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Abstract—Given the noiseless superposition of a low-rank
matrix plus the product of a known fat compression matrix times
a sparse matrix, the goal of this paper is to establish deterministic
conditions under which exact recovery of the low-rank and sparse
components becomes possible. This fundamental identifiability
issue arises with traffic anomaly detection in backbone networks,
and subsumes compressed sensing as well as the timely low-rank
plus sparse matrix recovery tasks encountered in matrix decom-
position problems. Leveraging the ability of and nuclear norms
to recover sparse and low-rank matrices, a convex program is
formulated to estimate the unknowns. Analysis and simulations
confirm that the said convex program can recover the unknowns
for sufficiently low-rank and sparse enough components, along
with a compression matrix possessing an isometry property when
restricted to operate on sparse vectors. When the low-rank,
sparse, and compression matrices are drawn from certain random
ensembles, it is established that exact recovery is possible with
high probability. First-order algorithms are developed to solve the
nonsmooth convex optimization problem with provable iteration
complexity guarantees. Insightful tests with synthetic and real
network data corroborate the effectiveness of the novel approach
in unveiling traffic anomalies across flows and time, and its ability
to outperform existing alternatives.

Index Terms—Convex optimization, identifiability, low rank,
sparsity, traffic volume anomalies.

I. INTRODUCTION

L ET be a low-rank matrix [
], and let be

sparse ( , counts the nonzero entries of
its matrix argument). Given a compression matrix
with , and observations

(1)

this paper deals with the recovery of . This task is of
interest, e.g., to unveil anomalous flows in backbone networks
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[32], [36], [54], to reduce the data acquisition time in cardiac
magnetic resonance imaging (MRI) [25], [26], or, to separate
singing voice from its music accompaniment [29], [46]; see
also Section II on motivating applications. In addition, this
fundamental problem is met at the crossroads of compressive
sampling (CS), and the timely low-rank-plus-sparse matrix
decompositions.
In the absence of the low-rank component ( ), one

is left with an under-determined sparse signal recovery problem;
see, e.g., [15], [43] and the tutorial account [16]. When

, the formulation boils down to principal component
pursuit (PCP), also referred to as robust principal component
analysis (PCA) [11], [17], [18], [22]. For this idealized noise-
free setting, sufficient conditions for exact recovery are avail-
able for both of the aforementioned special cases; see also [18]
for state-of-the-art PCP recovery guarantees, even valid when
only a subset of ’s entries are observed. However, the super-
position of a low-rank and a compressed sparse matrix in (1) fur-
ther challenges identifiability of . Along these lines,
the compressive PCP formulation in [51] aims at recovering a
target matrix that is a superposition of low-rank and sparse com-
ponents, from a (small) set of linear measurements; see also [2]
for a related approach. In the presence of “dense” noise, stable
reconstruction of the low-rank and sparse matrix components
is possible via PCP [53], [55]. Earlier efforts dealing with the
recovery of sparse vectors in noise led to similar performance
guarantees; see, e.g., [7] and references therein. Even when
is nonzero, one could envision a CS variant where the measure-
ments are corrupted with correlated (low-rank) noise [19]. Last
but not least, when and is noisy, the recovery of

subject to a rank constraint is nothing else than PCA—ar-
guably, the workhorse of high-dimensional data analysis [31].
The main contribution of this paper is to establish that given
and in (1), for small enough and , one can exactly re-

cover by solving the nonsmooth convex optimization
problem

where is a tuning parameter; is the
nuclear norm of ( stands for the th singular value); and,

denotes the -norm. The aforementioned
norms are convex surrogates to the rank and -norm, respec-
tively, which albeit natural as criteria they are NP-hard to op-
timize [20], [40]. Recently, a greedy algorithm for recovering
low-rank and sparse matrices from compressive measurements

0018-9448/$31.00 © 2013 IEEE



MARDANI et al.: RECOVERY OF LOW-RANK PLUS COMPRESSED SPARSE MATRICES 5187

was put forth in [50]. However, convergence of the algorithm
and its error performance are only assessed via numerical simu-
lations. A recursive online algorithm can be found in [19], which
attains good performance in practice but does not offer theoret-
ical guarantees; see also [38].
A deterministic approach along the lines of [17] is adopted

first to derive conditions under which (1) is locally identifiable
(see Section III). Introducing a notion of incoherence between
the additive components and , and resorting to the re-
stricted isometry constants (RICs) of [15], sufficient condi-
tions are obtained to ensure that (P1) succeeds in exactly recov-
ering the unknowns (see Section IV-A). Intuitively, the results
here assert that if and are sufficiently small, the nonzero en-
tries of are sufficiently spread out, and subsets of columns of
behave as isometries, then (P1) exactly recovers .

As a byproduct, recovery results for PCP and CS are also ob-
tained by specializing the aforesaid conditions accordingly (see
Section IV-B). However, these induced recovery guarantees are
weaker than those recently obtained for PCP and CS by relying
on state-of-the-art analysis techniques tailored to these specific
problems; see, e.g., [18], [43], and references therein. The proof
of the main result builds on Lagrangian duality theory [5], [10],
to first derive conditions under which is the unique
optimal solution of (P1) (see Section V-A). In a nutshell, sat-
isfaction of the optimality conditions is tantamount to the ex-
istence of a valid dual certificate. Stemming from the unique
challenges introduced by , the dual certificate construction
procedure of Section V-B is markedly distinct from the direct
sum approach in [17], and the (random) golfing scheme of [11].
Section VI shows that low-rank, sparse, and compression ma-
trices drawn from certain random ensembles satisfy the suffi-
cient conditions for exact recovery with high probability.
Two batch iterative algorithms for solving (P1) are devel-

oped in Section VII, based on the accelerated proximal gradient
(APG) method [4], [34], [41], [42], and the alternating-direc-
tion method of multipliers (AD-MoM) [6], [10]. Decentralized
and online algorithms were put forth in the companion papers
[37] and [38]. These are useful when rows of are distributed
over a network, and for real-time processing of streaming data
(columns of ), respectively. Numerical tests corroborate
the exact recovery claims, and the effectiveness of (P1) in
unveiling traffic volume anomalies from real network data
(see Section VIII). While the obtained sufficient conditions
for exact recovery may be violated in the anomaly detection
context of Section II-A, the encouraging results obtained in
Section VIII-B suggest that there is room for improving these
conditions. Section IX concludes this paper with a summary
and a discussion of limitations, possible extensions, and inter-
esting future directions. Technical details are deferred to the
Appendix.

A. Notational Conventions

Bold uppercase (lowercase) letters will denote matrices
(column vectors), and calligraphic letters will denote sets.
Operators , , , , , , ,
and will denote transposition, matrix pseudoinverse, matrix
trace, matrix vectorization, diagonal matrix, spectral radius,

minimum singular value, and Kronecker product, respec-
tively; will be used for the cardinality of a set and the
magnitude of a scalar. The identity matrix will be
represented by and its th column by , while de-
notes the vector of all zeros, and . The

-norm of vector is
for . For matrices , define the
trace inner product . Also, recall
that is the Frobenious norm,

is the -norm, is
the -norm, and is the nuclear norm.
In addition,
denotes the induced -norm, and likewise for the induced
-norm, .

For the linear operator , define the operator norm
, which subsumes the spectral

norm . Define also the support set
. The indicator function

equals one when , and zero otherwise.

II. APPLICATIONS

This section outlines several application domains that involve
decomposing a data matrix as in (1).

