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C
ommunication networks have evolved from spe-
cialized research and tactical transmission systems 
to large-scale and highly complex interconnec-
tions of intelligent devices, increasingly becoming 
more commercial, consumer oriented, and hetero-

geneous. Propelled by emergent social networking services 
and high-definition streaming platforms, network traffic has 
grown explosively thanks to the advances in processing speed 
and storage capacity of state-of-the-art communication tech-
nologies. As “netizens” demand a seamless networking experi-
ence that entails not only higher speeds but also resilience and 
robustness to failures and malicious cyberattacks, ample 
opportunities for signal processing (SP) research arise. The 
vision is for ubiquitous smart network devices to enable data-
driven statistical learning algorithms for distributed, robust, 
and online network operation and management, adaptable to 
the dynamically evolving network landscape with minimal 

need for human intervention. This article aims to delineate 
the analytical background and the relevance of SP tools to 
dynamic network monitoring, introducing the SP readership 
to the concept of dynamic network cartography—a frame-
work to construct maps of the dynamic network state in an 
efficient and scalable manner tailored to large-scale heteroge-
neous networks.

Introduction
The emergence of multimedia-enriched social networking 
services and Internet-friendly portable devices is multiplying 
network traffic volume day by day [53]. Wireless connectivity 
under the envisioned dynamic spectrum paradigm [30] relies on 
mobile networks of diverse nodes, which are nevertheless 
united by unparalleled cognition capabilities, adaptability, and 
decision-making attributes. Moreover, the advent of networks of 
intelligent devices such as those deployed to monitor the smart 
power grid, transportation networks, medical information net-
works, and cognitive radio (CR) networks, will transform the 
communication infrastructure to an even more complex and 
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heterogeneous one. Thus, ensuring compliance to service-level 
agreements and quality-of-service (QoS) guarantees necessitates 
breakthrough management and monitoring tools providing 
operators with a comprehensive view of the network landscape. 
Situational awareness provided by such tools will be the key 
enabler for effective information dissemination, routing and 
congestion control, network health management, risk analysis, 
and security assurance.

But this great promise comes with great challenges. 
Acquiring network-wide performance and utilization metrics 
for large networks is no easy task. Suppose, for instance, that 
traffic volumes are of interest, not only for gauging instanta-
neous network health but also for more complex network 
management tasks such as intrusion detection, capacity 
provisioning, and network planning [56]. While traffic vol-
umes on links (also called link counts) are readily acquired 
using off-the-shelf tools such as the simple network manage-
ment protocol (SNMP), missing link-count measurements 
may still skew the network opera-
tor’s perspective. SNMP packets 
may be dropped, for instance, if 
some links become congested, 
rendering link-count information 
for those links more important 
as well as less available [48], 
[50]. Classical approaches relying 
either on simple time-series 
interpolation or on regularized 
least-squares (LS) formulations for predicting the missing link 
counts [51] have not been able to fully capture the complexity 
of the Internet traffic. This is evidenced by the recent upsurge 
of efforts toward advanced network tomography [14] and 
spatiotemporal traffic estimation algorithms for network 
monitoring [27], [50], [56].

Similarly, path metrics such as end-to-end delays are of great 
interest to service providers because they directly affect the end-
user experience. The challenge here is that the number of paths 
grows very fast as the number of nodes increases. Probing 
exhaustively all origin-destination (OD) pairs is impractical and 
wasteful of resources even for moderate-size networks [18], 
[49]. Accurate prediction of missing delays based on the inher-
ent, e.g., topology-induced correlation or smoothness traits 
among link and path quantities is therefore crucial for statisti-
cal analysis and monitoring tasks [33]. While the prevailing 
operational paradigm adopted in current networks entails nodes 
continuously communicating their link measurements to a cen-
tral monitoring station, in-network distributed cooperation 
through local interactions is preferred for scalability and 
robustness considerations [39].

Conventional network monitoring tools entail a couple of 
additional limitations. First, they are typically resource heavy 
and tend to overload network operators with crude, unrefined 
data, without enough processing to separate the “data wheat 
from the chaff”; see, e.g., [20] and references therein. It is 
thus of paramount importance to construct parsimonious 

descriptors of the network state, for the purpose of modeling, 
monitoring, and management of complex interconnected sys-
tems. Due to the diversity of modern networks, the network 
state can incorporate typical quantities such as traffic volumes 
and end-to-end delays, as well as latent social metrics such as 
hierarchy, reputation, and vulnerability. Second, malicious 
activities intended to undermine network functionality or com-
promise secrecy of data have grown in sophistication, thus ren-
dering traditional signature-based intrusion detection schemes 
increasingly obsolete. Intrusion attempts and malicious attacks 
manifest themselves as abrupt changes in network states [6], 
and such anomalous patterns are oftentimes hidden within the 
raw high-dimensional network data [55]. For these reasons, 
unveiling network anomalies in a reliable and computationally 
efficient manner is a challenging yet essential goal [34], 
[39], [55].

All in all, accurate network diagnosis and statistical analysis 
tools are instrumental for maintaining seamless end-user expe-

rience in dynamic environments 
as well as for ensuring network 
security and stability. In this 
direction, this tutorial advocates 
the concept of dynamic network 
cartography as a tool for statisti-
cal modeling, monitoring, and 
management of complex net-
works. Focus will be placed on 
two complementary aspects of 

network cartography, specifically, online construction of global 
network state maps using only a few measurements and the 
unveiling of network anomalies across network flows and time. 
The surveyed cartography algorithms leverage recent advances 
in machine learning and statistical SP methods, including 
sparsity-cognizant learning, kriged Kalman filtering of dynami-
cal processes over networks, nuclear norm minimization for 
low-rank matrix completion, semisupervised dictionary learning 
(DL), and in-network optimization via the alternating-
directions method of multipliers. Through a unifying treatment 
that revolves around network cartography, this article demon-
strates how benefits from foundational SP methods can perme-
ate to dynamic network monitoring and collectively enable 
inference of global network health, thus leading to enhanced 
network robustness and QoS.

Global performance prediction via 
dynamical network cartography
This section deals with the problem of mapping the network 
state from incomplete sets of measurements and touches 
upon two application domains. A DL algorithm is intro-
duced first to efficiently impute missing link traffic vol-
umes, using measurements from a wide class of (possibly 
nonstationary) traffic patterns [27]. Subsequently, the prob-
lem of tracking and predicting end-to-end network delay is 
considered, and the dynamic network kriging approach of 
[46] is described.

Situational awareness provided 
by such tools will be the key 

enabler for effective information 
dissemination, routing and 

congestion control, network 
health management, risk analysis, 

and security assurance.



