one can attain. An
intriguing question left here to address in future research per-
tains to desirable network topologies giving rise to incoherent
routing matrices.
Tracking Routing Changes: The measurement model in (7)

has two time-varying attributes which challenge the identi-
fication of anomalies. The first one is missing measurement
data arising from e.g., packet losses during the data collection
process, and the second one pertains to routing changes due to
e.g., network congestion or link failures. It is thus important to
test whether the proposed online algorithm succeeds in tracking
these changes. As discussed earlier, missing data are sampled
uniformly at random. To assess the impact of routing changes
on the recovery performance, a simple probabilistic model is
adopted where each time instant a single link fails, or, returns to
the operational state. Let denote the adjacency matrix of the
network graph , where if there exists a physical
link joining nodes and , and zero otherwise. Similarly, the
active links involved in routing the data at time are represented
by the effective adjacency matrix . At time instant , a
biased coin is tossed with small success probability , and one
of the links, say , is chosen uniformly at random
and removed from while ensuring that the network remains
connected. Likewise, an edge is added with
the same probability . The resulting adjacency matrix is then

, where the indicator
function equals one when , and zero otherwise;
and are i.i.d. Bernoulli random variables.
The minimum hop-count algorithm is then applied to , to
update the routing matrix . Note that with
probability .
The performance is tested here for fast and slowly varying

routing corresponding to and , respectively,
when . A metric of interest is the average square error
in estimating the anomalies, namely

, and the link traffic, namely .
Fig. 6(a) plots the average estimation error for various noise
variances and amounts of missing data. The estimation error
decreases quickly and after learning the subspace it becomes
almost invariant. To evaluate the support recovery performance
of the online estimator, define the average detection and false
alarm rate
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Fig. 6. Tracking routing changes for . (a) Evolution of average
anomaly (dotted) and traffic (solid) estimation errors. (b) Evolution of average
detection (solid) and false alarm (dotted) rates. (c) Estimated (red) versus true
(blue) link traffic for three representative links. (d) Estimated (circle markers)
versus true (solid) anomalies for three representative flows when

, and .

Inspecting Fig. 6(b) one observes that for and
, increasing the noise variance from to lowers

the detection probability by 10%. Moreover, when
and , dropping 20% of the observations renders the
estimator misdetect 11% more anomalies. The routing changes
from to when and comes
with an adverse effect of about 6% detection-rate decrease. For
a few representative network links and flows Fig. 6(c) and (d)
illustrate how Algorithm 2 tracks the anomalies and link-level
traffic. Note that in Fig. 6(c) link 12 is dropped for the time pe-
riod , and thus the traffic level becomes zero. The
flows being carried over link 31 are also varying due to routing
changes, which occur at time instants when the
traffic is not tracked accurately.

B. Real Network Data Tests

Internet-2 Network Example: Real data including OD flow
traffic levels are collected from the operation of the Internet-2
network (Internet backbone network across USA) [1], shown in
Fig. 1. Flow traffic levels are recorded every 5-minute intervals,
for a three-week operational period of Internet-2 during Dec.
8–28, 2008 [1]. Internet-2 comprises nodes,
links, and flows. Given the OD flow traffic measure-
ments, the link loads in are obtained through multiplication
with the Internet-2 routing matrix, which in this case remains
invariant during the three weeks of data acquisition [1]. Even
though is ’constructed’ here from flow measurements, link
loads can be typically acquired from SNMP traces [37].
The available OD flows are incomplete due to problems in

the data collection process. In addition, flows can be modeled

Fig. 7. Performance of the batch estimator for Internet-2 network data. (a) ROC
curves of the proposed versus the PCA-based methods. (b) Amplitude of the true
(blue) and estimated (red) anomalies for and .

as the superposition of ’clean’ plus anomalous traffic, i.e., the
sum of some unknown ’ground-truth’ low-rank and sparse ma-
trices . Therefore, setting in (P1) one
can first run the batch Algorithm 1 to estimate the ’ground-truth’
components . The estimated exhibits three dom-
inant singular values, confirming the low-rank property of the
nominal traffic matrix. To be on the conservative side, only im-
portant spikes with magnitude greater than the threshold level

are retained as benchmark anomalies (nonzero
entries in ).
Comparison With PCA-Based Batch Estimators [21], [42]:

To highlight the merits of the batch estimator (P3), its perfor-
mance is compared with the spatial PCA-based schemes re-
ported in [21] and [42]. These methods capitalize on the fact
that the anomaly-free trafficmatrix has low-rank, while the pres-
ence of anomalies considerably increases the rank of . Both
algorithms rely on a two-step estimation procedure: (s1) per-
form PCA on the data to extract the (low-rank) anomaly-free
link traffic matrix ; and (s2) declare anomalies based on the
residual traffic . The algorithms in [42] and [21]
differ in the way (s2) is performed. On its operational phase,
the algorithm in [21] declares the presence of an anomaly at
time , when the projection of onto the anomalous subspace
exceeds a prescribed threshold. It is clear that the aforemen-
tioned method is unable to identify anomalous flows. On the
other hand, the network anomography approach of [42] capi-
talizes on the sparsity of anomalies, and recovers the anomaly
matrix by minimizing , subject to the linear constraints

.
The aforementioned methods require a priori knowledge on

the rank of the anomaly-free traffic matrix, and assume there is
no missing data. To carry out performance comparisons, the de-
tection rate will be adopted as figure of merit, which measures
the algorithm’s success in identifying anomalies across both
flows and time instants. ROC curves are depicted in Fig. 7(a),
for different values of the rank required to run the PCA-based
methods. It is apparent that the estimator (P3) obtained via
Algorithm 1 markedly outperforms both PCA-based methods
in terms of detection performance. This is somehow expected,
since (P3) advocates joint estimation of the anomalies and
the nominal traffic matrix. For an instance of
and , Fig. 7(b) illustrates the effectiveness of the
proposed algorithm in terms of unveiling the anomalous flows
and time instants.
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Fig. 8. Performance of the online estimator for Internet-2 network data. (a)
Evolution of average anomaly (dotted) and traffic (solid) estimation errors. (b)
Evolution of average detection (solid) and false alarm (dotted) rates. (c) Esti-
mated (red) versus true (blue) link traffic for thee representative links. (d) Es-
timated (circle markers) versus true (solid) anomalies for three representative
flows when .

Online Operation: Algorithm 2 is tested here with the
Internet-2 network data under two scenarios: with and without
missing data. For the incomplete data case, a randomly chosen
subset of link counts with cardinality is discarded.
The penalty parameters are tuned as and .
The evolution of the average anomaly and traffic estimation
errors, and average detection and false alarm rates are depicted
in Fig. 8(a), (b), respectively. Note how in the case of full-data,
after about a week the traffic subspace is accurately learned
and the detection (false alarm) rates approach the values 0.72
(0.011). It is further observed that even with 15% missing
data, the detection performance degrades gracefully. Finally,
Fig. 8(c) [(d)] depicts how three representative link traffic
levels [OD flow anomalies] are accurately tracked over time.

VII. CONCLUDING REMARKS

An online algorithm is developed in this paper to perform
a critical network monitoring task termed dynamic anomalog-
raphy, meaning to unveil traffic volume anomalies in backbone
networks adaptively. Given link-level traffic measurements
(noisy superpositions of OD flows) acquired sequentially in
time, the goal is to construct a map of anomalies in real time,
that summarizes the network ‘health state’ along both the flow
and time dimensions. Online algorithms enable tracking of
anomalies in nonstationary environments, typically arising due
to e.g., routing changes and missing data. The resultant online
schemes offer an attractive alternative to batch algorithms, since
they scale gracefully as the number of flows in the network
grows, or, the time window of data acquisition increases. Com-
prehensive numerical tests with both synthetic and real network
data corroborate the effectiveness of the proposed algorithms

and their tracking capabilities, and show that they outperform
existing workhorse approaches for network anomaly detection.