A. Unveiling Network Anomalies Via Sparsity and Low Rank

In the backbone of large-scale networks, origin-to-destination
(OD) traffic flows experience abrupt changes which can result
in congestion and limit the quality of service provisioning of
the end users. These so-termed traffic volume anomalies can be
due to external sources such as network failures, denial of ser-
vice attacks, or, intruders hijacking the network services [32],
[48], [54]. Unveiling such anomalies is a crucial task toward
engineering network traffic. This is a challenging task, how-
ever, since the available data are usually high-dimensional noisy
link-load measurements, which comprise the superposition of
unobservable OD flows as explained next.
Consider a backbone network with topology represented by

the directed graph , where and denote the set of
links and nodes (routers) of cardinality and ,
respectively. The network transports end-to-end flows as-
sociated with specific OD pairs. For backbone networks, the
number of network layer flows is typically much larger than
the number of physical links . Single-path routing is
considered here to send the traffic flow from a source to its in-
tended destination. Accordingly, for a particular flow, multiple
links connecting the corresponding OD pair are chosen to carry
the traffic. Sparing details that can be found in [36], the traffic

carried over links and measured at
time instants can be compactly expressed as

(2)

where the fat routing matrix is fixed
and given, denotes the unknown “clean” traffic flows
over the time horizon of interest, collects the traffic
volume anomalies across flows and time, and cap-
tures measurement errors.
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Common temporal patterns among the traffic flows in addi-
tion to their periodic behavior, render most rows (respectively
columns) of linearly dependent, and thus typically has low
rank [32], [44]. Anomalies are expected to occur sporadically
over time, and only last for short periods relative to the (pos-
sibly long)measurement interval . In addition, only a small
fraction of the flows are supposed to be anomalous at any given
time instant. This renders the anomaly matrix sparse across
rows and columns. Given link measurements and the routing
matrix , the goal is to estimate by capitalizing on the spar-
sity of and the low-rank property of . Since the primary goal
is to recover , define which inherits the low-rank
property from , and consider

(3)

which is identical to (1) modulo small measurement errors
in . If , then (P1) can be used to un-
veil network anomalies, whereas the algorithm outlined in
Section VII-A is more suitable for the noisy setting.
By adopting the model (3), one is neglecting the structure

. However, it is otherwise not clear how could one ef-
ficiently estimate and from measurements as in (2), which
is a more difficult problem. The compressive PCP approach [51]
deals with the recovery of from measurements

, where denotes orthogonal pro-
jection onto a linear subspace . Note that compres-
sive PCP cannot be adopted here since it requires to be
sufficiently incoherent with the orthogonal subspace , a con-
dition which is violated in (2) since is the nullspace of the
fat compression matrix .

B. Dynamic Magnetic Resonance Imaging

As a result of the existing limitations in MRI data-acquisition
time, respiratory motions can severely degrade the quality of
MRI. Consequently, this can result in, e.g., dose-delivery errors
for patients subjected to radiation therapy [52]. Dynamic MRI
aims at resolving the variations of the imaged object by recon-
structing a temporal series of “ground truth” images [35]. As
an illustrative example, consider cardiac MRI which nowadays
serves as a major imaging modality for noninvasive diagnosis of
heart diseases in clinic practice [24]. A critical specification of
cardiacMRI is the simultaneous realization of higher spatial and
temporal resolution. This, in turn, necessitates longer data-ac-
quisition periods, which are however limited by the patient’s
breath-holding time. Inspired by the low intrinsic-dimension-
ality of (cardiac)MRI images [25], devising efficient techniques
to reduce the acquisition time for a prescribed image quality be-
comes an important issue.
Consider each “ground truth” cardiac snapshot as a piece-

wise-constantly discretized image of pixels. Each image can
be modeled as a superposition of a background component and
a motion component [25], [26]. The background component
refers to the temporally stationary or slowly varying part of the
acquired images. Moreover, the motion component captures the
rapidly changing pixels due to heart beating. The spatial struc-
ture of the heart has motivated the adoption of models involving
a (possibly learnt and overcomplete) dictionary, under which the

motion component admits a sparse representation based on few
atoms (columns) of this dictionary [25], [26]. Let
denote the background component of the dynamic MRI frame
acquired at time , and let denote the motion com-
ponent, where is a given overcomplete dictionary,
and a sparse vector of coefficients. The MRI acquisition pro-
cedure entails measuring Fourier coefficients of the image, and
only a subset of size of Fourier coefficients is sampled
to reduce the data acquisition time. Accordingly, the partial FFT
matrix containing a row-subset of cardinality of
the full FFT matrix maps the image to a subset of its
Fourier coefficients. The scanned temporal sequence of images
in the frequency domain can thus be modeled as

(4)

where accounts for modeling and measurement errors. Col-
lect the components and as columns
of the matrices and , respectively, and recognize that (4)
boils down to (1) upon defining . Notice that it suf-
fices to estimate (rather that ), since in cardiacMRI themain
objective is to reconstruct the motion component , which
offers valuable information to physicians about possible heart
diseases. By the very definition of background component, the
sought matrix is low rank. Also, is sparse by construction
of the dictionary . All in all, adopting (P1) to recover and
subsequently the motion component is well motivated.

C. Face Recognition

Accurately estimating the low-dimensional subspace of a
human’s facial images is an important task in computer vision,
with application to face recognition [3]. In this context, a robust
approach is needed since facial images in the training set tend
to be exposed to different illuminations, and typically suffer
from specularities as well as self-shadowing (e.g., around the
nose and eyes’ areas). Similar to the dynamic MRI setup, a
reasonable model represents each image as the superposition
of a background (shadow-free face) component which has
low rank, and the error (shadow) component which is highly
structured and localized. Model (1) is naturally aligned with
this decomposition, upon learning a (possibly overcomplete)
dictionary under which the error component is
sparsely represented. While PCP has been adopted in [11] to
remove shadows and specularities from face images, (1) offers
a more general alternative. This is because PCP presumes the
sparse errors are independently scattered across the face image.
However, this assumption neglects the fact that shadows and
specularities usually contain certain spatial structure, which can
be better modeled via a suitably learned dictionary of atoms.

D. Separation of Singing Voice From Its Music Accompaniment

Separation of singing voice from its music accompaniment
has wide applicability in areas such as automatic lyrics recog-
nition and alignment, singer identification, and music informa-
tion retrieval [33]. Even though this is an effortless task for the
human auditory system, it is difficult for machines [29]. Let
denote the spectrogram of a given song, which can be naturally
modeled as the superposition of music plus singing-voice com-
ponents. Due to the repetitious nature of music accompaniment,
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the music component has low rank [29], [46]. In contrast, the
singing voice exhibits higher variability, but as it is customary
for speech signals [30], it can be reasonably assumed sparsely
expressible over a proper dictionary of sounds. In a
nutshell, (P1) can be adopted to carry out this decomposition
task, while incorporating nonnegativity constraints on the ma-
trix components is a natural extension since the spectrogram is
inherently nonnegative [46].