	 IEEE SIGNAL PROCESSING MAGAZINE  [131] ma y 2013

Semisupervised dictionary 
learning for traffic maps
Consider an Internet protocol (IP) network comprising N  nodes 
and L links, carrying the traffic of F OD flows (network connec-
tions). Let x ,l t denote the traffic volume (in bytes or packets) 
passing through link { , , }l L1 f!  over a fixed interval of time 
( , ).t t tD+  Link counts across the entire network are collected 
in the vector ,x Rt

L!  e.g., using the ubiquitous SNMP protocol. 
Since measured link counts are both unreliable and incomplete 
due to hardware or software malfunctioning, jitter, and commu-
nication errors [56], [48], they are expressed as noisy versions of 
a subset of S L1  links

	 , , ,y t 1 2S xt t t t fe= + = 	 (1)

where St is an S L#  selection matrix with 0–1 entries whose 
rows correspond to rows of the identity matrix of size ,L  and te  
is an S 1#  zero-mean noise term with constant variance 
accounting for measurement and synchronization errors. Given 
yt the aim is to form an estimate 
xtt  of the full vector of link counts 

,xt  which in this case defines the 
network state.

A simple approach imple-
mented in measurement-process-
ing software, such as RRDtool 
[44], is to ignore the noise term 
and rely on one-dimensional 
interpolation for the time series 
{ }x ,l t  per link .l  The applicability and accuracy of this scheme is, 
however, limited since it tacitly assumes that the entries of xt  
are uncorrelated; missing entries x ,l t are few and do not occur 
in bursts; and the time series { }xt  is stationary. Nevertheless, 
none of these assumptions holds true in real networks [48].

The reliance on stationarity and availability of measure-
ments from contiguous time intervals can be foregone if esti-
mation of xt  is performed for each t individually. In principle, xtt  
can be obtained if the volumes of OD traffic flows z Rt

F!  are 
available, since they are related through

	 x Rzt t= ,	 (2)

where the so-termed routing matrix : [ ] { , }r 0 1R ,l f
L F!= #  is 

such that r 1,l f =  if link l carries the flow ,f  and zero otherwise. 
However, measuring zt is even more difficult and in practice zt 
is itself estimated from { }xt  through tomographic traffic infer-
ence [14], [33], where given R and noisy link counts, the goal is 
to estimate the OD flows as the solution of a linear inverse prob-
lem. Since the inverse problem is highly under-determined 

( ) ( ) ,O OF N L N2 &= =6 @  early approaches relied on prior 
knowledge in the form of statistical models for the OD flows 
(such as the Poisson, Gaussian, logit-choice, or gravity models), 
that ultimately serve as complexity-controlling (that is regular-
ization) mechanisms [33, Ch. 9]. Among these, the state-of-the-
art traffic matrix estimation algorithm uses an entropy-based 
regularizer and has been shown to be fast, accurate, robust, and 

flexible [54]. Time-series analysis-based approaches (such as the 
Kalman filter in [51]) have also been proposed for scenarios 
where link-count measurements are available over contiguous 
time slots.

Recently, a link-count prediction algorithm was put forth in 
[27], where missing entries of xt are estimated from historical 
measurements in : { }T yS t t

T
1= =  by leveraging the structural reg-

ularity of R through a semisupervised DL approach. Under the 
DL framework, data-driven dictionaries for sparse signal repre-
sentation are adopted as a versatile means of capturing 
parsimonious signal structures; see, e.g., [52] for a tutorial 
treatment. Propelled by the success of compressive sampling 
(CS) [24], sparse signal modeling has led to major advances in 
several machine learning, audio, and image processing tasks 
[52], [28]. Motivated by these ideas, it is postulated in [27] that 
link counts can be represented as a linear combination 
x Bwt t=  of a few ( )Q%  columns of an overcomplete dictionary 
(basis) matrix : [ , , ] ,B b b RQ

L Q
1 f != #  where w Rt

Q!  is a 
sparse vector of expansion coefficients. Many signals including 

speech and natural images admit 
sparse representations even under 
generic predefined dictionaries, 
such as those based on the Fou-
rier and the wavelet bases, respec-
tively [52]. Like audio and natural 
images, link counts can exhibit 
strong correlations as evidenced 
from the structure of R [cf. (2)]. 
For instance, the traffic volumes 

on links i and j are highly correlated if they both carry com-
mon flows. DL schemes are attractive due to their flexibility, 
since they utilize training data to learn an appropriate over-
complete basis customized for the data at hand. However, the 
use of DL for modeling network data is well motivated but so 
far relatively unexplored.

Prediction of link counts
Suppose for now that either a learned, or, a suitable prespecified 
dictionary B is available and consider predicting the missing 
link counts. Data-driven learning of dictionaries from historical 
data will be addressed in the ensuing subsection. Given R and 
the link count measurements ,yt  contemporary tools developed 
in the area of CS and semisupervised learning can be used to 
form ,xtt  which includes estimates for the missing L S-  link 
counts [9], [28], [24]. The spatial regularity of the link counts is 
captured through the auxiliary weighted graph G with L verti-
ces, one for each link in the network. The edge weights for all 
edges in G  are subsumed by the off-diagonal entries of the 
Gram matrix [ ] : ,gG RR R,i j

L L!= = #l  where ( )$ l denotes trans-
position. The off-diagonal entries g ,i j count the number of OD 
flows that are common to both links i and .j  Main diagonal 
entries of G count the number of OD flows that use the corre-
sponding links.

Given a snapshot of incomplete link counts yt dur-
ing the operational phase (where a suitable basis B is 

Accurate network diagnosis 
and statistical analysis tools are 

instrumental for maintaining
seamless end-user experience 
in dynamic environments as 

well as for ensuring network 
security and stability.
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available), the sparse basis expansion coefficient vector wt 
is estimated as

	 : arg minw y S Bw w w B LBwt t t t w t g t t2
2

1
wt

< < < <m m= - + + l lt ,	 (3)

where : ( )1diagL G GL= -  denotes the Laplacian matrix of ;G  
, 0w g 2m m  are tunable regularization parameters; and 1L is the 

L 1#  vector of all ones. The criterion in (3) consists of an LS 
error between the observed and postulated link counts, along 
with two regularizers. The 1, -norm wt 1< <  encourages sparsity in 
the coefficient vector wtt  [24], [28]. With : [ , , ]x xx , ,t t L t1 f= l  
given by ,x Bwt t=  the Laplacian regularization can be explicitly 
written as ( / ) ( ) .g x x1 2w B LBw , , ,t t i

L
i j i t j tj

L
1

2
1

= -
= =

l l / /  It is 
thus apparent that w B LBwt tl l  encourages the link counts to 
be close if their corresponding vertices are connected in .G  
Each summand is weighted according to the number of OD 

flows common to links i and .j  Typically adopted for semisuper-
vised learning, such a regularization term encourages Bwt to lie 
on a smooth manifold approximated by ,G  which constrains 
how the measured link counts relate to xt [9], [45]. It is also 
common to use normalized variants of the Laplacian instead of 
L [33, p. 46].

The cost in (3) is convex but nonsmooth, and customized 
solvers developed for 1, -norm regularized optimization can be 
employed here as well, e.g., [28, p. 92]. Once wtt  is available, an 
estimate of the full vector of link counts is readily obtained as 

: .x Bwt t=t t  It is apparent that the quality of the imputation 
depends on the chosen ,B  and DL from historical network data 
in TS is described next.

