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Abstract—Nonparametric methods are widely applicable to
statistical inference problems, since they rely on a few modeling
assumptions. In this context, the fresh look advocated here perme-
ates benefits from variable selection and compressive sampling, to
robustify nonparametric regression against outliers—that is, data
markedly deviating from the postulated models. A variational
counterpart to least-trimmed squares regression is shown closely
related to an -(pseudo)norm-regularized estimator, that en-
courages sparsity in a vector explicitly modeling the outliers. This
connection suggests efficient solvers based on convex relaxation,
which lead naturally to a variational M-type estimator equivalent
to the least-absolute shrinkage and selection operator (Lasso).
Outliers are identified by judiciously tuning regularization pa-
rameters, which amounts to controlling the sparsity of the outlier
vector along the whole robustification path of Lasso solutions. Re-
duced bias and enhanced generalization capability are attractive
features of an improved estimator obtained after replacing the
-(pseudo)norm with a nonconvex surrogate. The novel robust

spline-based smoother is adopted to cleanse load curve data, a
key task aiding operational decisions in the envisioned smart grid
system. Computer simulations and tests on real load curve data
corroborate the effectiveness of the novel sparsity-controlling
robust estimators.

Index Terms—Lasso, load curve cleansing, nonparametric re-
gression, outlier rejection, sparsity, splines.

I. INTRODUCTION

C ONSIDER the classical problem of function estimation,
in which an input vector is

given, and the goal is to predict the real-valued scalar response
. Function is unknown, to be estimated from a

training data set . When is assumed to be
a member of a finitely-parameterized family of functions, stan-
dard (non-)linear regression techniques can be adopted. If on
the other hand, one is only willing to assume that belongs to a
(possibly infinite dimensional) space of “smooth” functions ,
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then a nonparametric approach is in order, and this will be the
focus of this work.
Without further constraints beyond , functional esti-

mation from finite data is an ill-posed problem. To bypass this
challenge, the problem is typically solved by minimizing ap-
propriately regularized criteria, allowing one to control model
complexity; see, e.g., [14], [40]. It is then further assumed that
has the structure of a reproducing kernel Hilbert space (RKHS),
with corresponding positive definite reproducing kernel func-
tion , and norm denoted by . Under
the formalism of regularization networks, one seeks as the so-
lution to the variational problem

(1)

where is a convex loss function, and controls com-
plexity by weighting the effect of the smoothness functional

. Interestingly, the Representer theorem asserts that the
unique solution of (1) is finitely parametrized and has the form

, where can be obtained from
; see e.g., [35], [44]. Further details on RKHS, and in partic-

ular on the evaluation of , can be found in, e.g., [44, Ch. 1].
A fundamental relationship between model complexity control
and generalization capability, i.e., the predictive ability of be-
yond the training set, was formalized in [43].
The generalization error performance of approaches that min-

imize the sum of squared model residuals [that is in
(1)] regularized by a term of the form , is degraded in the
presence of outliers. This is because the least-squares (LS) part
of the cost is not robust, and can result in severe overfitting of
the (contaminated) training data [26]. Recent efforts have con-
sidered replacing the squared loss with a robust counterpart such
as Huber’s function, or its variants, but lack a data-driven means
of selecting the proper threshold that determines which datum is
considered an outlier [49]; see also [32]. Other approaches have
instead relied on the so-termed -insensitive loss function, orig-
inally proposed to solve function approximation problems using
support vector machines (SVMs) [43]. These family of estima-
tors often referred to as support vector regression (SVR), have
been shown to enjoy robustness properties; see, e.g., [31], [33],
[38] and references therein. In [10], improved performance in
the presence of outliers is achieved by refining the SVR solu-
tion through a subsequent robust learning phase.
The starting point here is a variational least-trimmed squares

(VLTS) estimator, suitable for robust function approximation in
(Section II). It is established that VLTS is closely related to
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an (NP-hard) -(pseudo)norm-regularized estimator, adopted
to fit a regression model that explicitly incorporates an unknown
sparse vector of outliers [19]. As in compressive sampling (CS)
[41], efficient (approximate) solvers are obtained in Section III
by replacing the outlier vector’s -norm with its closest convex
approximant, the -norm. This leads naturally to a variational
M-type estimator of , also shown equivalent to a least-absolute
shrinkage and selection operator (Lasso) [39] on the vector of
outliers (Section III-A). A tunable parameter in Lasso controls
the sparsity of the estimated vector, and the number of outliers
as a byproduct. Hence, effective methods to select this param-
eter are of paramount importance.
The link between -norm regularization and robustness was

also exploited for parameter (but not function) estimation in [19]
and [27]; see also [46] for related ideas in the context of face
recognition, and error correction codes [5], [6]. In [19], how-
ever, the selection of Lasso’s tuning parameter is only justified
for Gaussian training data; whereas a fixed value motivated by
CS error bounds is adopted in the Bayesian formulation of [27].
Here instead, a more general and systematic approach is pursued
in Section III-B, building on contemporary algorithms that can
efficiently compute all robustifaction paths of Lasso solutions
(also known as homotopy paths) obtained for all values of the
tuning parameter [13], [18], [20], [47]. In this sense, the method
here capitalizes on but is not limited to sparse settings, since
one can examine all possible sparsity levels along the robustifi-
cation path. An estimator with reduced bias and improved gen-
eralization capability is obtained in Section IV, after replacing
the -norm with a nonconvex surrogate, instead of the -norm
that introduces bias [39], [50]. Simulated tests demonstrate the
effectiveness of the novel approaches in robustifying thin-plate
smoothing splines [12] (Section V-A), and in estimating the sinc
function (Section V-B)—a paradigm typically adopted to assess
performance of robust function approximation approaches [10],
[49].
The motivating application behind the robust nonparametric