APPENDIX

A. Update of the Anomaly Map in Algorithm 1

As argued in Section III.B, the matrix Lasso problem under
[S1] decomposes over the columns of .
Hence, it suffices to focus on the update of a single column, say

, which boils down to solving [cf. (5)]

(23)

where denotes the -th column of .
Let , denote the (inner) iteration index for the

cyclic coordinate descent algorithm adopted to solve (23) [18, p.
92]. For the minimization at step of the (outer) BCD iterations
in Algorithm 1, the sequence of iterates are initialized
as . At each step , the scalar coordinates
of vector are updated cyclically, by solving sequentially for

(24)

(25)

Vector corresponds to the partial residual error without
considering the contribution of the predictor . The useful-
ness of a coordinate descent approach stems from the fact that
the coordinate updates (24) amount to scalar Lasso-type opti-
mizations. Skipping details that can be found in, e.g., [18, p.
93], the solutions are thus expressible in the closed form

(26)

which is oftentimes referred to as soft-thresholding of the partial
residual . Separability of the nondifferentiable -norm
term in (23) is sufficient to guarantee the convergence of (26)
to a minimizer of (23), as [39]. Hence, the update

is well defined,
and identical to the one in (23).
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The rationale behind the actual anomaly map updates in Al-
gorithm 1 hinges upon the fact that the solution of (23) does not
need to be super accurate, since it is just an intermediate step
in the outer loop defined by the BCD solver. In the relaxation
pursued here, the inner iteration is halted after a single step (i.e.,
when ) to yield an inexact minimizer of (23). In this case,
the index can be dropped and (25)–(27) simplify to the se-
quential updates for

(27)

(28)

as tabulated under Algorithm 1.

B. Proof of Lemma 1

With consider the function

(29)

where , and
. From the convexity of the

Lasso problem in (11) together with the mean-value theorem
and a5), it can be readily inferred that

(30)

for some positive constant . The rest of the proof deals with
Lipschitz continuity of . For and from a com-
pact set , consider

(31)

Introducing the auxiliary variable , the last two
summands in (31) can be bounded as

(32)

for some constants , since for
for , and are all uniformly

bounded. The first summand on the right-hand side of (31) is
similarly bounded (details omitted here). Next, to establish that

is Lipschitz one can derive the following bound

(33)

Define and
, and consider the following identity

The first term in the right-hand of (33) is then bounded as
follows

(34)

Putting the pieces together is found to be Lipschitz
and subsequently (31) is bounded by a constant factor of

. Substituting and
along with the bound in (30) yields the desired result

. Furthermore, from the
relationship , Lipschitz continuity
of readily follows.
Moreover, is a quadratic function on

a compact set, and thus clearly Lipschitz continuous. To
prove Lipschitz continuity of , recall the definition

to obtain after
some algebra

(35)
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The first term in the right-hand side of (35) is bounded as

(36)

for some constant . The second one is bounded as

(37)

Finally, one can bound the third term in (35) as

(38)

Since and are Lipschitz as proved earlier, and
are uniformly bounded, the expressions in the

right-hand side of (36)–(38) are upper bounded by a constant
factor of , and so is after applying
the triangle inequality to (35).
Regarding , notice first that since is

the uniqueminimizer of [cf. a5)], Danskin’s theorem
[7, Prop. B.25(a)] implies that

. In the sequel, the triangle inequality will be
used to split the norm in the right-hand side of

(39)

The first term inside the norm is bounded as

(40)

After some algebraic manipulations, the second term is also
bounded as

(41)

and finally one can simply bound the third term as

(42)

Since and are Lipschitz and uniformly bounded,
from (40)–(42) one can easily deduce that is indeed Lip-
schitz continuous.

C. Proof of Lemma 2

Exploiting that by
algorithmic construction and the strong convexity assumption
on [cf. a4)], application of the mean-value theorem readily
yields

Upon defining the function one
arrives at

(43)

To complete the proof, it suffices to show that is Lipschitz
with constant , and upper bound the right-hand side of
(43) accordingly. Since [cf. (16)]

(44)

and is Lipschitz according to Lemma 1, it follows that
is Lipschitz with constant .