Data-driven DL
In its canonical form, DL seeks a (typically fat) dictionary B so 
that training data : { }T xL t t

T
1= =  are well approximated as 

,x Bwt t.  , , ,t T1 f=  for some sparse vectors wt of expansion 
coefficients [52]. Standard DL algorithms cannot, however, be 
directly applied to learn B since they rely on the entire vector .xt  
To learn the dictionary in the training phase using incomplete 
link counts TS instead of ,TL  the idea is to capitalize on the 
structure in ,xt  of which G is an abstraction [27]. To this end, 
one can adopt a similar cost function as in the operational phase 
[cf. (3)], yielding the data-driven basis and the corresponding 
sparse representation

{ , }W Bt t

: ,arg min y S Bw w w B LBw
:{ }

t t t w t g t t
t

T

1
2
2

1
1W, B bq q

Q
2 1

< < < <m m= - + +
< < # ==

l l6 @/
		  (4)

where : [ , , ] .W w w RT
Q T

1 f != #t t t  The constraints { }1bq q
Q

2 1< < # =  
remove the scaling ambiguity in the products Bwt and prevent 
the entries in B from growing unbounded. Again, the combined 
regularization terms in (4) promote both sparsity in wt through 
the 1, -norm, and smoothness across the entries of Bwt via the 
Laplacian .L  The regularization parameters wm  and gm  are 
typically cross-validated [28, Ch. 7]. Although (4) is nonconvex, a 
block coordinate-descent (BCD) solver still guarantees conver-
gence to a stationary point [10]. The BCD updates involve 
solving for B and W in an alternating fashion, both doable effi-
ciently via convex programming [27]. Alternatively, the online 
DL algorithm in [37] offers enhanced scalability by sequentially 
processing the data in .TS  The training and operational 
(prediction) phases are summarized in Figure 1, where ( )C B, wt  
denotes the tth summand from the cost in (4), and , ,k 1 2 f=  
indicate iterations of the BCD solver employed during the train-
ing phase.

The explicit need for Laplacian regularization is apparent 
from (4). Indeed, if measurements from a certain link are not 
present in ,TS  the corresponding row of B may still be estimated 
with reasonable accuracy because of the third term in ( ).C ,B wt  
On top of that, it is because of Laplacian regularization that the 
prediction performance degrades gracefully as the number of 

Training Phase Operational Phase

yt t
T

1=" ,
( [ ], , , ,B wmin C k t T1

w t t
t

f=

[ ]W kt

( , [ ])B wmin C k
b

t t
t

T

11q # =

/

[ ]B k 1+

,y t T>t

Bt
( , )B wmin C

w t t
t

t

wtt

x Bwt t=t t t

xtt

)

[Fig1]  Training and operational phases of the semisupervised DL 
approach for link-traffic cartography in [27], where Ct (B,w)
denotes the tth summand from the cost in (4) and , , ...k 1 2=
indicate iterations of the BCD solver.
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from [27].)



	 IEEE SIGNAL PROCESSING MAGAZINE  [133] ma y 2013

missing entries in yt increases; see also Figure 2. It is worth 
stressing that the time series { }yt  need not be stationary or even 
contiguous in time. The link-traffic cartography approach 
described so far can also be adapted to accommodate time-
varying network topologies or routing matrices, using a time-
dependent Laplacian .Lt  A word of caution is due, however, since 
drastic changes in either Lt or in the statistical properties of the 
underlying OD flows ,zt  will neces-
sitate retraining B to attain satis-
factory performance. Finally, note 
that DL techniques incur a com-
plexity at least cubic in the size of 
the network and are better suited 
for monitoring of backbone wide-
area networks which are typically 
not very large.

Next, a numerical test on link count data from the Inter-
net-2 measurement archive [1] is outlined. The data consists 
of link counts, sampled at five-minute intervals, collected over 
several weeks. For the purposes of comparison, the training 
phase consisted of 2,000 time slots, with a random subset of 50 
links measured (out of L 54=  per time slot). The performance 
of the learned dictionary is then assessed over the next T0 = 
2,000 time slots. Each test vector yt is constructed by ran-
domly selecting S entries of the full link count vector .xt  The 
tuning parameters are chosen via cross-validation ( .0 1sm =  
and 10g

5m = - ). Figure 2 shows the normalized reconstruction 
error (NRE), evaluated as ( )LT y xt tt

T
0

1 2
1

0 --

=
t/  for different 

values of Q and .S  For comparison, the prediction performance 
with a fixed diffusion wavelet matrix [19] (instead of the data-
trained dictionary), as well as that of the entropy-penalized LS 
method [54] is also shown. The latter approach solves a LS 
problem augmented with a specific entropy-based regularizer 
that encourages the traffic volumes at the source/destination 
pairs to be stochastically independent. The DL-based method 
markedly outperforms the competing approaches, especially 
for low values of .S  Furthermore, note how performance 
degrades gracefully as S decreases. Remarkably, the predic-
tions are close to the actual traffic even when using only 
30 link counts during the prediction phase.

Delay cartography via 
dynamic network kriging
Instead of link counts, consider now the problem of monitoring 
delays d ,p t on a set of multihop paths ,Pp !  that connect 

: | |PP =  source-destination pairs in an IP network. Path delays 
are important metrics required by network operators for assess-
ment, planning, and fault diagnosis [18], [33], [46]. However, 
monitoring path metrics is challenging primarily because P 
generally grows as the square of the number of nodes in the net-
work. Therefore, at any time t delays can only be measured on a 
subset of paths ,S Pt 1  collected in the vector .dt

s  Based on the 
partial current and past measurements : { } ,H dt

s t
1= x x=  delay car-

tography amounts to predicting the remaining path delays 
: { } .dd , \P St

s
p t p= !

r

A promising approach in this context has been the application 
of kriging, a tool for spatial prediction popular in geostatistics and 
environmental sciences [22]. A network kriging scheme was 
developed in [18], which advocates prediction of network-wide 
path delays using measurements on a fixed subset of paths. The 
class of linear predictors introduced therein leverages network 
topology information to model the covariance among path delays. 

