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ABSTRACT

Nonparametric methods are widely applicable to statistical learn-
ing problems, since they rely on a few modeling assumptions. In
this context, the fresh look advocated here permeates benefits from
variable selection and compressive sampling, to robustify non-
parametric regression against outliers. A variational counterpart
to least-trimmed squares regression is shown closely related to an
�0-(pseudo)norm-regularized estimator, that encourages sparsity in
a vector explicitly modeling the outliers. This connection suggests
efficient (approximate) solvers based on convex relaxation, which
lead naturally to a variational M-type estimator equivalent to Lasso.
Outliers are identified by judiciously tuning regularization parame-
ters, which amounts to controlling the sparsity of the outlier vector
along the whole robustification path of Lasso solutions. An im-
proved estimator with reduced bias is obtained after replacing the
�0-(pseudo)norm with a nonconvex surrogate, as corroborated via
simulated tests on robust thin-plate smoothing splines.

Index Terms— Robustness, nonparametric regression, outlier
rejection, sparsity, Lasso.

1. INTRODUCTION

Consider the classical problem of function estimation, in which an
input vector x := [x1, . . . , xp]

′ ∈ R
p is given [(·)′ denotes trans-

positon], and the goal is to predict the real-valued scalar response
y = f(x). The unknown function f is to be estimated from a train-
ing data set T := {yi,xi}

N
i=1. When f is assumed belonging to a

family of finitely parameterized functions, standard (non)linear re-
gression techniques can be adopted. If on the other hand, one is only
willing to assume that f belongs to a (possibly infinite dimensional)
space of “smooth” functions H, then a nonparametric approach is
in order, and this will be the focus of this work. Without further
constraints beyond f ∈ H, functional estimation from finite data is
an ill-posed problem. To bypass this challenge, the problem is typi-
cally solved by minimizing appropriately regularized criteria, allow-
ing one to control model complexity; see, e.g., the tutorial treatment
in [3]. It is then further assumed that H has the structure of a repro-
ducing kernel Hilbert space (RKHS), with corresponding positive
definite reproducing kernel function K(·, ·) : R

p × R
p → R, and

norm denoted by ‖ · ‖H [12].
The performance of traditional approaches that minimize the

sum of squared model residuals regularized by a term of the form
‖f‖2

H, is severely degraded in the presence of outliers. This is be-
cause the least-squares (LS) component of the cost is not robust [6].
Recent efforts have considered replacing the squared loss with a ro-
bust counterpart such as Huber’s function, or its variations, but lack
a systematic means of selecting the proper threshold that determines
which datum is considered an outlier [14].
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The starting point here is a variational least-trimmed squares
(VLTS) estimator, suitable for robust function approximation in H.
VLTS is shown closely related to an (NP-hard) �0-(pseudo)norm-
regularized estimator, adopted to fit a regression model that explic-
itly incorporates an unknown sparse vector of outliers [5]. As in
compressive sampling (CS) [11], efficient (approximate) solvers are
obtained by replacing the outlier vector’s �0 (pseudo)norm with its
closest convex approximant, the �1 norm. This leads naturally to a
variational M-type estimator of f , also shown equivalent to a least-
absolute shrinkage and selection operator (Lasso) [10] on the vector
of outliers. A tunable parameter in Lasso controls the sparsity of the
estimated vector, and the number of outliers as a byproduct. Hence,
effective methods to select this parameter are of paramount impor-
tance.

The link between �1-norm regularization and robustness was
also exploited for parameter (but not function) estimation in [5]
and [7]. In [5] however, the selection of Lasso’s tuning parameter is
only justified for Gaussian training data; whereas a rigid value mo-
tivated by CS results is adopted in the Bayesian formulation of [7].
Here instead, a more general and systematic approach is pursued,
building on contemporary algorithms that can efficiently compute
all robustification paths of Lasso solutions, i.e., for all values of the
tuning parameter [2, 4, 13]. In this sense, the method here capitalizes
on but is not limited to sparse settings, since one can examine all
possible sparsity levels along the robustification path. An estimator
with reduced bias and improved generalization capability is obtained
after replacing the �0-(pseudo)norm with a nonconvex surrogate, in-
stead of the �1 norm that introduces bias [10, 15]. Simulated tests
demonstrate the effectiveness of the novel robust estimation method.