methods of this paper is load curve cleansing [8]—a critical
task in power systems engineering andmanagement. Load curve
data (also known as load profiles) refers to the electric energy
consumption periodically recorded by meters at specific points
across the power grid, e.g., end user-points and substations. Ac-
curate load profiles are critical assets aiding operational deci-
sions in the envisioned smart grid system [25]; see also [1], [2],
[8]. However, in the process of acquiring and transmitting such
massive volumes of information to a central processing unit,
data is often noisy, corrupted, or lost altogether. This could be
due to several reasons including meter misscalibration or out-
right failure, as well as communication errors due to noise, net-
work congestion, and connectivity outages; see Fig. 1 for an
example. In addition, data significantly deviating from nom-
inal load models (outliers) are not uncommon, and could be
attributed to unscheduled maintenance leading to shutdown of
heavy industrial loads, weather constraints, holidays, strikes,
and major sporting events, just to name a few.
In this context, it is critical to effectively reject outliers, and

replace the contaminated data with “healthy” load predictions,
i.e., to cleanse the load data. While most utilities carry out this

Fig. 1. Example of load curve data with outliers.

task manually based on their own personnel’s know-how, a first
scalable and principled approach to load profile cleansing which
is based on statistical learning methods was recently proposed
in [8] and which also includes an extensive literature review
on the related problem of outlier identification in time-series.
After estimating the regression function via either B-spline
or Kernel smoothing, pointwise confidence intervals are con-
structed based on . A datum is deemed as an outlier whenever
it falls outside its associated confidence interval. To control the
degree of smoothing effected by the estimator, [8] requires the
user to label the outliers present in a training subset of data, and
in this sense the approach therein is not fully automatic. Here
instead, a novel alternative to load curve cleansing is developed
after specializing the robust estimators of Sections III and IV, to
the case of cubic smoothing splines (Section V-C). The smooth-
ness-and outlier sparsity-controlling parameters are selected ac-
cording to the guidelines in Section III-B; hence, no input is re-
quired from the data analyst. The proposed spline-based method
is tested on real load curve data from a government building.
Concluding remarks are given in Section VI, while some

technical details are deferred to the Appendix.
Notation: Bold uppercase letters will denote matrices,

whereas bold lowercase letters will stand for column vectors.
Operators , and will denote transposition, matrix
trace and expectation, respectively; will be used for the
cardinality of a set and the magnitude of a scalar. The norm
of vector is for ; and

is the matrix Frobenious norm. Positive
definite matrices will be denoted by . The identity
matrix will be represented by , while will denote the
vector of all zeros, and .

II. ROBUST ESTIMATION PROBLEM

The training data comprises noisy samples of taken at
the input points (also known as knots in the splines par-
lance), and in the present context they can be possibly contam-
inated with outliers. Building on the parametric least-trimmed
squares (LTS) approach [37], the desired robust estimate can
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be obtained as the solution of the following variational (V)LTS
minimization problem:

(2)

where is the th-order statistic among the squared resid-
uals , and . In words, given
a feasible , to evaluate the sum of the cost in (2) one:
i) computes all squared residuals , ii) orders them
to form the nondecreasing sequence ;
and iii) sums up the smallest terms. As in the parametric LTS
[37], the so-termed trimming constant (also known as cov-
erage) determines the breakdown point of the VLTS estimator,
since the largest residuals do not participate in (2). Ideally,
one would like to make equal to the (typically unknown)
number of outliers in the training data. For most pragmatic
scenarios where is unknown, the LTS estimator is an attrac-
tive option due to its high breakdown point and desirable theo-
retical properties, namely -consistency and asymptotic nor-
mality [37].
The tuning parameter in (2) controls the tradeoff be-

tween fidelity to the (trimmed) data, and the degree of “smooth-
ness” measured by . In particular, can be interpreted
as a generalized ridge regularization term penalizing more those
functions with large coefficients in a basis expansion involving
the eigenfunctions of the kernel .
Given that the sum in (2) is a nonconvex functional, a non-

trivial issue pertains to the existence of the proposed VLTS es-
timator, i.e., whether or not (2) attains a minimum in . For-
tunately, a (conceptually) simple solution procedure suffices to
show that a minimizer does indeed exist. Consider specifically a
given subsample of training data points, say , and
solve

A unique minimizer of the form
is guaranteed to exist, where is used here to denote the chosen
subsample, and the coefficients can be obtained by
solving a particular linear system of equations [44, p. 11]. This
procedure can be repeated for each subsample (there are

of these), to obtain a collection of candidate

solutions of (2). The winner(s) yielding the min-
imum cost, is the desired VLTS estimator.
Even though conceptually simple, the solution procedure just

described guarantees existence of (at least) one solution, but en-
tails a combinatorial search over all subsamples which is in-
tractable for moderate to large sample sizes . In the context
of linear regression, algorithms to obtain approximate LTS so-
lutions are available; see e.g., [36].

A. Robust Function Approximation via -Norm
Regularization

Instead of discarding large residuals, the alternative approach
proposed here explicitly accounts for outliers in the regression
model. To this end, consider the scalar variables one
per training datum, taking the value whenever datum

adheres to the postulated nominal model, and other-
wise. A regression model naturally accounting for the presence
of outliers is

(3)

where are zero-mean independent and identically dis-
tributed (i.i.d.) random variables modeling the observation er-
rors. A similar model was advocated under different assump-
tions in [19] and [27], in the context of robust parametric re-
gression; see also [5] and [46]. For an outlier-free datum , (3)
reduces to ; hence, will be often referred to
as the nominal noise. Note that in (3), both as well as
the vector are unknown; thus, (3)
is underdetermined. On the other hand, as outliers are expected
to often comprise a small fraction of the training sample say,
not exceeding 20%—vector is typically sparse, i.e., most of
its entries are zero; see also Remark 2. Sparsity compensates
for underdeterminacy and provides valuable side-information
when it comes to efficiently estimating , identifying outliers as
a byproduct, and consequently performing robust estimation of
the unknown function .
A natural criterion for controlling outlier sparsity is to seek

the desired estimate as the solution of

(4)

where is a preselected sparsity controlling parameter,
and denotes the -norm of , which equals the number
of nonzero entries of its vector argument. Unfortunately, analo-
gously to related -norm regularized formulations in compres-
sive sampling and sparse signal representations, problem (4) is
NP-hard [34].
To further motivate model (3) and the proposed criterion (4)

for robust nonparametric regression, it is worth checking the
structure of the minimizers of the cost in (4). Consider
for the sake of argument that is given, and its value is such
that , for some . The goal is to characterize
, as well as the positions and values of the nonzero entries of
. Note that because , the last term in (4) is constant,
hence inconsequential to the minimization. Upon defining