III. LOCAL IDENTIFIABILITY

The first issue to address is model identifiability, meaning
that there are unique low-rank and sparse matrices satisfying
(1). If there exist multiple decompositions of into
with low-rank and sparse , there is no hope of recovering

from the data. For instance, if the null space of the fat
matrix contains sparse matrices, there may exist a sparse per-
turbation such that is still sparse and
is a legitimate solution. Another problematic case arises when
there is a sparse perturbation such that is spanned by the
row or column spaces of . Then, has the same rank
as and may still be sparse. As a result, one may pick

as another valid solution. Dealing with
such identifiability issues is the subject of this section.
Let denote the singular value decomposition (SVD) of
, and consider the subspaces: s1)

of the span
of all matrices with either the same column space or row space
as ; s2)
of matrices in with support contained in the support of
; and s3)

. For notational brevity, s1)–s3) will be henceforth de-
noted as . Noteworthy properties of these subspaces
are: i) both and , hence it is possible to directly
compare elements from them; ii) and ; and
iii) if is added to , then .
For now, assume that the subspaces and are also known.

This extra information helps identifiability of (1), because po-
tentially troublesome solutions are lim-
ited to a restricted class. If or ,
that candidate solution is not admissible since it is known a
priori that and . Under these assumptions,
the following lemma puts forth the necessary and sufficient con-
ditions guaranteeing the existence of a unique pair of matrices

, such that can be decomposed ac-
cording to (1) – a notion known as local identifiability [11], [17].
Lemma 1: Given subspaces and matrices

, there is a unique pair such
that if and only if , and

.
Proof: Since by definition and , one can

represent every element in the subspaces and as
and , respectively, where and .
Assume that , and suppose by contradiction
that there exist nonzero perturbations such that

. Then, , meaning that
and belong to the same subspace, which contradicts the

assumption. Conversely, suppose there exists a nonzero
. Clearly, is a feasible solution

where and . This contradicts
the uniqueness assumption. In addition, the condition

ensures that only
when for .
In words, (1) is locally identifiable if and only if the subspaces
and intersect transversally, and the sparse matrices in

are not annihilated by . This last condition is unique to the
setting here and is not present in [11] or [17].
Remark 1 (Orthogonal Projection Operators): Operator

( ) denotes the orthogonal projection of
onto the subspace (orthogonal complement ). It simply
sets those elements of not in to zero. Like-
wise, ( ) denotes the orthogonal projection
of onto the subspace (orthogonal complement ). Let

and denote, respectively, projection
onto the column and row spaces of . It can be shown that

, while the projection onto
the complement subspace is .
In addition, the following identities

(5)

of orthogonal projection operators, such as , will be in-
voked throughout this paper.

A. Incoherence Measures

Building on Lemma 1, alternative sufficient conditions
are derived here to ensure local identifiability. To quantify the
overlap between and , consider the incoherence parameter

(6)

for which it holds that . The lower bound
is achieved when and are orthogonal, while the upper
bound is attained when contains a nonzero element.
Assuming , then represents
the cosine of the angle between and [21]. From Lemma 1,
it appears that guarantees . As
it will become clear later on, tighter conditions on will
prove instrumental to guarantee exact recovery of by
solving (P1).
To measure the incoherence among subsets of columns of ,

which is tightly related to the second condition in Lemma 1, the
RICs come handy [15]. The constant measures the extent
to which a -subset of columns of behaves like an isometry.
It is defined as the smallest value satisfying

(7)

for every with and for some positive normal-
ization constant [15]. For later use, introduce
which measures “how orthogonal” are the subspaces generated
by two disjoint column subsets of , with cardinality and .
Formally, is the smallest value that satisfies

(8)

for every , where and
. The normalization constant plays
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the same role as in . A wide family of matrices with small
RICs have been introduced in e.g., [15].
All the elements are now in place to state this section’s main

result.
Proposition 1: Assume that each column of contains at

most nonzero elements. If and ,
then and .

Proof: Suppose the intersection is non-
trivial, meaning that it contains at least one nonzero matrix

. Then , and consequently (6)
gives rise to which is a contradiction. Likewise,
suppose there exists a nonzero matrix satisfying

, and at least one of its columns contains
nonzero elements. Then, (7) leads to

(9)
which implies , and contradicts the assumption

.

IV. EXACT RECOVERY VIA CONVEX OPTIMIZATION

In addition to , there are other incoher-
ence measures that play an important role in the con-
ditions for exact recovery. Consider a feasible solution

, where
and thus . It may then happen that
and , while

, challenging identifia-
bility when and are unknown. Similar complications will
arise if has a sparse row space that could be confused with
the row space of . These issues motivate defining (recall

)

where . The maximum of is
attained when is in the column [row] space of
for some . Small values of and imply that the
column and row spaces of do not contain the columns of
and sparse vectors, respectively.
Another identifiability issue arises when for some

sparse matrix . In this case, each column of is
spanned by a few columns of . Consider the parameter

A small value of implies that each column of is
spanned by sufficiently many columns of . To understand this
property, consider the SVD . The
th column of is then , and its projection onto
the th column of is

where is the largest singular value of . Since the en-
ergy of is somehow allocated along the direc-
tions , if all the aforementioned projections can be made
arbitrarily small, then sufficiently many nonzero terms in the
expansion are needed to account for all this energy.

A. Main Result

Theorem 1: Consider given matrices and
obeying , with

and . Assume that every row and
column of have at most nonzero elements, and that has
orthonormal rows. If the following conditions:
I) ; and
II)

hold, where

then there exists for which the convex pro-
gram (P1) exactly recovers .
Note that I) alone is already more stringent than the pair of

conditions and needed for local iden-
tifiability (cf., Proposition 1). Satisfaction of the conditions in
Theorem 1 hinges upon the values of the incoherence parame-
ters , and the RICs
and . In particular, are increasing functions
of these parameters, and it is readily observed from I) and II) that
the smaller are, the more likely the conditions are met.
Furthermore, the incoherence parameters are increasing func-
tions of the rank and sparsity level . The RIC is also
an increasing function of , the maximum number of nonzero el-
ements per row/column of . Therefore, for sufficiently small
values of , the sufficient conditions of Theorem 1 can
be indeed satisfied.
It is worth noting that not only , but also the position of the

nonzero entries in plays an important role in satisfying I)
and II). This is manifested through , for which a small value
indicates the entries of are sufficiently spread out, i.e., most
entries do not cluster along a few rows or columns of . More-
over, no restriction is placed on the magnitude of these entries,
since as seen later on it is only the positions that affect optimal
recovery via (P1).
Remark 2 (RowOrthonormality of ): Assuming

is equivalent to supposing that is full-rank. This is because
for a full row-rank , one can premultiply both
sides of (1) with to obtain with orthonormal
rows.
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B. Induced Recovery Results for Principal Components
Pursuit and Compressed Sensing

Before delving into the proof of the main result, it is instruc-
tive to examine how the sufficient conditions in Theorem 1 sim-
plify for the subsumed PCP and CS problems. In PCP, one has

, which implies and so
that one readily arrives at the following result.
Corollary 1: Consider given obeying

, with and . If
the following conditions:

) ; and
)

hold, where

then there exists for which the convex pro-
gram (P1) with exactly recovers .
In Section VI, random matrices drawn from

natural ensembles are shown to satisfy I) and II) with high prob-
ability. In this case, it is possible to arrive at simpler conditions
(depending only on , , and the matrix dimensions) for exact
recovery in the context of PCP; see Remark 6 that compares
Corollary 1 with the existing results for PCP. Corollary 1, on the
other hand, offers general conditions stemming from a purely
deterministic approach. The best deterministic recovery results
for PCP appear to be those reported in [18].
In the CS setting, one has , which implies

. As a result,
Theorem 1 simply boils down to an RIC-dependent sufficient
condition for the exact recovery of as stated next.
Corollary 2: Consider given matrices and

obeying . Assume that the number of nonzero
elements per column of does not exceed . If

(10)

holds, then (P1) with exactly recovers .
To place (10) in context, consider normalizing the rows of
. For such a compression matrix, it is known that

; see, e.g., [43]. Using this bound together with
(10), one arrives at the stricter condition .
This last condition is identical to the one reported in [23], which
guarantees the success of -norm minimization in recovering
sparse solutions to under-determined systems of linear equa-
tions. The conditions have been improved in recent works; see,
e.g., [43] and references therein.