2. ROBUST ESTIMATION PROBLEM

The training data in T comprises N noisy samples of f taken at the
input points {xi}

N
i=1, and in the present context they can be possibly

contaminated with multiple outliers. Building on LTS regression [9],
the desired robust estimate f̂ can be obtained as the minimizer of the
following variational (V)LTS counterpart

min
f∈H

s∑
i=1

r2
[i](f) + μ‖f‖2

H (1)

where r2
[i](f) is the i-th order statistic among the squared residu-

als r2
1(f), . . . , r2

N(f), and ri(f) := yi − f(xi). The so-termed
trimming constant s determines the breakdown point of the VLTS
estimator [9], since the largest N − s residuals do not participate in
(1). Ideally, one would like to makeN −s equal to the (typically un-
known) number of outliers No in the sample. The tuning parameter
μ ≥ 0 controls the tradeoff between fidelity to the (trimmed) data,
and the degree of “smoothness” measured by ‖f‖2

H.
Given that the first summand of the cost in (1) is a nonconvex

functional, a nontrivial issue pertains to the existence of the pro-
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posed VLTS estimator. Fortunately, a (conceptually) simple solution
procedure suffices to show that a minimizer does indeed exist. Con-
sider specifically a given subsample of s training data points, say
{yi,xi}

s
i=1, and solveminf∈H

[∑s
i=1 r2

i (f) + μ‖f‖2
H

]
. A unique

minimizer of the form f̂j(x) =
∑s

i=1 βi,jK(x,xi) is guaranteed to
exist, where j is used here to denote the chosen subsample, and the
coefficients {βi,j}

s
i=1 can be obtained by solving a particular linear

system of equations [12, p. 11]. This procedure can be repeated for
each of the J :=

(
N
s

)
subsamples, to obtain a collection {f̂j(x)}J

j=1

of candidate solutions of (1). The winner f̂ := f̂j∗ that yields the
minimum objective value, is the desired VLTS estimator.

Even though conceptually simple, the solution procedure just
described guarantees existence of (at least) one solution, but en-
tails a combinatorial search over all J subsamples. This method
is intractable for moderate to large sample sizes N , since the search
space is combinatorially large.

2.1. VLTS as �0-(pseudo)norm regularized regression

A novel perspective to robust nonparametric regression is introduced
in this section, which explicitly accounts for outliers in the regression
model and allows to establish a neat connection between VLTS and
�0-(pseudo)norm-regularized regression. To model the presence of
outliers, consider the scalar variables {oi}

N
i=1 one per training data

point, which take the value oi = 0 whenever data point i is an inlier,
and oi �= 0 otherwise. The classic regression model can then be
naturally extended to account for the outliers, using

yi = f(xi) + oi + εi, i = 1, . . . , N (2)

where {εi}
N
i=1 are zero-mean i.i.d. random variables modeling the

observation errors. A similar model was advocated under different
assumptions in [5] and [7] for robust parameter estimation in linear
regression models. For an outlier-free data point i, (2) reduces to
yi = f(xi) + εi; thus, εi will be henceforth referred to as inlier
noise. Note that in (2), both f ∈ H as well as theN ×1 vector o :=
[o1, . . . , oN ]′ are unknown, and they have to be jointly estimated.
On the other hand, as outliers are expected to often comprise a small
fraction of the training sample, vector o is typically sparse, i.e., most
of its entries are zero. Sparsity provides valuable side-information
when it comes to efficiently estimating o, identifying outliers as a
byproduct, and consequently performing robust estimation of f . To
this end, the desired estimate f̂ is obtained as the minimizer of

min
f∈H,o

N∑
i=1

(yi − f(xi) − oi)
2 + μ‖f‖2

H + λ0‖o‖0. (3)

where ‖o‖0 denotes the �0-(pseudo)norm, which equals the number
of nonzero entries of o.

Sparsity is directly controlled through the selection of the tun-
ing parameter λ0 ≥ 0. Unfortunately, analogously to related �0-
(pseudo)norm constrained formulations in CS and sparse signal rep-
resentations [11], problem (3) is NP-hard. Supposing that the num-
ber of outliersNo is known, in principle a brute force approach could
be adopted to tackle (3), by trying all

(
N
No

)
support combinations for

o such that ‖o‖0 = No. Similar to VLTS, this procedure becomes
intractable for moderate to large-size problems, yet it demonstrates
the existence of a minimizer. Interestingly, the similarities between
(1) and (3) transcend their complexity, since their solutions coincide
for particular values of λ0 in (3) [8].
Proposition 1: If {f̂ , ô} minimizes (3) with λ0 chosen such that
‖ô‖0 = N − s, then f̂ also solves (1).

Proposition 1 formally justifies model (2) and its estimator (3)
for robust function approximation, in light of the well documented
merits of LTS regression [9]. It further solidifies the connection
between sparse linear regression and robust estimation. Most im-
portantly, the �0-(pseudo)norm regularized formulation in (3) lends
itself naturally to efficient (approximate) solvers based on convex
relaxation, the subject dealt with next.