, it is not hard to see that the entries of satisfy

(5)

at the optimum. This is intuitive, since for those the
best thing to do in terms of minimizing the overall cost is to set

, and thus null the corresponding squared-residual terms
in (4). In conclusion, for the chosen value of it holds that
squared residuals effectively do not contribute to the cost in (4).
To determine the support of and , one alternative is

to exhaustively test all admissible support combina-
tions. For each one of these combinations (indexed by ), let

be the index set describing the support of
, i.e., if and only if ; and . By virtue

of (5), the corresponding candidate minimizes
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while is the one among all that yields the least cost.
The previous discussion, in conjunction with the one preceding
Section II-A completes the argument required to establish the
following result.
Proposition 1: If minimizes (4) with chosen such

that , then also solves the VLTS problem (2).
The importance of Proposition 1 is threefold. First, it formally

justifies model (3) and its estimator (4) for robust function ap-
proximation, in light of the well documented merits of LTS re-
gression [36]. Second, it further solidifies the connection be-
tween sparse linear regression and robust estimation. Third, the
-norm regularized formulation in (4) lends itself naturally to

efficient solvers based on convex relaxation, the subject dealt
with next.

III. SPARSITY CONTROLLING OUTLIER REJECTION

To overcome the complexity hurdle in solving the robust re-
gression problem in (4), one can resort to a suitable relaxation
of the objective function. The goal is to formulate an optimiza-
tion problem which is tractable, and whose solution yields a sat-
isfactory approximation to the minimizer of the original hard
problem. To this end, it is useful to recall that the -norm
of vector is the closest convex approximation of . This
property also utilized in the context of compressive sampling
[41], provides the motivation to relax the NP-hard problem (4)
to

(6)

Being a convex optimization problem, (6) can be solved effi-
ciently. The nondifferentiable -norm regularization term con-
trols sparsity on the estimator of , a property that has been re-
cently exploited in diverse problems in engineering, statistics
and machine learning. A noteworthy representative is the least-
absolute shrinkage and selection operator (Lasso) [39], a pop-
ular tool in statistics for joint estimation and continuous variable
selection in linear regression problems. In its Lagrangian form,
Lasso is also known as basis pursuit denoising in the signal pro-
cessing literature, a term coined by [9] in the context of finding
the best sparse signal expansion using an overcomplete basis.
It is pertinent to ponder on whether problem (6) has built-in

ability to provide robust estimates in the presence of outliers.
The answer is in the affirmative, since a straightforward argu-
ment (details are deferred to the Appendix) shows that (6) is
equivalent to a variational M-type estimator found by

(7)

where is a scaled version of Huber’s convex loss
function [26]

.
(8)

Remark 1 (Regularized Regression and Robustness):
Existing works on linear regression have pointed out the equiv-
alence between -norm regularized regression and M-type
estimators, under specific assumptions on the distribution of
the outliers ( -contamination) [19], [28]. However, they have

not recognized the link with LTS through the convex relaxation
of (4), and the connection asserted by Proposition 1. Here,
the treatment goes beyond linear regression by considering
nonparametric functional approximation in RKHS. Linear
regression is subsumed as a special case, when the linear kernel

is adopted. In addition, no assumption is
imposed on the outlier vector.
It is interesting to compare the - and -norm formula-

tions [cf. (4) and (6), respectively] in terms of their equivalent
purely variational counterparts in (2) and (7), that entail robust
loss functions. While the VLTS estimator completely discards
large residuals, still retains them, but downweighs their ef-
fect through a linear penalty. Moreover, while (7) is convex, (2)
is not and this has a direct impact on the complexity to obtain
either estimator. Regarding the trimming constant in (2), it
controls the number of residuals retained and hence the break-
down point of VLTS. Considering instead the threshold in
Huber’s function , when the outliers’ distribution is known a
priori, its value is available in closed form so that the robust
estimator is optimal in a well-defined sense [26]. Convergence
in probability of M-type cubic smoothing splines estimators—a
special problem subsumed by (7)—was studied in [11].

A. Solving the Convex Relaxation

Because (6) is jointly convex in and , an alternating mini-
mization (AM) algorithm can be adopted to solve (6), for fixed
values of and . Selection of these parameters is a critical
issue that will be discussed in Section III-B. AM solvers are it-
erative procedures that fix one of the variables to its most up to
date value, and minimize the resulting cost with respect to the
other one. Then the roles are reversed to complete one cycle,
and the overall two-step minimization procedure is repeated for
a prescribed number of iterations, or, until a convergence crite-
rion is met. Letting denote iterations, consider that

is fixed in (6). The update for at the th itera-
tion is given by

(9)
which corresponds to a standard regularization problem
for functional approximation in [14], but with out-

lier-compensated data . It is well
known that the minimizer of the variational problem (9)
is finitely parameterized, and given by the kernel expan-
sion [44]. The vector

is found by solving the linear system
of equations

(10)

where , and the matrix has
entries .
In a nutshell, updating is equivalent to updating vector
as per (10), where only the independent vector variable

changes across iterations. Because the system ma-
trix is positive definite, the per iteration systems of linear equa-
tions (10) can be efficiently solved after computing once, the
Cholesky factorization of .
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For fixed in (6), the outlier vector update at
iteration is obtained as

(11)

Algorithm 1: AM Solver

Initialize , and run till convergence

for do

Update solving .