V. PROOF OF THE MAIN RESULT

In what follows, conditions are first derived under which
is the unique optimal solution of (P1). In essence,

these conditions are expressed in terms of certain dual certifi-
cates. Then, Section V-B deals with the construction of a valid
dual certificate.

A. Unique Optimality Conditions

Recall the nonsmooth optimization problem (P1) and its La-
grangian

(11)

where is the matrix of dual variables (multipliers)
associated with the constraint in (P1). From the characterization
of the subdifferential for nuclear- and -norm (see, e.g., [10]),
the subdifferential of the Lagrangian at is given by
(recall that )

(12)

(13)

The optimality conditions for (P1) assert that is an
optimal (not necessarily unique) solution if and only if

This can be shown equivalent to finding the pair
that satisfies: i) ; ii)

; and iii)
. In general, i)–iii) may hold for multiple

solution pairs. However, the next lemma asserts that a slight
tightening of the optimality conditions i)–iii) leads to a unique
optimal solution for (P1). See Appendix A for a proof.
Lemma 2: Assume that each column of contains at most
nonzero elements, as well as and .

If there exists a dual certificate satisfying:
C1)
C2)
C3)
C4)

then is the unique optimal solution of (P1).
The remainder of the proof deals with the construction of a

dual certificate that meets C1)–C4). To this end, tighter condi-
tions [I) and II) in Theorem 1] for the existence of are derived
in terms of the incoherence parameters and the RICs. For the
special case , the conditions in Lemma 2 boil down to
those in [17, Prop. 2] for PCP. However, the dual certificate con-
struction techniques used in [17] do not carry over to the setting
considered here, where a compression matrix is present.

B. Dual Certificate Construction

Condition C1) in Lemma 2 implies that
, for arbitrary (cf., Remark 1). Upon

defining and
, C1) and C2) are equivalent to .

To express in terms of the unre-
stricted matrix , first vectorize to obtain

. Define
and an matrix formed with those

rows of associated with those elements in .
Likewise, define which collects the remaining rows from
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such that for a suitable row permutation
matrix . Finally, let be the vector of length containing
those elements of with indices in . With these
definitions, C1) and C2) can be expressed as
To upper-bound the left hand side of C3) in terms of , use

the assumption to arrive at

Similarly, the left hand side of C4) can be bounded as

In a nutshell, if one can find such that:
c1)
c2)
c3)

hold for some positive , then C1)–C4) would be satisfied as
well.
The final steps of the proof entail: i) finding an appropriate

candidate solution such that c1) holds; and ii) deriving condi-
tions in terms of the incoherence parameters and RICs that guar-
antee meets the required bounds in c2) and c3) for a range of
values. The following lemma is instrumental to accomplishing
i), and its proof can be found in Appendix B.
Lemma 3: Assume that each column of contains at most
nonzero elements, as well as and .

Then, matrix has full row rank, and its minimum singular
value is bounded below as

According to Lemma 3, the least-norm (LN) solution
exists and is given by

(14)

Remark 3 (Candidate Dual Certificate): From the arguments
at the beginning of this section, the candidate dual certificate is

.
The LN solution is an attractive choice, since it facilitates

satisfying c2) and c3) which require norms of to be
small. Substituting the LN solution (14) into the left hand side
of c2) yields (define for notational
brevity)

(15)

Moreover, substituting (14) into the left hand side of c3) results
in

(16)

Next, upper-bounds are obtained for and ; see
Appendix C for a proof.

Lemma 4: Assume that each column and row of contains
at most nonzero elements. If and
hold, then

If the tighter condition I) holds instead, then

Going back to (15)–(16), note that and
, which can be, respectively, upper-bounded as

(17)

(18)

Finally, itself can be bounded above as

(19)

where is due to (5), follows because (thus
) and from the property in (5). Moreover,

is a direct result of the Cauchy–Schwarz inequality, while
and come from (6) and (7), respectively, and the assumption
that number of nonzero elements per column of does not
exceed . All in all,

and (18) becomes

(20)

Upon substituting (17), (20) and the bounds in Lemma 4 into
(15) and (16), one finds that c2) and c3) hold if there exists
such that

(21a)

(21b)

hold. Recognizing that
the left hand side of (21b) can be further

bounded. After straightforward manipulations, one deduces that
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conditions (21a) and (21b) are satisfied for if
, where

Clearly, it is still necessary to ensure so that the
LN solution (14) meets the requirements c1)–c3) [equivalently,
in Remark 3 satisfies C1)–C4) from Lemma 2]. Condition

is equivalent to II) in Theorem 1, and the proof is
now complete.
Remark 4 (Satisfiability): From a high-level vantage point,

Theorem 1 asserts that (P1) recovers when the com-
ponents and are sufficiently incoherent, and the com-
pression matrix has good restricted isometry properties. It
should be noted though that given a triplet in gen-
eral, one cannot directly check whether the sufficient conditions
I) and II) hold, since, e.g., is NP-hard to compute [15].
This motivates finding a class of (possibly random) matrices

satisfying I) and II), the subject dealt with next.

VI. MATRICES SATISFYING THE CONDITIONS FOR
EXACT RECOVERY

This section investigates triplets satisfying
the conditions of Theorem 1, henceforth termed admissible
matrices. Specifically, it will be shown that low-rank, sparse,
and compression matrices drawn from certain random ensem-
bles satisfy the sufficient conditions of Theorem 1 with high
probability.

A. Uniform Sparsity Model

Matrix is said to be generated according to the uniform
sparsity model, when drawn uniformly at random from the col-
lection of all matrices with support size . There is no restriction
on the amplitude of the nonzero entries. An attractive property
of this model is that it guarantees (with high probability) that no
single row or column will monopolize most nonzero entries of
, for sufficiently large and appropriate scaling of the spar-

sity level. This property is formalized in the following lemma
(for simplicity in exposition, it is henceforth assumed that
is a square matrix, i.e., ).
Lemma 5 [17]: If is generated according to

the uniform sparsity model with , then the max-
imum number of nonzero elements per column or row of
is bounded as

with probability higher than , for .
In practice, it is simpler to work with the Bernoulli model that

specifies , where are in-
dependent and identically distributed (i.i.d.) Bernoulli random
variables taking value one with probability , and
zero with probability . There are three important obser-
vations regarding the Bernoulli model. First, is a
random variable, whose expected value is and matches the
uniform sparsity model. Second, arguing as in [11, Lemma 2.2],

one can claim that if (P1) exactly recovers from data
, it will also exactly recover from
when and the nonzero

entries coincide. Third, following the logic of [14, Sec. II.C],
one can prove that the failure rate1 for the uniform sparsity
model is bounded by twice the failure rate corresponding to the
Bernoulli model. As a result, any recovery guarantee established
for the Bernoulli model holds for the uniform sparsity model as
well.
In addition to the bound for in Lemma 5, the Bernoulli

model can be used to bound in terms of the inco-
herence parameters and the RIC . For a
proof, see Appendix D.
Lemma 6: Let

and . Suppose is generated ac-
cording to the Bernoulli model with , and

. Then, there exist positive constants and such
that

(22)

holds with probability at least if and the
right-hand side of (22) do not exceed one.2

Consider (22) when is small enough so that the quantity in-
side the square brackets is close to one. One obtains

, which reduces to the bound
derived in [11, Sec. 2.5] for the special case . Hence,

the price paid in terms of coherence increase due to is roughly
. As expected, (22) also shows that

for with small RICs the incoherence between subspaces
and becomes smaller, and identifiability is more likely.
The result in Lemma 6 allows one to “eliminate”

from the sufficient conditions in Theorem 1, which can thus
be expressed only in terms of and
the RICs of . In the following sections, random low-rank and
compression matrices giving rise to small incoherence parame-
ters and RICs are described.