Building on these ideas, a dynamic 
network kriging approach capable 
of real-time spatiotemporal delay 
predictions was put forth in [46]. 
Specifically, a kriged Kalman filter 
(KKF) is employed to explicitly cap-
ture temporal variations due to 
queuing delays, while retaining the 

topology-based spatial kriging predictor. The per-path delay d ,p t 
comprises several independent components due to contributions 
from each intermediate link and router and is modeled in [46] as

	 .d , , , ,p t p t p t p t| o f= + + 	 (5)

The queuing delay ,p t|  (collected in Rt
P!| ) depends on the 

traffic and exhibits spatiotemporal correlation, periodic behav-
ior as well as occasional bursts, prompting the following 
random walk model

	 t t t1| | h= +- ,	 (6)

where the driving noise th  has zero mean and covariance matrix 
.Ch  The second term in (5), collected in the vector ,to  combines 

the processing, transmission, and propagation delays and is 
temporally white but spatially correlated, owing to the overlap 
between paths. Similar to [18], the correlation between two 
paths is modeled as being proportional to the number of links 
they share, so that the covariance matrix ,C UUa=o l  where a is 
a parameter to be estimated from training path-delay data; 
while u 1,p l =  if path p contains link ,l  and u 0,p l =  otherwise. 
Finally, the noise term ,p te  is zero mean independent and identi-
cally distributed (i.i.d.) with known variance .2v  Defining the 
S P#  path selection matrix as in the section “Semisupervised Dic-
tionary Learning for Traffic Maps,” the measurement equation can 
be written as (introduce : St

s
t to o=  and likewise t

se )

	 .d St
s

t t t
s

t
s| o e= + + 	 (7)

In the absence of ,St  the spatiotemporal model in (6) and (7) 
is widely employed in geostatistics, where t|  is generally 
referred to as trend, and to  captures the random fluctuations 
around ;t|  see, e.g. [41]. Similar models have been employed in 
[31] to describe the dynamics of wireless propagation channels, 
and in [21] for spatiotemporal random field estimation. For a 
static selection matrix, i.e., :S St =  for all ,t  the network kriging 
approach [18] entails the following two-step procedure: Step 1) 
treat t

so  as noise, and estimate t|  using the generalized LS crite-
rion; and Step 2) use the aforesaid estimate to find the linear 

A promising approach in this 
context has been the application 

of kriging, a tool for spatial 
prediction popular in geostatistics 

and environmental sciences. 
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minimum mean-square error (LMMSE) estimator (denoted 
by E*) for ,t

so  specifically

	 | .SC S SC S I d SE*
t
s

t S t
s

t t
2 1

o | |v= + -o o
-l l^ h6 6@ @ 	 (8)

Recently, a CS-based approach has also been reported for 
predicting network-wide performance metrics [19]. For instance, 
diffusion wavelets were utilized in [19] to obtain a compressible 
representation of the delays and account for spatial and temporal 
correlations. Although this allows for enhanced prediction accu-
racy relative to [18], it requires batch processing of measure-
ments, which does not scale well to large networks for real-time 
operation. Pictorially, the performance of different algorithms 
can be assessed through the delay maps shown in Figure 3.

The spatiotemporal model set forth earlier can provide a 
better estimate of t|  by efficiently processing both present and 
past measurements jointly. Towards this end, a Kalman filter is 

employed in [46], which at time t yields the following update 
equations:

	 : ( )H K d SE*
t t t t t t

s
t t1 1;| | | |= = + -- -t t t6 @

	 : ( ) ( ) ( ) ( ),M I K S M CEt t t t t P t t t 1| | | |= - - = - + o-lt t6 @

where : ( ) ( ) IK M C S S C C M St t t t t t S1 1
2 1
v= + + + +o o h- -

-l l6 @  is 
the so-termed Kalman gain. The final predictor, referred also as 
the KKF, is given by

	 : [ ]d S S C S S C S I d St
s

t t t t t t S t
s

t t
2 1

| |v= + + -o o
-l lt r t r tr ^ h

and the prediction error covariance matrix is

	 :M d d d dEt
s

t
s

t
s

t
s

t
s= - - lt tr r r r r^ ^h h6 @

	 .1I S M C C S S SS t t t t t
2

1
1

2

1
v

v
= + + + +o h-

-
-

l lr r^ h; E

[Fig3]  True and predicted delay map for 62 paths in the Internet-2 data set [1] over an interval of 100 min. (a) True delays. (b) Network 
kriging [18]. (c) Difussion wavelets [19]. (d) KKF [46]. Delays of several paths change slightly around ,t 80=  but this change is only 
discernible from the delay predictions offered by KKF. Delay maps summarize the network state and are useful tools aiding operational 
decision in network monitoring and control stations [46]. (Figure used with permission from [46].)
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The KKF framework for dynamic network delay cartography 
has several attractive features. First, the KKF yields the LMMSE 
estimate even for non-Gaussian distributed noise. The Kalman 
filter step also allows for a x-step prediction given by ,dt t|=x+t t  
which can be useful for preemptive routing and congestion 
control algorithms, as well as for extrapolating missing mea-
surements. Second, the KKF framework provides a metric, par-
ticularly the error covariance matrix ,Mt

sr  for choosing the paths 
to be measured at each ,t  which define the selection matrix .St  
In the present setting, it turns out 
that the D-optimal design metric 
log det Mt

sr  is monotonic and 
supermodular with respect to the 
set S [46]. Thus, a simple greedy 
algorithm with complexity ( )O PS3  
can be employed to find the set of 
paths that are at least 63% opti-
mal [43]; see Figure 4. Conse-
quently, the technique can be 
readily applied to large-scale net-
works since the complexity increases only linearly with .P  The 
framework also admits related problem formulations such as 
selecting the best set of monitors (nodes) capable of measuring 
delay on all its outgoing paths. This represents a significant 
departure from state-of-the-art delay prediction/tracking meth-
ods [18], [19], where path selection is heuristic. Note that train-
ing is required to estimate the model parameters Ch and .a  To 
this end, empirical estimation techniques similar to those in 
[42] can be adapted to the present case.

Dynamic Anomalography
This section switches gears to anomalography, the problem of 
unveiling and mapping out network traffic anomalies across 
flows and time given link-level traffic measurements. This is a 

crucial monitoring task toward engineering network traffic 
since anomalies can result in congestion and limit QoS 
provisioning.

Traffic modeling
Consider a backbone IP network where N  and L denote the sets 
of nodes (routers) and physical links of cardinality | |N N=  and 
| | ,L L=  respectively. The operational goal of the network is to 
transport a set of OD traffic flows F  (with | | FF = ) associated 

with specific OD (ingress-egress 
router) pairs. Single-path routing 
is adopted here, meaning a given 
flow’s traffic is carried through 
multiple links connecting the cor-
responding source-destination pair 
along a single path. Accordingly, 
over a discrete time horizon 

[ , ]t T1!  the measured link counts 
: [ ]xX R,l t

L T!= #  and (unobserv-
able) OD flow traffic matrix 

: [ ]zZ R,f t
F T!= #  are thus related through X RZ=  [cf. (2)]. 

Unless otherwise stated, the routing matrix R is assumed given 
since it can be otherwise estimated using traceroute or topology 
inference algorithms [25]. It is also fat, as for backbone networks 
the number of OD flows is much larger than the number of phys-
ical links ( )F L& . A cardinal property of the traffic matrix is note-
worthy. Common temporal patterns across OD traffic flows in 
addition to their almost periodic behavior, render most rows 
(respectively columns) of the traffic matrix linearly dependent, 
and thus Z typically has low rank. This intuitive property has 
been extensively validated with real network data; see Figure 5 
and [34].