Update via

, .

end for

return

where . Problem (11) can
be recognized as an instance of Lasso for the so-termed or-
thonormal case, in particular for an identity regression matrix.
The solution of such Lasso problems is readily obtained via
soft-thresholding [17], in the form of

(12)

where is the soft-thresholding
operator, and denotes the projection onto
the nonnegative reals. The coordinatewise updates in (12) are
in par with the sparsifying property of the norm, since for
“small” residuals, i.e., , it follows that , and
the th training datum is deemed outlier free. Updates (10) and
(12) comprise the iterative AM solver of the -norm regular-
ized problem (6), which is tabulated as Algorithm 1. Convexity
ensures convergence to the global optimum solution regardless
of the initial condition; see e.g., [4].
Algorithm 1 is also conceptually interesting, since it explic-

itly reveals the intertwining between the outlier identification
process, and the estimation of the regression function with
the appropriate outlier-compensated data. An additional point
is worth mentioning after inspection of (12) in the limit as

. From the definition of the soft-thresholding operator
, for those “large” residuals exceeding
in magnitude, when , and
otherwise. In other words, larger residuals that the method iden-
tifies as corresponding to outlier-contaminated data are shrunk,
but not completely discarded. By plugging back into (6),
these “large” residuals cancel out in the squared error term, but
still contribute linearly through the -norm regularizer. This
is exactly what one would expect, in light of the equivalence
established with the variational -type estimator in (7).
Next, it is established that an alternative to solving a se-

quence of linear systems and scalar Lasso problems, is to solve
a single instance of the Lasso with specific response vector and
(nonorthonormal) regression matrix.
Proposition 2: Consider defined as

(13)

where

(14)

Then, the minimizers of (6) are fully determined given
, as and , with

.
Proof: For notational convenience introduce the vec-

tors and ,
where is the minimizer of (6). Next, consider rewriting
(6) as

(15)

The quantity inside the square brackets is a function of , and
can be written explicitly after carrying out the minimization
with respect to . From the results in [44], it follows that
the vector of optimum predicted values at the points
is given by ; see also the

discussion after (9). Similarly, one finds that
. Havingminimized

(15) with respect to , the quantity inside the square brackets is

(16)

After expanding the quadratic form in the right-hand side of
(16), and eliminating the term that does not depend on ,
problem (15) becomes

Completing the squares one arrives at

which completes the proof.
The result in Proposition 2 opens the possibility for effec-

tive methods to select . These methods to be described in de-
tail in the ensuing section, capitalize on recent algorithmic ad-
vances on Lasso solvers, which allow one to efficiently compute

for all values of the tuning parameter . This is crucial
for obtaining satisfactory robust estimates , since controlling
the sparsity in by tuning is tantamount to controlling the
number of outliers in model (3).

B. Selection of the Tuning Parameters: Robustification Paths

As argued before, the tuning parameters and in (6)
control the degree of smoothness in and the number of
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outliers (nonzero entries in ), respectively. From a statis-
tical learning theory standpoint, and control the amount
of regularization and model complexity, thus capturing the
so-termed effective degrees of freedom [24]. Complex models
tend to have worse generalization capability, even though the
prediction error over the training set may be small (overfit-
ting). In the contexts of regularization networks [14] and Lasso
estimation for regression [39], corresponding tuning parameters
are typically selected via model selection techniques such as
cross-validation, or, by minimizing the prediction error over an
independent test set, if available [24]. However, these simple
methods are severely challenged in the presence of multiple
outliers. For example, the swamping effect refers to a very large
value of the residual corresponding to a left out clean datum

, because of an unsatisfactory model estimation based
on all data except ; data which contain outliers.
The idea here offers an alternative method to overcome the

aforementioned challenges, and the possibility to efficiently
compute for all values of , given . A brief overview
of the state-of-the-art in Lasso solvers is given first. Several
methods for selecting and are then described, which differ
on the assumptions of what is known regarding the outlier
model (3).
Lasso amounts to solving a quadratic programming (QP)

problem [39]; hence, an iterative procedure is required to de-
termine in (13) for a given value of . While standard
QP solvers can be certainly invoked to this end, an increasing
amount of effort has been put recently toward developing fast
algorithms that capitalize on the unique properties of Lasso.
The Lasso variation of the LARS algorithm [13, Sec. 3.1] is
an efficient scheme for computing the entire path of solutions
(corresponding to all values of ), elsewhere referred to as
homotopy paths [13], [20], or, regularization paths [17]. LARS
capitalizes on piecewise linearity of the Lasso path of solutions,
while incurring the complexity of a single LS fit, i.e., when

. Homotopy algorithms have been also developed to
solve the Lasso online, when data pairs are collected
sequentially in time [3], [20]. Coordinate descent algorithms
have been shown competitive, even outperforming LARS when
is large, as demonstrated in [18]; see also [17], [48], and the

references therein. Coordinate descent solvers capitalize on the
fact that Lasso can afford a very simple solution in the scalar
case, which is given in closed form in terms of a soft-thresh-
olding operation [cf. (12)]. Further computational savings are
attained through the use of warm starts [17], when computing
the Lasso path of solutions over a grid of decreasing values of
. An efficient solver capitalizing on variable separability has

been proposed in [47], while a semismooth Newton method
was put forth in [22].
Consider then a grid of values of in the interval