B. Random Orthogonal Model

Among other implications, matrices and with small
and are such that the columns of (approx-

imately) fall outside the column space of . From a design
perspective, this suggests that the choice of an admissible
(or, in general, an ensemble of low-rank matrices) should take
into account the structure of , and vice versa. However, in the
interest of simplicity, one could seek conditions dealing with

and separately, that still ensure and
are small. This way one can benefit from the existing theory on
incoherent low-rank matrices developed in the context of ma-
trix completion [13], and matrices with small RICs useful for
CS [14], [43]. Admittedly, the price paid is in terms of stricter
conditions that will reduce the set of admissible matrices.

1The failure rate is defined as , where is the solution of (P1).
2Even though one has and in the problem studied here,

Lemma 6 is stated using and to retain generality.
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In this direction, the next lemma bounds and
in terms of , and

.
Lemma 7: If , it then holds

that

(23)

(24)

Proof: Starting from the definition

(25)

where follows from the Cauchy–Schwarz inequality, and
from the definition of .
Likewise, applying the definition of , one obtains

(26)

where follows from the Cauchy–Schwarz inequality, and
is due to (25).
The bounds (23) and (24) are proportional to and .

This prompts one to consider incoherent rank- matrices
generated from the random orthogonal model, which is

specified as follows. The singular vectors forming the columns
of and are drawn uniformly at random from the collection
of rank- partial isometries in and , respectively.
There is no need for and to be statistically independent,
and no restriction in placed on the singular values in the diag-
onal of . The adequacy of the random orthogonal model in
generating incoherent low-rank matrices is justified by the fol-
lowing lemma (recall ).
Lemma 8 [17]: If is generated ac-

cording to the random orthogonal model with ,
then

with probability exceeding .

C. Random Compressive Matrices

With reference to Lemma 7 [cf., (23) and (24)], it is clear that
an incoherent alone may not suffice to yield small
and . In addition, should be as close
as possible to one. This can be achieved, e.g., when is sparse
across each column. Note that the lower bound of unity is at-
tained when has at most a single nonzero element per column,
as it is the case when .

The aforementioned observations motivate considering
block-diagonal compression matrices , consisting
of blocks where . The number of blocks
is assuming that divides . The th block is
generated according to the bounded orthonormal model as
follows; see, e.g., [43]. For some positive constant , (deter-
ministically) choose a unitary matrix with bounded
entries

(27)

where . For each form
, where is a random

row subsampling matrix that selects the rows of indexed by
. In words, is formed by

those rows of indexed by . The row indices in
are selected independently at random, with uniform probability

from . By construction, , which
ensures as required by Theorem 1.Most importantly,
the next lemma states that such a construction of leads to
small RICs with high probability; see, e.g., [43] for the proof.
Lemma 9 [43]: Let be generated according to the

bounded orthonormal model. If for some ,
and , the following condition

(28)

holds where the constant , then with
probability greater than .
Lemma 9 asserts that for large enough , the RIC

with overwhelming
probability.
Let denote the maximum number of nonzero elements

per “trimmed” column of , the trimming being defined by
the block of rows of that are multiplied by when car-
rying out the product . With these definitions, the RIC of
is bounded as . For to be

small as required by Theorem 1, should be much smaller
than . Since is generated according to the uniform spar-
sity model outlined in Section VI-A, its nonzero elements are
uniformly spread across rows and columns as per Lemma 5.
Formally, it holds that with prob-
ability , where ; see, e.g.,
[8]. Accordingly, from Lemma 9, one can infer that

with high probability.
Note that the bound for depends on through the vari-
able in , and the relationship between and in Lemma 5.
Regarding the RIC , it is bounded as
[15]. The normalization constant in (7) and (8) also equals

. Recalling (cf., Lemma 7) which was subject
of the initial discussion in this section, it turns out that for such
a construction of , one obtains .
Remark 5 (Row and Column Permutations): The class of

admissible compression matrices can be extended to matrices
which are block diagonal up to row and column permutations.
Let ( ) denote, respectively, the row (column) permutation
matrices that render block diagonal. Instead of (1), consider

and note that has the
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same coherence parameters as , while has the same
RICs as , and is still uniformly sparse. Thus, one can
feed the transformed data to (P1), and since and are in-
vertible, can be readily obtained from the recovered

.

D. Closing the Loop

According to Lemmata 6 and 7, the incoherence param-
eters , , and which play a critcal
role toward exact decomposability in Theorem 1, can be
upper-bounded in terms of and . For random ma-
trices drawn from specific ensembles, Lemmata
5, 8, and 9 assert that the incoherence parameters and

as well as the RICs and , are bounded
above in terms of , the degree of sparsity

, and the underlying matrix dimensions .
Alternative sufficient conditions for exact recovery, expressible
only in terms of the aforementioned basic parameters, can be
obtained by combining the bounds of this section along with
I) and II) in Theorem 1 . Hence, in order to guarantee that
(P1) recovers with high probability and for given
matrix dimensions, it suffices to check feasibility of a set of
inequalities in and .
To this end, focus on the asymptotic case where and are

large enough, while for simplicity in exposition. Recall
the conditions of Theorem 1 and suppose and

. This results in and when
. Satisfaction of I) and II) then requires summands

in both sides of II) when multiplied with , which gives
rise to , ,
and . The latter which is indeed the bot-
tleneck constraint can be satisfied if ,

, ,
, and . Utilizing the bounds in

Lemmata 6–9 establishes the next corollary.
Corollary 3: Consider given matrices and

obeying , where and
. Suppose that: (i) is generated according to

the random orthogonal model; (ii) is generated according to
the uniform sparsity model; and (iii)
with blocks generated according to the bounded or-
thogonal model. Define . If and satisfy:
i)

ii)

iii)

there is a positive for which (P1) recovers with high
probability.
Remark 6 (Results for PCP): For an ensemble of randomma-

trices , the induced recovery results for PCP in Corol-
lary 1 are simplified and compared here with those obtained
in [11], [17], and [18]. To be aligned with [11] and [18], the
-incoherent low-rank matrix model in [11] is adopted for ,
where , and
for some constant . Matrix is also drawn from the

uniform sparsity model outlined in Section VI-A. From Corol-
lary 1 and the results in Lemmata 5 and 6, it follows that

suffices for exact recovery with high proba-

bility. In particular, if , the pair should only satisfy
. In contrast, results in [17] only offer recovery guar-

antees for rank and sparsity levels up to , which
are weaker than those derived from Corollary 1 as . The
results in [17] have been improved in [18, Th. 3], which allows
rank and sparsity levels up to as obtained from
Corollary 1. Note that Corollary 1, [17], and [18] offer deter-
ministic reconstruction guarantees, where [18] yields the best
results. Still in the aforementioned random setting, the condi-
tion induced from Corollary 1 is comparable with [18] thanks
to the existing tight probabilistic bounds for . The re-
sults in [11] however, build on the uniform sparsity model for
, and provide superior probabilistic guarantees up to

and .
It is worth noting that in the presence of the compression

matrix , more stringent conditions are imposed on the rank and
sparsity level, as stated in Corollary 3. This is mainly because
of the dominant summand in (cf.,
Theorem 1), which limits the extent to which and can be
increased. If the correlation between any two columns of is
small, then higher rank and less sparse matrices can be exactly
recovered.