D. Proof of Lemma 3

The first step of the proof is to show that is
a quasi-matringale sequence, and hence convergent a.s. [23].
Building on the variations of , one can write

(45)

where (a) uses that , and (b) fol-
lows from .
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Collect all past data in , and recall
that under a1) the random processes are i.i.d. over time.
Then, the expected variations of the approximate cost function
are bounded as

(46)

where (a) follows from a1). Using the fact that is
Lipschitz from Lemma 1, and uniformly bounded due to a2),
Donsker’s Theorem [40, Ch. 19.2] yields

(47)

From (46) and (47) the expected non-negative variations can be
readily bounded as

(48)

and consequently

(49)

which indeed proves that is a quasi-martingale
sequence.
To prove the second part, define first

and
for which

holds. Following similar arguments
as with , one can show that (49) holds for as
well. It is also useful to expand the variations

and bound their expectation conditioned on , to arrive at

(50)

Focusing on the right-hand side of (50), the second and third
terms are both since counterparts of (47) and (48)
also hold for . With regards to the first term, using the
fact that , from Lemma 1 and a4),
it follows that . All in
all,

(51)

Defining , due to Lipschitz
continuity of and (cf. Lemma 1), and uniform boundedness
of [cf a3)], invoking Lemma 2 one can establish that

. Hence, Dirichlet’s theorem
[34] applied to the sum (51) asserts that
a.s., and consequently a.s.

REFERENCES

[1] [Online]. Available: http://internet2.edu/observatory/archive/datacol-
lections.html[Online]. Available:

[2] A. Abdelkefi, Y. Jiang, W. Wang, A. Aslebo, and O. Kvittem, “Robust
traffic anomaly detection with principal component pursuit,” in Proc.
ACM CoNEXT Student Workshop, Philadelphia, PA, Nov. 2010.

[3] A. Agarwal, S. Negahban, and M. J. Wainright, “Noisy matrix decom-
position via convex relaxation: Optimal rates in high dimensions,”Ann.
Statist., vol. 40, pp. 1171–1197, 2012.

[4] T. Ahmed, M. Coates, and A. Lakhina, “Multivariate online anomaly
detection using kernel recursive least squares,” in Proc. IEEE/ACM Int.
Conf. Comput. Commun., Anchorage, AK, May 2007.

[5] L. Balzano, R. Nowak, and B. Recht, “Online identification and
tracking of subspaces from highly incomplete information,” in Proc.
Allerton Conf. Communication, Control, and Computing, Monticello,
IL, Jun. 2010.

[6] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, pp.
183–202, Jan. 2009.

[7] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Nashua, NH:
Athena-Scientific, 1999.

[8] J. F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4, pp.
1956–1982, 2008.

[9] E. J. Candès, X. Li, Y.Ma, and J.Wright, “Robust principal component
analysis?,” J. ACM, vol. 58, no. 1, pp. 1–37, 2011.

[10] E. J. Candès and Y. Plan, “Matrix completion with noise,” Proc. IEEE,
vol. 98, no. 6, pp. 925–936, Jun. 2009.

[11] E. J. Candès and B. Recht, “Exact matrix completion via convex opti-
mization,” Found. Comput. Math., vol. 9, no. 6, pp. 717–722, 2009.

[12] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[13] E. J. Candès and M. Wakin, “An introduction to compressive sam-
pling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar.
2008.

[14] V. Chandrasekaran, S. Sanghavi, P. R. Parrilo, and A. S. Willsky,
“Rank-sparsity incoherence for matrix decomposition,” SIAM J.
Optim., vol. 21, no. 2, pp. 572–596, 2011.

[15] Q. Chenlu and N. Vaswani, “Recursive sparse recovery in large but
correlated noise,” in Proc. 49th Allerton Conf. Commun., Control,
Comput., Sep. 2011, pp. 752–759.