, evenly spaced in a logarithmic scale. Like-
wise, for each consider a similar type of grid consisting
of values of , where is
the minimum value such that [18], and

in (13). Typically, with
, say. Note that each of the values of gives

rise to a different grid, since depends on through
. Given the previously surveyed algorithmic alternatives to

tackle the Lasso, it is safe to assume that (13) can be efficiently
solved over the (nonuniform) grid of values of the

tuning parameters. This way, for each value of one obtains
samples of the Lasso homotopy paths, henceforth referred to as
robustification paths as a means of highlighting the connection
between robustness and sparsity in the nonparametric context
of the present work. As decreases, more variables
enter the model signifying that more of the training data are
deemed to contain outliers. An example of the robustification
path is given in Fig. 3.
Based on the robustification paths and the prior knowledge

available on the outlier model (3), several alternatives are given
next to select the “best” pair in the grid .
Number of outliers is known: For each value of in the grid
, by direct inspection of the robustification paths one can de-

termine the range of values for , such that has exactly
nonzero entries. This procedure yields a reduced grid
of candidate tuning parameter pairs, which is again nonuni-

form since the obtained -intervals may differ per . Focusing
on the reduced grid, and after discarding outliers which are now
fixed and known, K-fold cross-validation can be applied to de-
termine ; see e.g., [24, Ch. 7].
Variance of the nominal noise is known: Supposing that the

variance of the i.i.d. nominal noise variables in (3) is
known, one can proceed as follows. Using the solution ob-
tained for each pair on the grid, form the
sample variance matrix with th entry

(17)
where stands for the number of nonzero entries in .
Although not made explicit, the right-hand side of (17) depends
on through the estimate , and . The entries

correspond to a sample estimate of , without consid-
ering those training data that the method determined
to be contaminated with outliers, i.e., those indices for which

. The “winner” tuning parameters
are such that

(18)

which is an absolute variance deviation (AVD) criterion.
Variance of the nominal noise is unknown: If is unknown,

one can still compute a robust estimate of the variance , and
repeat the previous procedure (with known nominal noise vari-
ance) after replacing with in (18). One option is based on
the median absolute deviation (MAD) estimator, namely

median median (19)

where the residuals are formed based on a non-
robust estimate of , obtained e.g., after solving (6) with
and using a small subset of the training dataset . The factor
1.4826 provides an approximately unbiased estimate of the stan-
dard deviation when the nominal noise is Gaussian. Typically,
in (19) is used as an estimate for the scale of the errors in

general M-type robust estimators; see, e.g., [11] and [32].
Remark 2 (How Sparse is Sparse): Even though the very

nature of outliers dictates that is typically a small fraction
of —and thus in (3) is sparse—the method here capitalizes
on, but is not limited to sparse settings. For instance, choosing

along the robustification paths allows
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one to continuously control the sparsity level, and potentially
select the right value of for any given . Ad-
mittedly, if is large relative to , then even if it is possible
to identify and discard the outliers, the estimate may not be
accurate due to the lack of outlier-free data. Interestingly, sim-
ulation results in [21] demonstrate that the performance of this
paper’s sparsity-controlling outlier rejection methods degrade
gracefully, as .

IV. REFINEMENT VIA NONCONVEX REGULARIZATION

Instead of substituting in (4) by its closest convex
approximation, namely , letting the surrogate function to
be nonconvex can yield tighter approximations. For example,
the -norm of a vector was surrogated in [7] by
the logarithm of the geometric mean of its elements, or by

. In rank minimization problems, apart from
the nuclear norm relaxation, minimizing the logarithm of the
determinant of the unknown matrix has been proposed as an
alternative surrogate [16]. Adopting related ideas in the present
nonparametric context, consider approximating (4) by

(20)
where is a sufficiently small positive offset introduced to avoid
numerical instability.
Since the surrogate term in (20) is concave, the overall

problem is nonconvex. Still, local methods based on iterative
linearization of , around the current iterate ,
can be adopted to minimize (20). From the concavity of the
logarithm, its local linear approximation serves as a global
overestimator. Standard majorization-minimization algorithms
motivate minimizing the global linear overestimator instead.
This leads to the following iteration for (see, e.g.,
[30] for further details)

(21)

(22)

It is possible to eliminate the optimization variable from
(21), by direct application of the result in Proposition 2. The
equivalent update for at iteration is then given by

(23)

which amounts to an iteratively reweighted version of (13). If
the value of is small, then in the next iteration the cor-
responding regularization term has a large weight,
thus promoting shrinkage of that coordinate to zero. On the other
hand when is significant, the cost in the next iteration
downweighs the regularization, and places more importance to

the LS component of the fit. For small , analysis of the limiting
point of (23) reveals that

and hence, .
A good initialization for the iteration in (23) and (22) is

, which corresponds to the solution of (13) [and (6)] for
and . This is equivalent to a single iteration

of (23) with all weights equal to unity. The numerical tests
in Section V will indicate that even a single iteration of (23)
suffices to obtain improved estimates , in comparison to those
obtained from (13). The following remark sheds further light
towards understanding why this should be expected.
Remark 3 (Refinement Through Bias Reduction): Uni-

formly weighted -norm regularized estimators such as (6) are
biased [50], due to the shrinkage effected on the estimated co-
efficients. It will be argued next that the improvements due to
(23) can be leveraged to bias reduction. Several workarounds
have been proposed to correct the bias in sparse regression,
that could as well be applied here. A first possibility is to re-
tain only the support of (13) and re-estimate the amplitudes via,
e.g., the unbiased LS estimator [13]. An alternative approach
to reducing bias is through nonconvex regularization using e.g.,
the smoothly clipped absolute deviation (SCAD) scheme [15].
The SCAD penalty could replace the sum of logarithms in (20),
still leading to a nonconvex problem. To retain the efficiency
of convex optimization solvers while simultaneously limiting
the bias, suitably weighted -norm regularizers have been pro-
posed instead [50]. The constant weights in [50] play a role sim-
ilar to those in (22); hence, bias reduction is expected.