VII. ALGORITHMS

This section deals with iterative algorithms to solve the non-
smooth convex optimization problem (P1).

A. APG Algorithm

The class of APG algorithms were originally studied in
[41] and [42], and they have been popularized for -norm
regularized regression; mostly due to the success of the fast
iterative shrinkage-thresholding algorithm [4]. Recently, APG
algorithms have been applied to matrix-valued problems such
as those arising with nuclear-norm regularized estimators for
matrix completion [49], and for (stable) PCP [34], [55]. APG
algorithms offer several attractive features, most notably a
convergence rate guarantee of iterations to return an
–optimal solution. In addition, APG algorithms are first-order
methods that scale nicely to high-dimensional problems arising
with large networks.
The algorithm developed here builds on the APG iterations in

[34] proposed to solve the stable PCP problem. One can relax
the equality constraint in (P1) and instead solve

with , where the least-square term penalizes vio-
lations of the equality constraint, and is a penalty coeffi-
cient. When approaches zero, (P2) achieves the optimal solu-
tion of (P1) [5]. The gradient of
is Lipschitz continuous with a (minimum) Lipschitz constant



5196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

, i.e.,
, in the domain of .

Instead of directly optimizing the cost in (P2), APG algo-
rithms minimize a sequence of overestimators, obtained at ju-
diciously chosen points . Define
and form the quadratic approximation

(29)

where . With denoting
iterations, APG algorithms generate the sequence of iterates

(30)

where the second equality follows from the fact that the
last two summands in (29) do not depend on . There are
two key aspects to the success of APG algorithms. First,
is the selection of the points where the sequence
of approximations are formed, since these
strongly determine the algorithm’s convergence rate. The
choice , where

, has been shown to signif-
icantly accelerate the algorithm resulting in convergence rate
no worse than [4]. The second key element stems
from the possibility of efficiently solving the sequence of
subproblems (30). For the particular case of (P2), note that (30)
decomposes into

(31)

(32)

where . Letting with th
entry given by denote the soft-
thresholding operator, and the singular
value decomposition of matrix , it follows that (see, e.g.,
[34])

(33)

A continuation technique is employed to speed-up conver-
gence of the APG algorithm. The penalty parameter is ini-
tialized with a large value , and is decreased geometrically
until it reaches the target value of . The APG algorithm is

tabulated as Algorithm 1. Similar to [34] and [49], the itera-
tions terminate whenever the norm of in (34) at the
bottom of the page drops below some prescribed tolerance, i.e.,

. As detailed in [49],
the quantity upper bounds the distance between the
origin and the set of subgradients of the cost in (P2), evaluated
at .
Before concluding this section, it is worth noting that Algo-

rithm 1 has good convergence performance, and quantifiable
iteration complexity as asserted in the following proposition
adapted from [4] and [34].
Proposition 2 [34]: Let and denote, respec-

tively, the cost and an optimal solution of (P2) when .
For , the iterates generated
by Algorithm 1 satisfy

Algorithm 1: APG solver for (P1)

input

initialize , ,
, and set .

while not converged do

.

.

.

.

, .

.

end while

return ,

B. AD-MoM Algorithm

The AD-MoM is an iterative augmented Lagrangian method
especially well-suited for parallel processing [6], which has

(34)
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been proven successful to tackle the optimization tasks en-
countered e.g., in statistical learning problems [9], [39]. While
the AD-MoM could be directly applied to (P1), couples the
entries of and it turns out this yields more difficult -norm
minimization subproblems per iteration. To overcome this
challenge, a common technique is to introduce an auxiliary (de-
coupling) variable , and formulate the following optimization
problem

(35)

(36)

which is equivalent to (P1). To tackle (P3), associate Lagrange
multipliers and with the constraints (35) and (36), respec-
tively. Next, introduce the quadratically augmented Lagrangian
function

(37)

where is a positive penalty coefficient. Splitting the primal
variables into two groups and , the AD-MoM
solver entails an iterative procedure comprising three steps per
iteration

[S1] Update dual variables:

(38)

(39)

[S2] Update first group of primal variables:

(40)

(41)

[S3] Update second group of primal variables:

(42)

This three-step procedure implements a block-coordinate de-
scent on the augmented Lagrangian, with dual variable updates.
The minimization (40) can be recast as (31), hence
is iteratively updated through singular value thresholding.
Likewise, (41) can be put in the form (32) and the entries of

are updated via parallel soft-thresholding operations.
Finally, (42) is a strictly convex unconstrained quadratic pro-
gram, whose closed-form solution is obtained as the root of the

linear equation corresponding to the first-order condition for
optimality. The AD-MoM solver is tabulated under Algorithm
2. Suitable termination criteria are suggested in [9, p. 18].
Conceivably, can be quite large, thus inverting the

matrix to update could be com-
plex computationally. Fortunately, the inversion needs to be
carried out once, and can be performed and cached offline.
In addition, to reduce the inversion cost, the SVD of the
compression matrix can be obtained first,
and the matrix inversion lemma can be subsequently em-
ployed to obtain , where

and .
Finally, note that the AD-MoM algorithm converges to the
global optimum of the convex program (P1) as stated in the
next proposition.
Proposition 3 [6]: For any value of the penalty coefficient
, the iterates converge to the optimal solu-

tion of (P1) as .

Algorithm 2: AD-MoM solver for (P1)

input

initialize ,
, and set .

while not converged do

[S1] Update dual variables:

[S2] Update first group of primal variables:

,

.

.

[S3] Update second group of primal variables:

end while

return

Before moving on to performance evaluation, a couple of re-
marks are in order.
Remark 7 (Tradeoff Between Stability and Convergence

Rate): The APG algorithm exhibits a convergence rate guar-
antee of [41], while AD-MoM only attains
[27]. For the problem considered here, APG needs an ap-
propriate continuation technique to achieve the predicted
performance [34]. Extensive numerical tests with Algorithm
1 suggest that the convergence rate can vary considerably
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for different choices, e.g., of the matrix . The AD-MoM
algorithm on the other hand exhibits less variability in terms of
performance and only requires tuning . It is also better suited
for the constrained formulation (P1), since it does not need to
resort to a relaxation.
Remark 8 (Distributed Algorithms): In the anomaly detec-

tion context outlined in Section II-A, implementing Algorithms
1 and 2 presume that network nodes communicate their local
link traffic measurements to a central monitoring station, which
uses their aggregation in to unveil anomalies. While for the
most part this is the prevailing operational paradigm adopted
in current networks, there are limitations associated with this
architecture. For instance, fusing all this information may en-
tail excessive communication overhead. Moreover, minimizing
the exchanges of raw measurements may be desirable to re-
duce unavoidable communication errors that translate to noise
and missing data. Performing the optimization in a centralized
fashion also raises robustness concerns, since the central moni-
toring station represents an isolated point of failure. These rea-
sonsmotivate devising fully distributed algorithms for unveiling
anomalies in large scale networks, whereby each node carries
out simple computational tasks locally, relying only on its local
measurements and messages exchanged with its directly con-
nected neighbors. This is the subject dealt with in an algorithmic
companion paper [37], which puts forth a general framework for
in-network sparsity-regularized rank minimization.