[16] Y. Chi, Y. C. Eldar, and R. Calderbank, “PETRELS: Subspace es-
timation and tracking from partial observations,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., Kyoto, Japan, Mar. 2012, pp.
3301–3304.

[17] A. Chistov and D. Grigorev, “Complexity of quantifier elimination in
the theory of algebraically closed fields,” inMath. Found. of Computer
Science, ser. Lecture Notes in Computer Science. Berlin/Heidelberg,
Germany: Springer, 1984, vol. 176, pp. 17–31.

[18] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. New York: Springer, 2009.



66 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 1, FEBRUARY 2013

[19] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the Grass-
mannian for online foreground and background separation in subsam-
pled video,” in Proc. IEEE Conf. Comput. Visi. Pattern Recogn., Prov-
idence, RI, Jun. 2012.

[20] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast Distributed Gradient
Methods,” arXiv:1112.2972v1 [cs.IT].

[21] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” in Proc. ACM SIGCOMM, Portland, OR, Aug.
2004.

[22] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft, “Structural analysis of network traffic flows,” in Proc.
ACM SIGMETRICS, New York, Jul. 2004.

[23] L. Ljung and T. Söderström, Theory and Practice of Recursive Identi-
fication, 2nd ed. Cambridge, MA: MIT Press, 1983.

[24] J. Mairal, J. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” J. Mach. Learn. Res., vol. 11, pp.
19–60, Jan. 2010.

[25] M.Mardani, G.Mateos, and G. B. Giannakis, “In-network sparsity reg-
ularized rankminimization: Applications and algorithms,” IEEE Trans.
Signal Process., 2013, see also arXiv:1203.1570v1 [cs.MA], submitted
for publication.

[26] M. Mardani, G. Mateos, and G. B. Giannakis, “Recovery of
low-rank plus compressed sparse matrices with application to
unveiling traffic anomalies,” IEEE Trans. Inf. Theory., 2013, see also
arXiv:1204.6537v1 [cs.IT], submitted for publication.

[27] G. Mateos and G. B. Giannakis, “Robust PCA as bilinear decomposi-
tion with outlier-sparsity regularization,” IEEE Trans. Signal Process.,
vol. 60, no. 10, pp. 5176–5190, Oct. 2012.

[28] Z. Meng, A. Wiesel, and A. Hero, “Distributed principal component
analysis on networks via directed graphical models,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., Kyoto, Japan, Mar. 2012,
pp. 2877–2880.

[29] B. K. Natarajan, “Sparse approximate solutions to linear systems,”
SIAM J. Comput., vol. 24, pp. 227–234, 1995.

[30] Y. Nesterov, “A method of solving a convex programming problem
with convergence rate ,” Sov. Math. Doklady, vol. 27, pp.
372–376, 1983.

[31] B. Recht,M. Fazel, and P. A. Parrilo, “Guaranteedminimum-rank solu-
tions of linear matrix equations via nuclear norm minimization,” SIAM
Rev., vol. 52, no. 3, pp. 471–501, 2010.

[32] B. Recht and C. Re, “Parallel stochastic gradient algorithms for
large-scale matrix completion,” Math. Programm. Comput., 2011
[Online]. Available: http://www.optimization-online.org/DB_HTML/
2011/04/3012.html, Preprint, submitted for publication

[33] M. Roughan, “A case study of the accuracy of SNMP measurements,”
J. Electr. Comput. Eng., Dec. 2010, article ID 812979.

[34] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:
McGraw-Hill, 1976.

[35] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley,
2003.

[36] V. Solo and X. Kong, Adaptive Signal Processing Algorithms: Stability
and Performance. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[37] M. Thottan and C. Ji, “Anomaly detection in IP networks,” IEEE Trans.
Signal Process., vol. 51, no. 8, pp. 2191–2204, Aug. 2003.

[38] J. Tropp, “Just relax: Convex programming methods for identifying
sparse signals,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 1030–1051,
Mar. 2006.

[39] P. Tseng, “Convergence of a block coordinate descent method for non-
differentiable minimization,” J. Optimiz. Theory Applicat., vol. 109,
pp. 475–494, 2001.