V. NUMERICAL EXPERIMENTS

A. Robust Thin-Plate Smoothing Splines

To validate the proposed approach to robust nonparametric
regression, a simulated test is carried out here in the context of
thin-plate smoothing spline approximation [12], [45]. Special-
izing (6) to this setup, the robust thin-plate splines estimator can
be formulated as

(24)
where denotes the Frobenius norm of the Hessian of

. The penalty functional

(25)

extends to the one-dimensional roughness regularization
used in smoothing spline models. For , the (nonunique)
estimate in (24) corresponds to a rough function interpolating
the outlier compensated data; while as the estimate
is linear (cf. ). The optimization is over ,



1578 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

the space of Sobolev functions, for which is well defined
[12, p. 85]. Reproducing kernel Hilbert spaces such as , with
inner-products (and norms) involving derivatives are studied
in detail in [44].
Different from the cases considered so far, the smoothing

penalty in (25) is only a seminorm, since first-order polyno-
mials vanish under . Omitting details than can be found
in [44, p. 30], a unique minimizer of (24) exists provided
the input vectors do not fall on a straight
line. The solution admits the finitely parametrized form

, where in this case
is a radial basis function. In

simple terms, the solution as a kernel expansion is augmented
with a member of the null space of . The unknown param-
eters are obtained in closed form, as solutions to
a constrained, regularized LS problem; see [44, p. 33]. As a
result, Proposition 2 still holds with minor modifications on the
structure of .
Remark 4 (Bayesian Framework): Adopting a Bayesian

perspective, one could model in (3) as a sample function
of a zero mean Gaussian stationary process, with covariance
function [29]. Consider as well
that are mutually independent, while

and in (3) are i.i.d. Gaussian and
Laplace distributed, respectively. From the results in [29] and a
straightforward calculation, it follows that setting and

in (24) yields estimates (and ) which are optimal in a
maximum a posteriori sense. This provides yet another means of
selecting the parameters and , further expanding the options
presented in Section III-B.
The simulation setup is as follows. Noisy samples of the true

function comprise the training set . Function
is generated as a Gaussian mixture with two components, with
respective mean vectors and covariance matrices given by

Function is depicted in Fig. 4(a). The training data set
comprises examples, with inputs drawn from
a uniform distribution in the square . Several values
ranging from 5% to 25% of the data are generated contami-
nated with outliers. Without loss of generality, the corrupted
data correspond to the first training samples with

, for which the response values are
independently drawn from a uniform distribution over .
Outlier-free data are generated according to the model

, where the independent additive noise terms
are Gaussian distributed, for .

For the case where , the data used in the experiment
is shown in Fig. 2. Superimposed to the true function are
180 black points corresponding to data drawn from the nominal
model, as well as 20 red outlier points.
For this experiment, the nominal noise variance is

assumed known. A nonuniform grid of and values is con-
structed, as described in Section III-B. The relevant parameters
are , , and . For each
value of , the grid spans the interval defined by

Fig. 2. True Gaussian mixture function , and its 180 noisy samples taken
over shown as black dots. The red dots indicate the out-
liers in the training data set . The green points indicate the predicted responses
at the sampling points , from the estimate obtained after solving (24).

Note how all green points are close to the surface .

Fig. 3. Robustification path with optimum smoothing parameter
. The data is corrupted with outliers. The coefficients corre-

sponding to the outliers are shown in red, while the rest are shown in blue. The
vertical line indicates the selection of , and shows that the
outliers were correctly identified.

and , where . Each
of the robustification paths corresponding to the solution of
(13) is obtained using the SpaRSA toolbox in [47], exploiting
warm starts for faster convergence. Fig. 3 depicts an example
with and . With the robustifica-
tion paths at hand, it is possible to form the sample variance
matrix [cf. (17)], and select the optimum tuning parameters

based on the criterion (18). Finally, the robust esti-
mates are refined by running a single iteration of (23) as de-
scribed in Section IV. The value was utilized, and
several experiments indicated that the results are quite insensi-
tive to the selection of this parameter.
The same experiment was conducted for a variable number

of outliers , and the results are listed in Table I. In all cases,
a 100% outlier identification success rate was obtained, for the
chosen value of the tuning parameters. This even happened at
the first stage of the method, i.e., in (13) had the correct
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TABLE I
RESULTS FOR THE THIN-PLATE SPLINES SIMULATED TEST

support in all cases. It has been observed in some other setups
that (13) may select a larger support than , but after run-
ning a few iterations of (23) the true support was typically iden-
tified. To assess quality of the estimated function , two figures
of merit were considered. First, the training error was eval-
uated as

i.e., the average loss over the training sample after excluding
outliers. Second, to assess the generalization capability of , an
approximation to the generalization error was computed
as

(26)

where is an independent test set generated from the
model . For the results in Table I,
was adopted corresponding to a uniform rectangular grid of 31
31 points in . Inspection of Table I reveals that

the training errors are comparable for the function estimates
obtained after solving (6) or its nonconvex refinement (20). In-
terestingly, when it comes to the more pragmatic generalization
error , the refined estimator (20) has an edge for all values
of . As expected, the bias reduction effected by the iteratively
reweighting procedure of Section IV improves considerably the
generalization capability of the method; see also Remark 3.
A pictorial summary of the results is given in Fig. 4, for

outliers. Fig. 4(a) depicts the true Gaussian mixture
, whereas Fig. 4(b) shows the nonrobust thin-plate splines

estimate obtained after solving

(27)

Even though the thin-plate penalty enforces some degree of
smoothness, the estimate is severely disrupted by the presence
of outliers [cf. the difference on the -axis ranges]. On the other
hand, Fig. 4(c) and (d), respectively, shows the robust estimate
with , and its bias reducing refinement. The

improvement is apparent, corroborating the effectiveness of the
proposed approach.