It is not uncommon for some of the OD flow rates to 
experience unexpected abrupt changes. These so-termed traffic 
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[Fig4]  Delay cartography using the NZ-AMP data set [2], which includes path delays collected over a month for an IP network where 
P 186=  and N 30=  [46]. Normalized mean-square prediction error (NMSPE) as a function of .S  (a) Random path selection. (b) “Optimal” 
path selection, that is, using heuristic or approximate algorithms specified for each algorithm. Observe further that the performance of 
the KKF improves as the length of the training interval tT increases. (Figure used with permission from [46].)

Traffic volume anomalies 
are typically due to network 
equipment misconfiguration 

or outright failure, unforeseen 
behaviors following 

routing policy changes, 
or cyberattacks.



	 IEEE SIGNAL PROCESSING MAGAZINE  [136] ma y 2013

volume anomalies are typically due to (unintentional) network 
equipment misconfiguration or outright failure, unforeseen 
behaviors following routing policy modifications, or cyberat-
tacks (e.g., denial-of-service attacks) that aim at compromising 
the services offered by the network [34], [55]. Let a ,f t denote the 
unknown amount of anomalous traffic in flow f  at time ,t  which 
one wishes to estimate. Explicitly accounting for the presence of 
anomalous flows, the measured traffic carried by link l is then 
given by ( ) ,  , ..., ,y r z a t T1, , , , ,

F
l t l f f t f t l tf

e= + + =
!
/  where the 

noise variables ,l te  capture measurement errors and unmodeled 
dynamics. Traffic volume anomalies are (unsigned) sudden 
changes in OD flow’s traffic, and as such their effect can span 
multiple links in the network. A key difficulty in unveiling 
anomalies from link-level measurements only is that often-
times, clearly discernible anomalous spikes in the flow traffic 
can be masked through “destructive interference” of the super-
imposed OD flows [34]. An additional challenge stems from 
missing link-level measurements ,y ,l t  an unavoidable opera-
tional reality affecting most traffic engineering tasks that rely 
on (indirect) measurement of traffic matrices [48], [56]. 
To model missing link measurements, collect the tuples ( , )l t  
associated with the available observations y ,l t in the 
set [ , , ..., ] [ , , ..., ] .L T1 2 1 2#3X  Introducing the matrices 

: [ ], : [ ] ,yY E R, ,l t l t
L T!e= = #  and : [ ] ,aA R,f t

F T!= #  the (possi-
bly incomplete) set of link-traffic measurements can be 
expressed in compact matrix form as

	 ( ) ( )P PY X RA E= + +X X ,	 (9)

where the sampling operator (.)PX  sets the entries of its matrix 
argument not in X to zero and keeps the rest unchanged. Since 
the objective here is not to estimate the OD flow traffic matrix 

,Z  (9) is expressed in terms of the nominal (anomaly free) link-
level traffic rates ,X  which inherits the low-rank property of .Z  
Anomalies in A are expected to occur sporadically over time and 
last for a short time relative to the (possibly long) measurement 
interval [ , ] .T1  In addition, only a small fraction of the flows is 
supposed to be anomalous at a any given time instant. This ren-
ders the anomaly traffic matrix A sparse across both rows 
(flows) and columns (time).

Unveiling anomalies  
via sparsity and low rank
Given link-level traffic measurements ( )P YX  adhering to (9), 
dynamic anomalography is a critical network monitoring 
task that aims at accurately estimating the anomaly matrix .A  

[Fig5]  Volumes of six representative (out of 121 total) OD flows, taken from the operation of Internet-2 during a seven-day period [1]. 
Temporal periodicities and correlations across flows are apparent. As expected, in this case, Z can be well approximated by a low-rank 
matrix, since its normalized singular values decay rapidly to zero.
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As argued next, capitalizing on the sparsity of A and the low-
rank property of X will be instrumental in achieving this 
ambitious goal. From a network cartography vantage point, 
the resultant estimated map At  offers a depiction of the net-
work’s “health state” along both the flow and time dimen-
sions. If | | ,a 0,f t 2t  the f th flow at time t is deemed 
anomalous, otherwise it is healthy. This joint estimation-
detection task not only allows one to identify the time of the 
anomaly in addition to the affected flows but also to estimate 
its magnitude, which hints to the importance of the anomaly 
event. By examining R, the network operator can immedi-
ately determine the links carrying the anomalous flows. 
Subsequently, planned contingency measures involving 
traffic-engineering algorithms can be implemented to address 
network congestion.

The low-rank property of the traffic matrix Z (and X) is at 
the heart of the seminal network anomaly detection approach 
in [34]. In the absence of missing data, the method therein 
adopts principal component analysis (PCA) to decompose the 
link traffic [ , , ]Y y yT1 f=  into nominal and anomalous com-
ponents (also known as modeled and residual traffic). For 
instance, if most of the variance in Y  is captured by 

( , )minr L T%  dominant principal components, then by con-
struction the nominal subspace 
Sn is spanned by the r dominant 
right singular vectors of Yl (cf. 
the low-rank assumption). Natu-
rally, the anomalous subspace Sa 
corresponds to the orthogonal 
complement, i.e., : .S Sa n= =  In 
the operational phase, an anom-
aly is declared at time t when 
P yS t 2

2
a <<  exceeds a given thresh-

old, where PSa is an orthogonal 
projection matrix onto .Sa  Subsequently, a single anomalous 
flow is identified after running a greedy algorithm, and an 
estimate of the amount of anomalous traffic is obtained as 
a byproduct. Notice that for large networks and reduced 
number of measurements (L T& ), one should resort to “high-
dimensional” variants of PCA to obtain satisfactory perfor-
mance; see, e.g., [4], [28], and references therein.

Likewise, the spatial approach within the network anomog-
raphy framework [55] forms the matrix P YSa  of link anomalies, 
thus exploiting the correlation between traffic across different 
links. Temporal approaches obtain link anomalies as YT instead, 
where T is a linear operator which judiciously filters the traffic 
time series per link (implementing an “anomaly pass” filter). 
Several choices for T are proposed to this end, based on differ-
ent forms of temporal analysis including autoregressive inte-
grated moving average (ARIMA), wavelets, and fast Fourier 
transform (FFT). Different from [34], the inference algorithm in 
[55] capitalizes on the sparsity of A to estimate the anomaly 
map by, e.g., solving in the spatial case

	 : , . . .Aarg minA s t P Y RAS1
A

a< <= =t

Network anomography algorithms can be extended to accom-
modate routing changes across time; see [55] for further details 
and comprehensive performance tests.