VIII. PERFORMANCE EVALUATION

The performance of (P1) is assessed in this section via com-
puter simulations.
Selection of Tuning Parameters: Theorem 1 provides a

range of parameters such that (P1) exactly
recovers in (1). However, it may be infeasible to
compute , since they depend on e.g.,
which is NP-hard to evaluate [15]. Besides, in practice,
the observations (1) are typically contaminated with noise

[cf., (3)]. To account for the noise, the opti-
mization problem (P2) is considered, where for convenience
the sparsity and rank-controlling parameters are redefined
here as and , respectively. To tune

, a simple strategy is to optimize the relative error
, with and denoting the true and

estimated sparse matrices, respectively. In particular, one needs
to perform a grid search over the bounded two-dimensional
region .
The corresponding bounds are derived from the optimality
conditions for (P2), which indicate that for the
optimal solution is .
Practical rules that do not require knowledge of can be

devised along the lines of [2] and [12]. Supposing that the true
values are zero, choosing and , the
estimator (P2) outputs . In gen-
eral, this choice mitigates noise, but it may overshrink the true
values. To avoid overshrinking, these parameters can be chosen
close to their corresponding lower bounds, e.g., pick
and . One can further simplify the candidate
parameters by making the following reasonable assumptions:
i) Gaussian noise , and ii) large dimensions

Fig. 1. Relative error for various values of and
, where , , and . White represents exact recovery
( ), while black represents .

. It is then known that
, almost surely, see, e.g., [12], and thus, one can pick

. Also, large deviation tail bounding implies that
with high probability,

which suggests selecting . No-
tice that in the noiseless case ( ) one can pick

.

A. Exact Recovery

Data matrices are generated according to .
The low-rank component is generated from the bilinear fac-
torization model , where and are and

matrices with i.i.d. entries drawn from Gaussian distribu-
tions and , respectively. Every entry of

is randomly drawn from the set with
. The columns of

comprise the right singular vectors of the random matrix
, with i.i.d. Bernoulli entries with parameter (cf.,

Remark 2). The dimensions are , , and
. To demonstrate that (P1) is capable of recovering the

exact values of , the optimization problem is solved
for a wide range of values of and using the APG algorithm
(cf., Algorithm 1).
Let denote the solution of (P1) for a suitable value of
. Fig. 1 depicts the relative error in recovering , namely

for various values of and . It is apparent
that (P1) succeeds in recovering for sufficiently sparse
and low-rank from the observed data . Interestingly, in
cases such as or , there
is hope for recovery. In this example, one can exactly recover

when and .
A similar trend is observed for the recovery of , and the cor-
responding plot is omitted to avoid unnecessary repetition. For
different sizes of the matrix , performance results averaged
over ten realizations of the experiment are listed in Table I. The
smaller the compression ratio becomes, less observations
are available and performance degrades accordingly. In partic-
ular, the error performance degrades significantly for a chal-
lenging instance where and
(cf., the last row of Table I).
The results of [11] and [17] assert that exact recovery of

from the observations is possible
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TABLE I
RECOVERY PERFORMANCE BY VARYING THE SIZE OF

WHEN AND

Fig. 2. Network topology graph.

under some technical conditions. Even though the algorithms
therein are not directly applicable here due to the presence of
, one may still consider applying PCP after suitable prepro-

cessing of . One possible approach is to find the LS estimate
of the superposition as , and then feed a
PCP algorithm with to obtain . Comparisons be-
tween (P1) and the aforesaid two-step procedure are summa-
rized in Table II. It is apparent that the heuristic performs very
poorly, which is mainly due to the null space of matrix (when

) that renders LS estimation inaccurate.

B. Unveiling Network Anomalies

Synthetic Network Data: A network of agents
is considered as a realization of the random geometric graph
model, i.e., agents are randomly placed on the unit square and
two agents communicate with each other if their Euclidean
distance is less than a prescribed communication range of 0.35;
see Fig. 2. The network graph is bidirectional and comprises

links, and OD flows. For each
candidate OD pair, minimum hop count routing is considered
to form the routing matrix . With , matrices
are generated as explained in Section VIII-A. With reference
to (2), the entries of are i.i.d., zero-mean, Gaussian with
variance , i.e., .
Real Network Data: Real data including OD flow traffic

levels are collected from the operation of the Internet2 network
(Internet backbone network across USA) [1]. OD flow traffic
levels are recorded for a three-week operation of Internet2
during Dec. 8–28, 2008 [32]. Internet2 comprises
nodes, links, and flows. Given the OD
flow traffic measurements, the link loads in are obtained

through multiplication with the Internet2 routing matrix [1].
Even though is “constructed” here from flow measurements,
link loads can be typically acquired from simple network
management protocol traces [48]. The available OD flows
are a superposition of “clean” and anomalous traffic, i.e., the
sum of unknown “ground-truth” low-rank and sparse matrices

adhering to (2) when . Therefore, PCP
is applied first to obtain an estimate of the “ground-truth”

. The estimated exhibits three dominant singular
values, confirming the low-rank property of .
Comparison With the PCA-Based Method: To highlight the

merits of the proposed anomaly detection algorithm, its perfor-
mance is compared with the workhorse PCA-based approach of
[32]. The crux of this method is that the anomaly-free data is ex-
pected to be low-rank, whereas the presence of anomalies con-
siderably increases the rank of . PCA requires a priori knowl-
edge of the rank of the anomaly-free traffic matrix and is unable
to identify multiple anomalous flows, i.e., the scope of [32] is
limited to a single anomalous flow per time slot. Different from
[32], the developed framework here enables identifying mul-
tiple anomalous flows per time instant. To assess performance,
the detection rate will be used as figure of merit, which mea-
sures the algorithm’s success in identifying anomalies across
both flows and time.
For the synthetic data case, ROC curves are depicted in Fig. 3

(top), for different values of the rank required to run the PCA-
based method. It is apparent that the proposed scheme detects
accurately the anomalies, even at low false alarm rates. For the
particular case of and , Fig. 3 (bottom)
illustrates the magnitude of the true and estimated anomalies
across flows and time. Similar results are depicted for the In-
ternet2 data in Fig. 4, where it is also apparent that the proposed
method markedly outperforms PCA in terms of detection per-
formance. For an instance of and , Fig. 4
(bottom) shows the effectiveness of the proposed algorithm in
terms of unveiling the anomalous flows and time instants.
Remark 9 (Incoherence Conditions): For the matrices in-

volved in the anomaly detection problem, some of the incoher-
ence conditions required by Theorem 1 may not hold. For in-
stance, with [cf., (2)], quantity may not
be small enough. In addition, it is challenging to find binary

routing matrices with desirable RICs. Still, the conditions
in Theorem 1 are only sufficient and the numerical tests in this
section demonstrate that the proposed algorithm performs well
in practice. This observation naturally motivates follow-up re-
search aimed at closing this gap between theory and practice.