B. Sinc Function Estimation

The univariate function is commonly
adopted to evaluate the performance of nonparametric regres-

Fig. 4. Robust estimation of a Gaussian mixture using thin-plate splines. The
data is corrupted with outliers. (a) True function ; (b) nonro-
bust predicted function obtained after solving (27); (c) predicted function after
solving (24) with the optimum tuning parameters; (d) refined predicted function
using the nonconvex regularization in (20).

sion methods [10], [49]. Given noisy training examples with
a small fraction of outliers, approximating over the
interval is considered in the present simulated test. The
sparsity-controlling robust nonparametric regression methods
of this paper are compared with the SVR [43] and robust SVR
in [10], for the case of the -insensitve loss function with
values and . In order to implement (R)SVR,
routines from a publicly available SVM Matlab toolbox were
utilized [23]. Results for the nonrobust regularization network
approach in (1) (with ) are reported as well, to
assess the performance degradation incurred when compared
to the aforementioned robust alternatives. Because the fraction
of outliers in the training data is assumed known to the
method of [10], the same will be assumed towards selecting the
tuning parameters and in (6), as described in Section III-B.
The -grid parameters selected for the experiment in
Section V-A were used here as well, except for .
Space is chosen to be the RKHS induced by the positive
definite Gaussian kernel function ,
with parameter for all cases.
The training set comprises examples, with scalar in-

puts drawn from a uniform distribution over .
Uniformly distributed outliers are artifi-
cially added in , with resulting in 6% contamination.
Nominal data in adheres to the model
for , where the independent additive noise
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TABLE II
GENERALIZATION ERROR RESULTS FOR THE SINC FUNCTION ESTIMATION EXPERIMENT

Fig. 5. Robust estimation of the sinc function. The data is corrupted with
outliers, and the nominal noise variance is . (a) Noisy training
data and outliers; (b) predicted values obtained after solving (1) with
; (c) SVR predictions for ; (d) RSVR predictions for ; (e) SVR

predictions for ; (f) RSVR predictions for ; (g) predicted
values obtained after solving (6); (h) refined predictions using the nonconvex
regularization in (20).

terms are zero-mean Gaussian distributed. Three different
values are considered for the nominal noise variance, namely

for 2, 3, 4. For the case where ,

the data used in the experiment are shown in Fig. 5(a). Super-
imposed to the true function (shown in blue) are 47
black points corresponding to the noisy data obeying the nom-
inal model, as well as 3 outliers depicted as red points.
The results are summarized in Table II, which lists the gen-

eralization errors attained by the different methods tested,
and for varying . The independent test set used to
evaluate (26) was generated from the model ,
where the define a -element uniform grid over

. A first (expected) observation is that all robust alter-
natives markedly outperform the nonrobust regularization net-
work approach in (1), by an order of magnitude or even more,
regardless of the value of . As reported in [10], RSVR uni-
formly outperforms SVR. For the case , RSVR also
uniformly outperforms the sparsity-controlling method in (6).
Interestingly, after refining the estimate obtained via (6) through
a couple iterations of (23) (cf. Section IV), the lowest gen-
eralization errors are obtained, uniformly across all simulated
values of the nominal noise variance. Results for the RSVRwith

come sufficiently close, and are equally satisfactory for
all practical purposes; see also Fig. 5 for a pictorial summary of
the results when .
While specific error values or method rankings are ar-

guably anecdotal, two conclusions stand out: i) model (3) and
its sparsity-controlling estimators (6) and (20) are effective
approaches to nonparametric regression in the presence of
outliers; and ii) when initialized with the refined esti-
mator (20) can considerably improve the performance of (6),
at the price of a modest increase in computational complexity.
While (6) endowed with the sparsity-controlling mechanisms
of Section III-B tends to overestimate the “true” support of ,
numerical results have consistently shown that the refinement in
Section IV is more effective when it comes to support recovery.

C. Load Curve Data Cleansing

In this section, the robust nonparametric methods described
so far are applied to the problem of load curve cleansing outlined
in Section I. Given load data corresponding to
a building’s power consumption measurements , acquired at
time instants , , the proposed approach to load
curve cleansing minimizes

(28)
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where denotes the second-order derivative of .
This way, the solution provides a cleansed estimate of the load
profile, and the support of indicates the instants where signifi-
cant load deviations, or, meter failures occurred. Estimator (28)
specializes (6) to the so-termed cubic smoothing splines; see,
e.g., [24], [44]. It is also subsumed as a special case of the ro-
bust thin-plate splines estimator (24), when the target function
has domain in [cf. how the smoothing penalty (25) simplifies
to the one in (28) in the one-dimensional case].
In light of the aforementioned connection, it should not be

surprising that admits a unique, finite-dimensional mini-
mizer, which corresponds to a natural spline with knots at

; see e.g., [24, p. 151]. Specifically, it follows that
, where is the basis set of nat-

ural spline functions, and the vector of expansion coefficients
is given by

where matrix has th entry ; while
has th entry . Spline

coefficients can be computed more efficiently if the basis of
B-splines is adopted instead; details can be found in [24, p. 189]
and [42].
Without considering the outlier variables in (28), a B-spline

estimator for load curve cleansing was put forth in [8]. An alter-
native Nadaraya–Watson estimator from the Kernel smoothing
family was considered as well. In any case, outliers are identi-
fied during a postprocessing stage, after the load curve has been
estimated nonrobustly. Supposing for instance that the approach
in [8] correctly identifies outliers most of the time, it still does
not yield a cleansed estimate . This should be contrasted with
the estimator (28), which accounts for the outlier compensated
data to yield a cleansed estimate at once. Moreover, to select the
“optimum” smoothing parameter , the approach of [8] requires
the user to manually label the outliers present in a training subset
of data, during a preprocessing stage. This subjective compo-
nent makes it challenging to reproduce the results of [8], and
for this reason comparisons with the aforementioned scheme are
not included in the sequel.
Next, estimator (28) is tested on real load curve data pro-

vided by the NorthWrite Energy Group. The dataset consists of
power consumption measurements (in kWh) for a government
building, collected every fifteenminutes during a period of more
than five years, ranging from July 2005 to October 2010. Data
is downsampled by a factor of four, to yield one measurement
per hour. For the present experiment, only a subset of the whole
data is utilized for concreteness, where was chosen
corresponding to a 501-hour period. A snapshot of this training
load curve data in , spanning a particular three-week period is
shown in Fig. 6(a). Weekday activity patterns can be clearly dis-
cerned from those corresponding to weekends, as expected for
most government buildings; but different, e.g., for the load pro-
file of a grocery store. Fig. 6(b) shows the nonrobust smoothing
spline fit to the training data in (also shown for comparison
purposes), obtained after solving