Recently, a natural estimator leveraging the low rank 
property of X and the sparsity of A was put forth in [39], 
which can be found at the crossroads of CS [24] and timely 
low-rank plus sparse matrix decompositions [11], [15]. The 
idea is to fit the incomplete data ( )P YX  to the model X RA+  
[cf. (9)] in the LS error sense, as well as minimize the rank of 

,X  and the number of nonzero entries of A measured by its 0,

-(pseudo) norm. Unfortunately, albeit natural both rank and 
0, -norm criteria are in general NP-hard to optimize. Typi-

cally, the nuclear norm : ( )X X* kk
< < v=/  ( ( )Xkv  denotes the 

kth singular value of X) and the 1, -norm A 1< <  are adopted as 
surrogates [12], [26], since they are the closest convex 
approximants to ( )rank X  and ,A 0< <  respectively. Accordingly, 
one solves

	 ( )Pmin Y X RA X A
{ , }

* *F
2

1 1
X A
< < < < < <m m- - + +X ,	 (10)

where , 0* 1 $m m  are rank- and sparsity-controlling parameters. 
While a nonsmooth optimization problem, being convex (10) is 
appealing. An efficient accelerated proximal gradient algorithm 

with quantifiable iteration com-
plexity was developed to unveil 
network anomalies [40]. Interest-
ingly, (10) also offers a cleansed 
estimate of the link-level traffic Xt  
that could be subsequently utilized 
for network tomography tasks. In 
addition, (10) jointly exploits the 
spatiotemporal correlations in the 
link traffic as well as the sparsity of 
the anomalies, through an optimal 

single-shot estimation-detection procedure that has been shown 
to outperform the algorithms in [34] and [55] (that decouple the 
estimation and detection steps); see Figure 6.

Before moving on to distributed implementations, it is 
instructive to elaborate on the generality of (10). When there is 
no missing data and ,0X L T= #  one is left with an under-
determined sparse signal recovery problem typically encoun-
tered with CS; see, e.g., [24]. The decomposition Y X A= +  
corresponds to principal component pursuit (PCP), also 
referred to as robust PCA [11], [15]. For the idealized noise-
free setting (E 0L T= # ), sufficient conditions for exact recovery 
of the unknowns are available for both of the aforementioned 
special cases [11], [12], [15]. However, the superposition of a 
low-rank plus a compressed sparse matrix in (9) further chal-
lenges identifiability of { , };X A  see [40] for early results. Going 
back to the CS paradigm, even when X is nonzero one could 
envision a variant where the measurements are corrupted with 
correlated (low-rank) noise [16]. Last but not least, when 
A 0F T= #  and Y is noisy, the recovery of X subject to a rank 
constraint is nothing but PCA—arguably, the workhorse of 
high-dimensional data analytics. This same formulation is 

This joint estimation detection 
task not only allows one 
to identify the time of the 

anomaly in addition to the 
affected flows but also to 

estimate its magnitude, which 
hints to the importance of 

the anomaly event.
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adopted for low-rank matrix completion, to impute the 
missing entries of a low-rank matrix observed in noise, i.e., 

( ) ( )P PY X E= +X X  [13].

In-network distributed processing
Implementing (10) presumes that network nodes continu-
ously communicate their link traffic measurements to a cen-
tral monitoring station, which uses their aggregation in ( )P YX  
to unveil anomalies. While for the most part this is the pre-
vailing operational paradigm adopted in current networks, it 
is fair to say there are limitations associated with this archi-
tecture. For instance, fusing all this information may entail 
excessive protocol overheads. Moreover, minimizing the 
exchanges of raw measurements may be desirable to reduce 
unavoidable communication errors that translate to missing 
data. Solving (10) centrally raises robustness concerns as well, 
since the central monitoring station represents an isolated 
point of failure.

These reasons motivate well devising fully distributed iter-
ative algorithms for dynamic anomalography, embedding the 
network anomaly detection functionality to the routers. In a 
nutshell, per iteration nodes Nn !  carry out simple 
computational tasks locally, relying on their own link count 
measurements (a submatrix Yn within [ , , ]Y Y YN1 f= l l l corre-
sponding to router n’s links). Subsequently, local estimates 
are refined after exchanging messages only with directly con-
nected neighbors, which facilitates percolation of local infor-
mation to the whole network. The end goal is for network 
nodes to consent on a global map of network anomalies ,At  
and attain (or at least come close to) the estimation 

performance of the centralized counterpart (10) which has all 
data ( )P YX  available.

Equation (10) is not amenable for distributed implementa-
tion due to the nonseparable nuclear norm present in the cost 
function. If an upper bound ( )rank X # tt  is a priori available 
[recall Xt  is the estimated link-level traffic obtained via (10)], 
(10)’s search space is effectively reduced and one can factorize 
the decision variable as ,X PQ= l  where P and Q are L # t and 
T # t matrices, respectively. Again, it is possible to interpret the 
columns of X (viewed as points in RL) as belonging to a low-
rank nominal subspace ,Sn  spanned by the columns of .P  The 
rows of Q are thus the projections of the columns of X onto .Sn  
Next, consider the following alternative characterization of the 
nuclear norm (see, e.g., [47])

	 : ,   min 2
1 s. . X P Q t X PQ

{ , }
F F
2 2

P Q
< < < < < <= + =) l^ h ,	 (11)

where the optimization is over all possible bilinear factoriza-
tions of ,X  so that the number of columns t of P and Q is also a 
variable. Leveraging (11), the following reformulation of (10) 
provides an important first step towards obtaining a distributed 
anomalography algorithm

( )Pmin Y P Q R A
{ , },

n n n F
n

N
2

1P Q A
n< <- -X

=

l=/

	 ,
N

N
N2

P Q An F F
2 2 1

1< < < < < <m m
+ + +) ^ h G 	 (12)

which is nonconvex due to the bilinear terms ,P Qn l  and where 
: , ,R R RN1 f= l l l6 @  is partitioned into local routing tables avail-

able per router .n  Adopting the separable Frobenius-norm 
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regularization in (12) comes with no loss of optimality relative 
to (10), provided ( ) .rank X # tt  By finding the global minimum 
of (12) [which could have considerably less variables than (10)], 
one can recover the optimal solution of (10). But since (12) is 
nonconvex, it may have stationary points which need not be 
globally optimum. As asserted in [39, Prop. 1] however, if a 
stationary point { , , }P Q Ar r r  of (12) 
satisfies ( ) ,P Y PQ A *1< < m- -X lr r r  
then { : : },X PQ A A= =lt r r t r  is the 
globally optimal solution of (10). 
Note that for sufficiently small t 
the residual ( )P Y PQ A< <- -X lr r r  
becomes large, and the qualifica-
tion inequality is violated [unless *m  is large enough, in which 
case a sufficiently low-rank solution to (10) is expected].