[40] A. W. Van Der Vaart, Asymptotic Statistics. Cambridge, U.K.: Cam-
bridge Univ. Press, 2000.

[41] B. Yang, “Projection approximation subspace tracking,” IEEE Trans.
Signal. Process., vol. 43, no. 1, pp. 95–107, Jan. 1995.

[42] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan, “Network anomog-
raphy,” in Proc. ACM SIGCOM Conf. Internet Meas., Berekly, CA,
Oct. 2005.

[43] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and internet traffic matrices,” in Proc. ACM
SIGCOM Conf. Data Commun., New York, Oct. 2009.

[44] Z. Zhou, X. Li, J. Wright, E. Candès, and Y. Ma, “Stable principal
component pursuit,” in Proc. Intl. Symp. Inf. Theory, Austin, TX, Jun.
2010, pp. 1518–1522.

Morteza Mardani (S’06) received his B.Sc. degree
in electrical engineering from the Shahid Bahonar
University of Kerman, Kerman, Iran, in 2006 and
the M.Sc. degree in electrical engineering from the
University of Tehran, Tehran, Iran, in 2009. Since
September 2009, he has been working toward his
Ph.D. degree with the Department of Electrical and
Computer Engineering, University of Minnesota,
Minneapolis. His research interests include network
inference and optimization, sparse and low rank re-
covery, and cross-layer design of wireless networks.

Mr. Mardani is the recipient of the Best Student Paper Award from the 13th
IEEE Workshop on Signal Processing Advances in Wireless Communications
in June 2012. He also received the ADC Fellowship Award from the Digital
Technology Center at the University of Minnesota for two academic years
2009–2010 and 2010–2011.

Gonzalo Mateos (M’12) received his B.Sc. degree
in electrical engineering from Universidad de la
República (UdelaR), Montevideo, Uruguay in
2005 and the M.Sc. and Ph.D. degrees in electrical
and computer engineering from the University of
Minnesota, Minneapolis, in 2009 and 2011.
Since 2012, he has been a post doctoral associate

with the Department of Electrical and Computer En-
gineering and the Digital Technology Center, Univer-
sity of Minnesota. Since 2003, he is an assistant with
the Department of Electrical Engineering, UdelaR.

From 2004 to 2006, he worked as a Systems Engineer at Asea Brown Boveri
(ABB), Uruguay. His research interests lie in the areas of communication theory,
signal processing and networking. His current research focuses on distributed
signal processing, sparse linear regression, and statistical learning for social data
analysis and network health monitoring.

Georgios B. Giannakis (F’97) received his Diploma
in electrical engr. from the Ntl. Tech. Univ. of
Athens, Greece, 1981. From 1982 to 1986, he was
with the Univ. of Southern California (USC), where
he received his M.Sc. in electrical engineering, 1983,
M.Sc. in mathematics, 1986, and Ph.D. in electrical
engr., 1986. Since 1999, he has been a professor
with the Univ. of Minnesota, where he now holds
an ADC Chair in Wireless Telecommunications in
the ECE Department, and serves as director of the
Digital Technology Center.

His general interests span the areas of communications, networking and sta-
tistical signal processing—subjects on which he has published more than 325
journal papers, 525 conference papers, 20 book chapters, two edited books and
two research monographs. Current research focuses on compressive sensing,
cognitive radios, cross-layer designs, wireless sensors, social and power grid
networks. He is the (co-) inventor of 21 patents issued, and the (co-) recipient of
8 best paper awards from the IEEE Signal Processing (SP) and Communications
Societies, including the G. Marconi Prize Paper Award in Wireless Communi-
cations. He also received Technical Achievement Awards from the SP Society
(2000), from EURASIP (2005), a Young Faculty Teaching Award, and the G.
W. Taylor Award for Distinguished Research from the University of Minnesota.
He is a Fellow of EURASIP, and has served the IEEE in a number of posts, in-
cluding that of a Distinguished Lecturer for the IEEE-SP Society.