(29)

Fig. 6. Load curve data cleansing. (a) Noisy training data and outliers; (b) fitted
load profile obtained after solving (29).

using Matlab’s built-in spline toolbox. Parameter was chosen
based on leave-one-out cross-validation, and it is apparent
that no cleansing of the load profile takes place. Indeed, the
resulting fitted function follows very closely the training
data, even during the abnormal energy peaks observed on the
so-termed “building operational transition shoulder periods.”
Because with real load curve data the nominal noise variance
in (3) is unknown, selection of the tuning parameters

in (28) requires a robust estimate of the variance such as the
MAD [cf. Section III-B]. Similar to [8], it is assumed that the
nominal errors are zero mean Gaussian distributed, so that (19)
can be applied yielding the value . To form the
residuals in (19), (29) is solved first using a small subset of
that comprises 126 measurements. A nonuniform grid of and
values is constructed, as described in Section III-B. Rele-

vant parameters are , , ,
, and . The robustification paths (one per

value in the grid) were obtained using the SpaRSA toolbox in
[47], with the sample variance matrix formed as in (17). The
optimum tuning parameters and are fi-
nally determined based on the criterion (18), where the unknown
is replaced with . Finally, the cleansed load curve is refined

by running four iterations of (23) as described in Section IV,
with a value of . Results are depicted in Fig. 7, where
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Fig. 7. Load curve data cleansing. (a) Cleansed load profile obtained after
solving (28); (b) refined load profile obtained after using the nonconvex reg-
ularization in (20).

the cleansed load curves are superimposed to the training data
in . Red circles indicate those data points deemed as out-
liers, information that is readily obtained from the support of
. By inspection of Fig. 7, it is apparent that the proposed spar-
sity-controlling estimator has the desired cleansing capability.
The cleansed load curves closely follow the training data, but are
smooth enough to avoid overfitting the abnormal energy peaks
on the “shoulders.” Indeed, these peaks are in most cases iden-
tified as outliers. As seen from Fig. 7(a), the solution of (28)
tends to overestimate the support of , since one could argue
that some of the red circles in Fig. 7(a) do not correspond to out-
liers. Again, the nonconvex regularization in Section IV prunes
the outlier support obtained via (28), resulting in a more accu-
rate result in terms of the residual fit to the data and reducing
the number of outliers identified from 77 to 41.

VI. CONCLUDING SUMMARY

Outlier-robust nonparametric regression methods were de-
veloped in this paper for function approximation in RKHS.
Building on a neat link between the seemingly unrelated fields
of robust statistics and sparse regression, the novel estima-
tors were found rooted at the crossroads of outlier-resilient
estimation, the Lasso, and convex optimization. Estimators as
fundamental as LS for linear regression, regularization net-

works, and (thin-plate) smoothing splines, can be robustified
under the proposed framework.
Training samples from the (unknown) target function were

assumed generated from a regression model, which explicitly
incorporates an unknown sparse vector of outliers. To fit such a
model, the proposed variational estimator minimizes a tradeoff
between fidelity to the training data, the degree of “smoothness”
of the regression function, and the sparsity level of the vector
of outliers. While model complexity control effected through
a smoothing penalty has quite well understood ramifications in
terms of generalization capability, the major innovative claim
here is that sparsity control is tantamount to robustness control.
This is indeed the case since a tunable parameter in a Lasso re-
formulation of the variational estimator, controls the degree of
sparsity in the estimated vector of model outliers. Selection of
tuning parameters could be at first thought as a mundane task.
However, arguing on the importance of such task in the context
of robust nonparametric regression, as well as devising princi-
pled methods to effectively carry out smoothness and sparsity
control, are at the heart of this paper’s novelty. Sparsity con-
trol can be carried out at affordable complexity, by capitalizing
on state-of-the-art algorithms that can efficiently compute the
whole path of Lasso solutions. In this sense, the method here
capitalizes on but is not limited to sparse settings where few out-
liers are present, since one can efficiently examine the gamut of
sparsity levels along the robustification path. Computer simula-
tions have shown that the novel methods of this paper outper-
form existing alternatives including SVR, and one if its robust
variants.
As an application domain relevant to robust nonparametric

regression, the problem of load curve cleansing for power
systems engineering was also considered along with a solution
proposed based on robust cubic spline smoothing. Numerical
tests on real load curve data demonstrated that the smoothness
and sparsity controlling methods of this paper are effective
in cleansing load profiles, without user intervention to aid the
learning process.

APPENDIX

Towards establishing the equivalence between problems (6)
and (7), consider the pair that solves (6). Assume that
is given, and the goal is to determine . Upon defining the

residuals and because , the
entries of are separately given by

(30)

where the term in (6) has been omitted, since it is in-
consequential for the minimization with respect to . For each

, because (30) is nondifferentiable at the origin one
should consider three cases: i) if , it follows that the min-
imum cost in (30) is ; ii) if , the first-order condition
for optimality gives provided , and the

minimum cost is ; otherwise, iii) if , it follows
that provided , and the minimum cost is

. In other words,

(31)
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Upon plugging (31) into (30), the minimum cost in (30) after
minimizing with respect to is [cf. (8) and the argument
preceding (31)]. All in all, the conclusion is that is the mini-
mizer of (7)—in addition to being the solution of (6) by defini-
tion—completing the proof.
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