To decompose the cost in (12), in which summands inside 
the square brackets are coupled through the global variables 
{ , },Q A  introduce auxiliary copies { , }Q An n n

N
1=  representing local 

estimates of { , },Q A  one per node .n  These local copies along 
with consensus constraints yield the distributed estimator

( )Pmin Y P Q R A
{ , , }

n n n n n F
n

N
2

1P Q An n n
n< <- -X

=

l=/

	
N

N Q
N2

P A*
n F n F n

2 2 1
1< < < < <m m

+ + +^ h G	

(13)	 . . , ,Nm nlinked withs t Q Q A An m n m != =

which is equivalent to (12) provided the network topology 
graph is connected. Even though consensus is a fortiori 
imposed within neighborhoods, it extends to the whole (con-
nected) network and local estimates agree on the global 
solution of (12). Exploiting the separable structure of (13), a 
general framework for in-network sparsity-regularized rank 
minimization was put forth in [39]. Specifically, distributed 
iterations were obtained after adopting the alternating-direc-
tion method of multipliers (ADMM), an iterative Lagrangian 
method well-suited for parallel processing [10]. In a nut-
shell, local tasks per iteration , ,k 1 2 f=  entail solving small 
unconstrained quadratic programs to refine the normal sub-
space [ ],kPn  in addition to soft-thresholding operations to 
update the anomaly maps [ ]kAn  per router. Each iteration, 
routers exchange their estimates { [ ], [ ]}k kQ An n  only with 
directly connected neighbors. This way the communication 
overhead remains affordable, and independent of the net-
work size .N

When employed to solve nonconvex problems such as 
(13), so far ADMM offers no convergence guarantees. How-
ever, there is ample experimental evidence in the literature 
that supports empirical convergence of ADMM, especially 
when the nonconvex problem at hand exhibits “favorable” 
structure. For instance, (13) is a linearly constrained bicon-
vex problem with potentially good convergence properties—
extensive numerical tests in [39] demonstrate that this is 
indeed the case. While establishing convergence remains an 
open problem, one can still prove that upon convergence 

the distributed iterations attain consensus and global 
optimality, offering the desirable centralized performance 
guarantees [39].

Real-time anomaly trackers
Monitoring large-scale IP networks necessitates massive 

recollection of data which far out-
weigh the ability of modern com-
puters to store and analyze them 
in real time. In addition, nonsta-
tionarities due to routing changes 
and missing data further chal-
lenge identification of anomalies. 

In dynamic networks routing tables are constantly readjusted to 
effect traffic load balancing and avoid congestion caused by, e.g., 
traffic anomalies. To account for slowly time-varying routing 
tables, let R Rt

L F! #  denote the routing matrix at time .t  In this 
dynamic setting, the partially observed link counts at time t 
adhere to ( ) ( ),  , , ,P P t 1 2y x R at t t t tt t fe= + + =X X  where the 
link-level traffic : .x R zt t t=  In general, routing changes may 
alter a link load considerably by, e.g.,routing traffic completely 
away from a specific link. Therefore, even though the OD flow 
vectors { }zt  live in a low-dimensional subspace, the same may 
not be true for the { }xt  when the routing updates are major and 
frequent. In backbone networks however, routing changes are 
sporadic relative to the time-scale of data acquisition used for 
network monitoring tasks. For example, data collected from the 
operation of Internet-2 network reveals that only a few rows of 
Rt change per week [1]. It is thus safe to assume that { }xt  still 
lies in a low-dimensional subspace, and exploit the spatiotempo-
ral correlations of the observations to identify the anomalies in 
real time.

On top of the previous arguments, in practice link measure-
ments are acquired sequentially in time, which motivates 
updating previously obtained estimates rather than re-
computing new ones from scratch each time a new datum 
becomes available. The goal is then to recursively estimate 
{ , }x at tt t  at time t from historical observations { ( )} ,P y t

1x xX =x  natu-
rally placing more importance on recent measurements. To this 
end, one possible adaptive counterpart to (12) is the exponen-
tially weighted LS estimator found by minimizing the empirical 
cost [38]

( )Pmin y Pq R a
{ , },

t
t

2
2

1P Q A
< <b - -x

x x x x

x

X
-

=

x=/

	
2 2

P q a
t u

u
t F

1

2
2
2

1 1< < < < < <
b

m m
m+ + +) )

x x
-

=

G/ 	 (14)

in which 0 11 #b  is the so-termed forgetting factor. When 
11b  data in the distant past are exponentially downweighted, 

which facilitates tracking network anomalies in nonstationary 
environments. For static routing (R Rt = ) and infinite memory 
( ),1b =  the formulation (14) coincides with the batch estima-
tor (12). A provably convergent online algorithm for dynamic 
anomalography is developed in [38], based on alternating 

Nonstationarities due to 
routing changes and missing 

data further challenge 
identifiability of anomalies.
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minimization of (14); see Figure 7. Each time a new datum is 
acquired, anomaly estimates are formed via the Lasso [28,  
p. 68], and the low-rank nominal traffic subspace is refined 
using recursive LS. For situations were reducing computational 

complexity is critical, an online sto-
chastic gradient algorithm based on 
Nesterov’s acceleration technique is 
developed as well [38].

Algorithms in [38] are closely 
related to timely robust subspace track-
ers, which aim at estimating a low-rank 
subspace P from grossly corrupted and 
possibly incomplete data, particularly 

( ) ( ),  , , .P P t 1 2y Pq at t t tt t fe= + + =X X  
In the absence of sparse “outliers” 
{ } ,at t 1

3
=  an online algorithm based on 

incremental gradient descent on the 
Grassmannian manifold of subspaces 
was put forth in [5]. The second-order 
RLS-type algorithm in [17] extends the 
seminal projection approximation sub-
space tracking (PAST) algorithm to 
handle missing data. When outliers are 
present, robust counterparts can be 
found in [16], [29]. Relative to all afore-
mentioned works, the estimation prob-
lem (14) is more challenging due to the 
presence of the (compression) routing 
matrix ;Rt  see [40] for fundamental 
identifiability issues related to the 
model (9).

Broadening the network atlas
Additional cartography instances are 
outlined in this section, including 
anomalography from flow measure-
ments and network distance prediction. 
To exemplify the development of sens-
ing infrastructure for situational aware-
ness at the physical layer of wireless CR 
networks, the notion of radio-frequency 
(RF) cartography is introduced as well. 
All these problems can be tackled 
through SP methods subsumed by (10), 
particularly PCP [15], low-rank matrix 
completion [13], the Lasso [28, p. 68], 
and nonparametric versions of basis 
pursuit [8].

Unveiling anomalies 
from flow data
Since some networks today collect OD 
flow (not link-level) measurements 
z a, ,f t f t+  for at least part of their network 
(using, e.g., the Netflow protocol), anom-

alies can be detected using temporal decomposition and stan-
dard change-detection approaches per flow. Leveraging the 
low-rank property of the traffic matrix and the sparsity of 
anomalies, anomalography from OD flow measurements was 

[Fig7]  Unveiling anomalies in real time from Internet-2 data [1]. (a) Measured link traffic 
and cleansed estimates for three representative links. (b) Three rows of the estimated 
anomaly map At  corresponding to three anomalous flows [38]. (Figure used with permission 
from [38].) 
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formulated as the PCP matrix decomposition problem and 
solved centrally in [3]; see also [39] for a distributed imple-
mentation of the PCP estimator aimed at scalable monitoring 
of networks.