3. SPARSITY CONTROLLING OUTLIER REJECTION

To overcome the complexity hurdle in solving (3), one can resort to
a suitable relaxation of the objective function. It is useful to recall
that the �1 norm ‖x‖1 :=

∑p
i=1 |xi| of vector x ∈ R

p is the closest
convex approximation of ‖x‖0. This property also utilized in the
context of CS [11], provides the motivation to relax problem (3) to

min
f∈H,o

N∑
i=1

(yi − f(xi) − oi)
2 + μ‖f‖2

H + λ1‖o‖1. (4)

Being a convex optimization problem, (4) can be efficiently solved.
The nondifferentiable �1-norm regularization term controls sparsity
on the estimator of o, a property that has been exploited in diverse
problems in engineering, statistics and machine learning. A note-
worthy representative is the Lasso [10], a popular tool for joint esti-
mation and variable selection in linear regression problems.

It is pertinent to ponder on whether problem (4) still has the po-
tential of providing robust estimates f̂ in the presence of outliers.
The answer is positive, since it is possible to show that (4) is equiv-
alent to a variational M-type estimator [8]

min
f∈H

N∑
i=1

ρ(yi − f(xi)) + μ‖f‖2
H (5)

where ρ is a scaled version of Huber’s convex loss function [6]

ρ(u) :=

{
u2, |u| ≤ λ1/2

λ1|u| − λ2
1/4, |u| > λ1/2

. (6)

Existing works on linear regression have pointed out the equiv-
alence between M-type estimators and �1-norm regularized regres-
sion [5]. However, they have not recognized the connection to LTS
via convex relaxation of (3). Here, the treatment goes beyond linear
regression by considering nonparametric functional approximation
in RKHS. Linear regression is subsumed as a special case, when the
linear kernelK(x,y) := x′y is adopted.

3.1. Solving the relaxed convex problem

Because (4) is jointly convex in f and o, a globally convergent al-
ternating minimization (AM) algorithm can be adopted to solve (4).
As shown in [8], AM iterations boil down to a sequence of linear
systems and soft-thresholding operations. Such an algorithm is also
conceptually interesting, since it explicitly reveals the intertwining
between the outlier identification process, and the estimation of the
regression function with the appropriate outlier-compensated data
{yi − oi}

N
i=1. Next, it is established that an alternative to an AM

algorithm, is to solve a single instance of Lasso [8].
Proposition 2: Consider ôLasso defined as

ôLasso := arg min
o

‖Xμy −Xμo‖2
2 + λ1‖o‖1 (7)
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where y := [y1, . . . , yN ]′ and

Xμ :=

[
IN −K (K + μIN )−1

(μK)1/2 (K + μIN )−1

]
. (8)

The kernel matrix K ∈ R
N×N has entries [K]ij := K(xi,xj),

while IN denotes the N × N identity matrix. Then the minimiz-
ers {f̂ , ô} of (4) can be specified given ôLasso, as ô := ôLasso and
f̂(x) =

∑N
i=1 β̂iK(x,xi), with β̂ = (K + μIN )−1 (y− ôLasso).

The result in Proposition 2 opens the possibility for effective
methods to select λ1. These methods to be described in detail in the
ensuing section, capitalize on recent algorithmic advances on Lasso
solvers, which allow one to efficiently compute ôLasso for all values
of the tuning parameter λ1 [2, 4, 13]. This is crucial for obtaining
satisfactory robust estimates f̂ , since controlling the sparsity in o by
tuning λ1 is tantamount to controlling the number of outliers.

3.2. Selection of the tuning parameters: robustification paths

The tuning parameters μ and λ1 in (4) control the degree of smooth-
ness in f̂ and the number of outliers (nonzero entries in ôLasso),
respectively. In the contexts of regularization networks [3] and
Lasso estimation for regression [10], corresponding tuning param-
eters are typically selected via model selection techniques such as
cross-validation, or, by minimizing the prediction error over an in-
dependent test set, if available. However, these simple methods are
severely challenged in the presence of multiple outliers.