IX. CLOSING COMMENTS

This paper deals with recovery of low-rank plus compressed
sparse matrices via convex optimization. The corresponding
task arises with network traffic monitoring, dynamic MRI, and
singing voice separation from music accompaniment, while it
encompasses compressive sampling and principal components
pursuit. To estimate the unknowns, a convex optimization
program is formulated that minimizes a tradeoff between the
nuclear and -norm of the low-rank and sparse components,
respectively, subject to a data modeling constraint. A determin-
istic approach is adopted to characterize local identifiability and
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TABLE II
PERFORMANCE COMPARISON OF LS-PCP AND ALGORITHM 1 AVERAGED OVER TEN RANDOM REALIZATIONS

Fig. 3. Performance for synthetic data. (Top) ROC curves of the proposed
versus the PCA-based method with , and . (Bottom)
Amplitude of the true and estimated anomalies for and

. Lines with open and filled circle markers denote the true and estimated
anomalies, respectively.

sufficient conditions for exact recovery via the aforementioned
convex program. Intuitively, the obtained conditions require: i)
incoherent, sufficiently low-rank and sparse components; and
ii) a compression matrix that behaves like an isometry when
operating on sparse vectors. Because these conditions are in
general NP-hard to check, it is shown that matrices drawn
from certain random ensembles can be recovered with high
probability. First-order iterative algorithms are developed to
solve the nonsmooth optimization problem, which converge
to the globally optimal solution with quantifiable complexity.
Numerical tests with synthetic and real network data corrobo-
rate the effectiveness of the novel approach in unveiling traffic
anomalies across flows and time.
One can envision several extensions to this work, which pro-

vide new and challenging directions for future research. For in-
stance, it seems that the requirement of an orthonormal com-
pression matrix is only a restriction imposed by the method of
proof utilized here. There should be room for tightening the
bounds used in the process of constructing the dual certificate,
and hence obtain milder conditions for exact recovery. Building
on [18] and [55], it would also be interesting to study stability of

Fig. 4. Performance for Internet2 network data. (Top) ROC curves of the pro-
posed versus the PCA-based method. (Bottom) Amplitude of the true and esti-
mated anomalies for and . Lines with open and filled
circle markers denote the true and estimated anomalies, respectively.

the proposed estimator in the presence of noise andmissing data.
In addition, one is naturally tempted to search for a broader class
of matrices satisfying the exact recovery conditions, including
e.g., non block-diagonal and binary routing (compression) ma-
trices arising with the network anomaly detection task.

APPENDIX

A. Proof of Lemma 2

Suppose is an optimal solution of (P1). For the nu-
clear norm and the -norm at point , pick the subgra-
dients and , respectively, satisfying
the optimality condition

(43)

Consider a feasible solution for arbitrary
nonzero . The subgradient inequality yields
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To guarantee uniqueness, must be positive. Rearranging
terms, one obtains

(44)
The value of can be chosen such that

. This is because,
; thus, there ex-

ists a such that . One can
then choose since
and . Similarly, if one selects

, which satisfies and
, then . Now, using (43),

(44) is expressed as

From the triangle inequality
, it thus follows that

(45)

Since , it is deduced that
. Likewise,

yields
. As a result

(46)

Now, if and , since
and , there is no for
which , and therefore, .
Since and are related through (43), upon defining

, which is indeed the dual variable for (P1), one
can arrive at conditions C1)–C4).

B. Proof of Lemma 3

To establish that the rows of are linearly independent, it
suffices to show that , for all nonzero .
It is then possible to bound

(47)

where follows from the triangle inequality, and from
(6). The assumption along with the fact that no
column of has more than nonzero elements, imply that

. Since by assumption, the claim
follows from (47).

To arrive at the desired bound on , recall the defi-
nition of the minimum singular value [28]

In obtaining , the assumption along with the fact
that no column of has more than nonzero elements was used
to ensure that . In addition, and follow from
the definitions (7) and (6), respectively, while follows from
the triangle inequality.

C. Proof of Lemma 4

Toward establishing the first bound, from the submultiplica-
tive property of the spectral norm, one obtains

(48)
Next, upper bounds are derived for both factors on the right-
hand side of (48). First, using the fact that

one arrives at

(49)

Note that is the pseudo-inverse of the full row
rank matrix (cf., Lemma 3), and thus,

[28]. Substituting these two bounds into (48) yields

(50)

In addition, it holds that

(51)

where in and it was used that the rows of are or-
thonormal, and the maximum singular value of a projection ma-
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trix is one. Substituting (51) and the bound of Lemma 3 into (50)
leads to (4).
In order to prove the second bound, first suppose that

. Then, one can write

(52)

In what follows, separate upper bounds are derived for
and . For notational conve-

nience, introduce (respectively, denotes the
set complement). Starting with the numerator in the right-hand
side of (52)

(53)

where
. Following some manipulations, the sum-

mands in (53) can be expressed as

(54)

Upon defining and
, squaring gives rise to

(55)

Since , one can ignore
the third summand in (55) to arrive at

(56)

Toward bounding the scalars and , rewrite
. If , it holds that

; otherwise,

Moreover, . Plugging the
bounds into (56) yields

(57)

Plugging (57) into (53), one arrives at

(58)

after using: i) and consequently when
; and ii) .

Moving on, consider bounding that can be
rewritten as

(59)

In the sequel, an upper bound is derived for (59). Let de-
note the element of associated with in (59). For the first sum-
mand inside the curly brackets in (59), consider lower bounding
the norm of the th row of as

Since and , one obtains
.

For the second summand inside the curly brackets in (59), a
procedure similar to the one used for bounding
is pursued. First, observe that

(60)
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to deduce that, up to a summand corresponding to the index pair
, (60) is identical to the summation in (53). Following

similar arguments to those leading to (57), one arrives at

Putting all the pieces together, (59) is bounded as

(61)
Note that because of the assumption

, as supposed at the begin-
ning of the proof. Substituting (58) and (61) into (52) yields the
desired bound.

D. Proof of Lemma 6

The proof bears some resemblance with those available for
the matrix completion problem [13], and PCP [11]. However,
presence of the compression matrix gives rise to unique chal-
lenges in some stages of the proof, which necessitate special
treatment. In what follows, emphasis is placed on the distinct
arguments required by the setting here.
The main idea is to obtain first an upper bound on the norm

of the linear operator , which is then
utilized to upper bound . The former is
established in the next lemma; see Appendix E for a proof.

Lemma 10: Suppose is drawn ac-
cording to the Bernoulli model with parameter . Let

, and .
Then, there are positive numerical constants and such that

(62)
holds with probability higher than , provided
that the right-hand side is less than one.
Building on (62), it follows that

(63)

where and come from and the triangle in-
equality, respectively. In addition,

(64)

for all . Recalling the definition of the op-
erator norm, it follows from (64) that

. Plugging the bound
(63), the result follows readily.

E. Proof of Lemma 10

Start by noting that

and apply the sampling operator to obtain

where are Bernoulli-distributed i.i.d. random variables
with . Then,

(65)
Moreover, since one finally arrives at

(66)

The next bound will also be useful later on

(67)

where holds because
and (likewise ).

Defining the random variable
and using (66), one can write

(68)

Random variables are i.i.d. with zero mean, and
thus, one can utilize the spectral concentration inequality in [45,
Lemma 3.5] to find

(69)
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for some constant , where is due to (67). Now, ap-
plying Talagrand’s concentration tail bound [47] to the random
variable yields

(70)

for some constant , where and
. The arguments leading to (69) and (70) are similar

those used in [13, Th. 4.2] for the matrix completion problem,
and details are omitted here. Putting (69) and (70) together, it is
possible to infer

(71)

with probability higher than , which completes
the proof of the lemma.
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