Network distance prediction
End-to-end network distance information is critical towards 
enhancing QoS in Internet applications such as content dis-
tribution and peer-to-peer file sharing systems. Clients natu-
rally prefer to establish connections with “closer” network 
resources or servers that are likely to respond faster. There 
are different metrics to quantify the distance between a pair of 
network nodes. The most common choices are defined in 
terms of latency (one-way delay and the so-termed round-trip 
time) or router hop-counts. Unfortunately, either probing or 
passively measuring all pairwise distances becomes infeasible 
in large-scale networks. Given those few affordable distance 
measurements, the problem of 
network distance prediction is to 
impute (that is interpolate) the 
missing entries in a highly 
incomplete matrix of end-to-end 
distances.

If one collects the end-to-end 
latencies d ,i j of source-sink pairs 
( , )i j  in a delay matrix : [ ] ,dD R,i j

N N!= #  strong dependencies 
among path delays render D low rank; see, e.g., [36] for an 
experimental validation with multiple data sets. Intuitively, 
correlations among rows and columns of D emerge because 
nearby nodes (e.g., those belonging to a common subnet-
work) are connected to every other node through paths with 
significant overlap, possibly sharing common bottleneck 
links. The low-rank property of D along with the distributed-
processing requirements of large-scale networks, motivated 
decentralized matrix-factorization [36], and nuclear-norm 
minimization [39] algorithms for network distance predic-
tion. Different from schemes based on Euclidean embedding 
via multidimensional scaling [23], low-rank modeling does 
not require distances in D to be symmetric and satisfy the tri-
angle inequality—properties that are oftentimes violated by 
network-related distances [35].

To avoid the excessive overhead of active probing mecha-
nisms, one can leverage network monitors that passively 
observe router hop-counts from traffic traversing those 
monitored links; see, e.g., [25] and references therein. 
Collect these hop-count measurements in the matrix 

: [ ] ,hH N,m n
M N!= #  where M  is the number of monitors, and 

N  ( M& ) the total hosts observed. Because monitor m only 
observes a fraction of the total network traffic, H will be 
depleted with missing entries. Despite typically having 

( ) ,Mrank H =  H consists of low-rank column blocks, each 
corresponding to a subnetwork with access to the Internet 
core through a single border router. Recognizing this struc-
ture, a high-rank matrix completion algorithm that performs 
subspace clustering of incomplete hop-count data was put 

forth in [25], and shown to attain good performance both in 
theory and practice.

Different from the dynamic network delay cartography prob-
lem considered in the section “Delay Cartography via Dynamic 
Network Kriging,” network distance prediction approaches do 
not account for the temporal variations in the delays and typi-
cally rely on batch imputation of the distance matrix of interest. 
The techniques used in the section “Delay Cartography via 
Dynamic Network Kriging” do not apply in this context either, 
since some path delays are never observed, and thus it is impos-
sible to estimate the spatial covariance matrices (such as Ch and 
Co) completely.

RF cartography
In the domain of spectrum sensing for CR networks, RF cartog-
raphy amounts to constructing in a distributed fashion: 1) 
global power spectral density (PSD) maps capturing the distri-

bution of radiated power across 
space, time, and frequency and 2) 
local channel gain (CG) maps 
offering the propagation medium 
per frequency from each node to 
any point in space. These maps 
enable identification of opportu-
nistically available spectrum 

bands for reuse and handoff operation as well as localization, 
transmit-power estimation, and tracking of primary user activi-
ties. While the focus here is on the construction of PSD maps, 
the interested reader is referred to [30] for a tutorial treatment 
on CG cartography.

A cooperative approach to RF cartography was intro-
duced in [7] that builds on a basis expansion model of the 
PSD map ( , )fxU  across space ,x R2!  and frequency .f  Spa-
tially distributed CRs collect smoothed periodogram sam-
ples of the received signal at given sampling frequencies, 
based on which they want to determine the unknown expan-
sion coefficients. Introducing a virtual spatial grid of candi-
date source locations, the estimation task can be cast as a 
linear LS problem with an augmented vector of unknown 
parameters. Still, the problem complexity (or effective 
degrees of freedom) can be controlled by capitalizing on two 
forms of sparsity: the first one introduced by the narrow-
band nature of transmit-PSDs relative to the broad swaths 
of usable spectrum and the second one emerging from 
sparsely located active radios in the operational space (due 
to the grid artifact). Nonzero entries in the parameter vec-
tor sought correspond to spatial location-frequency band 
pairs corresponding to active transmissions. All in all, esti-
mating the PSD map and locating the active transmitters as 
a byproduct boils down to a variable selection problem. This 
motivates well employment of the Lasso for distributed 
sparse linear regression [39], an estimator also subsumed by 
(10) when ,0X L T= #  ,T 1=  and the regression matrix R has a 
specific structure that depends on the chosen bases and 
path-loss propagation model.

the unceasing demand for 
continuous situational 

awareness calls for innovative 
and large-scale distributed 

SP algorithms.
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Sparse total LS variants are also available to cope with 
uncertainty in the regression matrix, arising due to inaccurate 
channel estimation and grid-mismatch effects [30]. Nonpara-
metric spline-based PSD map estimators [8] have been also 
shown effective in capturing general propagation characteristics 
including both shadowing and fading; see also Figure 8 for an 
actual PSD atlas spanning 14 frequency subbands.

Conclusions 
In this tutorial, the concept of dynamic network cartography is 
introduced as a framework to construct maps of the dynami-
cally evolving network state, in an efficient and scalable man-
ner even for large-scale heterogeneous networks. Here the 
focus is placed on key tasks geared to obtaining full yet suc-
cinct representation of network state metrics such as link traf-
fic and path delays as well as prompt and accurate identification 
of network anomalies from possibly partial and corrupted mea-
surement data.

Looking forward, the unceasing demand for continuous situ-
ational awareness calls for innovative and large-scale distributed 
SP algorithms, complemented by collaborative and adaptive 
monitoring platforms to accomplish the objectives of network 
management and control. Avenues where significant impact can 
be made include: 1) judicious design of critical cognition infra-
structure to sense, learn, and adapt to the environment where 
networks operate; 2) development of scalable tools for distilling, 
summarizing, and tracking the network state for the purpose of 
network management; 3) ensuring robustness in the face of 
missing and grossly corrupted network data, in addition to pos-
sibly malicious attacks; and 4) developing effective network 
adaptation techniques based on global network inference, 

further impacting protocol designs, network taxonomy, and 
categorization.
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[Fig8]  Spline-based RF cartography using the data set [32]. (a) Detailed floor plan schematic including the location of N 166=  sensing 
radios. The lower panel of (b) shows original measurements spanning 14 frequency subbands while the center panel of (b) shows the 
estimated maps over the surveyed area. The top panel of (b) shows extrapolated maps. The proposed estimator is capable of 
recovering the nine (out of 14 total) center frequencies that are being utilized for transmission. It accurately recovers the power levels 
in the surveyed area with a smooth extrapolation to zones where there are no measurements and suggests possible locations for the 
transmitters [8]. (Figure used with permission from [8] and [32].)
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