The focus here is on an alternative method to overcome the
aforementioned challenges, capitalizing on Proposition 2, and the
possibility to efficiently compute ôLasso for all values of λ1, given
μ. To this end, consider a grid of Kμ values of μ in the interval
[μmin, μmax], evenly spaced in a logarithmic scale. Likewise, for
each μ consider a similar type of grid consisting ofKλ values of λ1,
where λmax := 2mini |y

′X′
μxμ,i| is the minimum λ1 value such

that ôLasso �= 0N [4], and Xμ = [xμ,1 . . .xμ,N ] in (7). Note that
each of theKμ values of μ gives rise to a different λ grid, since λmax

depends on μ troughXμ. Given the existing algorithmic alternatives
to tackle the Lasso [2, 4, 13], it is safe to assume that (7) can be ef-
ficiently solved over the (nonuniform) Kμ × Kλ grid of values of
the tuning parameters. This way, for each value of μ one obtainsKλ

samples of the Lasso path of solutions, which in the present context
can be referred to as robustification path. As λ1 decreases, more
variables ôLasso,i enter the model signifying that more of the training
points are considered as outliers.

Based on the robustification paths and the prior knowledge avail-
able on the outlier model (2), several alternatives are given next to
select the best pair {μ, λ1}; additional ones can be found in [8].
Variance of the inlier noise is known: Under the assumption that the
variance σ2

ε of the i.i.d. inlier noise random variables εi in (2) is
known, one can proceed as follows. Using the solution f̂ obtained
for each pair {μi, λj} on the grid, form the Kμ × Kλ sample vari-
ance matrix Σ̄ with ij-th entry [Σ̄]ij corresponding to a sample es-
timate of σ2

ε , neglecting those training data points {yi,xi} that the
method determined to be contaminated with outliers. The winner
tuning parameters {μ∗, λ∗

1} := {μi∗ , λj∗} are such that

[i∗, j∗] := arg min
i,j

|[Σ̄]ij − σ2
ε |. (9)

Variance of the inlier noise is unknown: If σ2
ε is unknown, one can

still compute a robust estimate of the variance σ̂2
ε , and repeat the

previous procedure after replacing σ2
ε with σ̂2

ε in (9). One option
is based on the median absolute deviation (MAD) estimator, where

σ̂ε := 1.48 ×mediani (|r̂i −medianj (|r̂j |) |). The residuals r̂i are
formed based on a nonrobust estimate of f , e.g., obtained after solv-
ing (4) with λ1 = 0 and using a small subset of the training dataset
T . The factor 1.48 provides an approximately unbiased estimate of
σε, when the inlier noise is Gaussian.

3.3. Refinement via nonconvex regularization

Instead of substituting ‖o‖0 in (3) by its closest convex approxima-
tion, namely ‖o‖1, letting the surrogate function to be non-convex
can yield tighter approximations. For example, ‖x‖0 was surrogated
in [1] by the logarithm of the geometric mean of its elements, or by∑p

i=1 log |xi|. Adopting related ideas in the present nonparametric
context, consider approximating (3) by the nonconvex formulation

min
f∈H,o

N∑
i=1

(yi−f(xi)−oi)
2 +μ‖f‖2

H +λ0

N∑
i=1

log(|oi|+δ) (10)

where δ ≈ 0 is introduced to avoid numerical instability.
Local methods based on iterative linearization of log(|oi| + δ),

around the current iterate oi[k], can be adopted to minimize (10).
Skipping details that can be found in [8], one such iteration is

o[k] := arg min
o

‖Xμy −Xμo‖2
2 + λ0

N∑
i=1

wi[k]|oi| (11)

wi[k] := (|oi[k − 1]| + δ)−1 , i = 1, . . . , N. (12)

which amounts to an iteratively reweighted version of (7). A good
initialization for the iteration in (12) is o[−1] := ôLasso, which corre-
sponds to the solution of (7) [and (4)] for λ0 = λ∗

1 and μ = μ∗. The
numerical tests in Section 4 will indicate that even a single iteration
of (11) suffices to obtain improved estimates f̂ , in comparison to
those obtained from (7). The improvements due to (11) can be lever-
aged to bias reduction, also achieved by similar weighted �1-norm
regularizers proposed for linear regression [15].

4. NUMERICAL EXPERIMENTS

To validate the proposed approach to robust nonparametric regres-
sion, a simulated test is carried out here in the context of thin-plate
smoothing spline approximation [12]. Specializing (4) to this setup,
the robust thin-plate splines estimator can be formulated as

min
f∈S,o

N∑
i=1

(yi − f(xi)− oi)
2 + μ

∫
R2

‖∇2f‖2
F dx + λ1‖o‖1 (13)

where ||∇2f ||F denotes the Frobenius norm of the Hessian of f :
R

2 → R. The optimization is over S , the space of Sobolev func-
tions, for which the smoothing penalty in (13) is well defined [12].
RKHSs such as S , with inner-products (and seminorms) involving
derivatives are studied in detail in [12].

Noisy samples of the true function fo comprise the training set
T . Function fo is generated as a Gaussian mixture with two com-
ponents, with randomly drawn mean vectors and covariance ma-
trices; see also Fig. 1 (top left). The training data set comprises
N = 200 examples, with inputs {xi}

N
i=1 drawn from a uniform

distribution in the square [0, 3] × [0, 3]. Without loss of generality,
the corrupted data correspond to the first No training samples with
No = {10, 20, 30, 40, 50}, for which the response values {yi}

No

i=1

are independently drawn from a uniform distribution over [−4, 4].
Inliers are generated from the model yi = fo(xi) + εi, where the
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Fig. 1. (top-left) True function fo(x); (top-right) nonrobust pre-
dicted function; (bottom-left) predicted function after solving (13);
(bottom-right) refined predicted function using a nonconvex penalty.

Table 1. Results for the thin-plate splines simulated test
No λ∗

1 μ∗ ErrT for (4) ErrT for (10)

10 3.9 × 10−2 2.9 × 10−3 2.4 × 10−5 2.2 × 10−5

20 3.8 × 10−2 1.6 × 10−2 4.3 × 10−5 2.4 × 10−5

30 2.3 × 10−2 6.7 × 10−2 2.9 × 10−5 1.9 × 10−5

40 2.8 × 10−2 6.1 × 10−3 1.6 × 10−5 1.3 × 10−5

50 2.5 × 10−2 5.4 × 10−2 1.2 × 10−5 1.0 × 10−5

independent additive noise terms εi ∼ N (0, 10−3) are Gaussian
distributed, for i = No + 1, . . . , 200.

In the context of the present experiment, the inlier noise vari-
ance σ2

ε = 10−3 is assumed known. A nonuniform grid of μ and
λ1 values is constructed, as described in Section 3.2. The relevant
parameters areKμ = Kλ = 200, μmin = 10−9 and μmax = 1. For
each value of μ, the λ1 grid spans the interval defined by λmax :=
2mini |y

′X′
μxμ,i| and λmin = ελmax, where ε = 10−4. Each of

the Kμ robustification paths corresponding to the solution of (7) is
obtained using the SpaRSA toolbox in [13], exploiting warm starts
for faster convergence. Fig. 2 depicts an example with No = 20
and μ∗ = 1.55 × 10−2. With the robustification paths at hand, it is
possible to form the sample variance matrix Σ̄, and select the opti-
mum tuning parameters {μ∗, λ∗

1} based on the criterion (9). Finally,
the robust estimates are refined by running a single iteration of (11)
as described in Section 3.3. The value δ = 10−5 was utilized, and
several experiments indicated that the results are quite insensitive to
the selection of this parameter.

The same experiment was conducted for a variable number of
outliers No, and the results are listed in Table 1. In all cases, a
100% outlier identification success rate was obtained, for the chosen
value of the tuning parameters. To assess quality of the estimated
function f̂ , an approximation to the generalization error ErrT was
computed as ErrT = E[(y − f̂(x))2|T ] ≈

∑Ñ
i=1(ỹi − f̂(x̃i))

2/Ñ

were {ỹi, x̃i}
Ñ
i=1 is an independent test set generated from the model

ỹi = fo(x̃i) + εi. For the results in Table 1, Ñ = 961 was adopted
corresponding to a uniform rectangular grid of 31 × 31 points x̃i

in [0, 3] × [0, 3]. Inspection of Table 1 reveals that the nonconvex
refinement (10) has an edge over (4) with regards to generalization
capability, for all values of No. As expected, the bias reduction ef-
fected by the iteratively reweighting procedure of Section 3.3 im-
proves considerably the generalization capability of the method.

A pictorial summary of the results is given in Fig 1, forNo = 20
outliers. Fig 1 (top-left) depicts the true Gaussian mixture fo(x),
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Fig. 2. Robustification paths. The coefficients ôi corresponding to
the outliers are shown in red, while the rest are shown in blue. The
vertical line indicates the selection of λ∗

1 = 3.83 × 10−2.

whereas Fig. 1 (top-right) shows the nonrobust thin-plate splines es-
timate obtained after solving (13) with λ1 = 0. Even though the
thin-plate penalty enforces some degree of smoothness, the estimate
is severely disrupted by the presence of outliers [cf. the difference on
the z-axis ranges]. On the other hand, Fig. 1 (bottom-left and right),
respectively, show the robust estimate f̂ with λ∗

1 = 3.83 × 10−2,
and its bias reducing refinement. The improvement is apparent, cor-
roborating the effectiveness of the proposed approach.
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