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ABSTRACT

The recent upsurge of research toward compressive sampling and
parsimonious signal representations hinges on signals being sparse,
either naturally, or, after projecting them on a proper basis. The
present paper introduces a neat link between sparsity and a fun-
damental aspect of statistical inference, namely that of robustness
against outliers, even when the signals involved are not sparse. It
is argued that controlling sparsity of model residuals leads to sta-
tistical learning algorithms that are computationally affordable and
universally robust to outlier models. Analysis, comparisons, and cor-
roborating simulations focus on robustifying linear regression, but
succinct overview of other areas is provided to highlight universality
of the novel framework.

Index Terms—Robustness, outlier rejection, sparsity, Lasso.

1. INTRODUCTION

The information explosion propelled by the advent of computers, the
Internet, and the global-scale communications has rendered statisti-
cal learning from data increasingly important for analysis and pro-
cessing. Along with data that adhere to postulated models (inliers),
present in large volumes of data are also those that do not (outliers).
Resilience to outliers is of paramount importance in a plethora of
tasks such as model selection, prediction, classification, estimation
and tracking, to name a few. Due to its universal applicability, the
method of least-squares (LS) is the workhorse of statistical learning.
Unfortunately, LS is known to be very sensitive to outliers [9, 14].

Robust alternatives to LS include the M-estimators, which are
maximum-likelihood (ML) optimal for a class of outlier models [9].
Other options are least-trimmed squares (LTS) estimators, which
remove outliers from the LS fit [14]. LTS estimators have high
breakdown point, but prohibitive complexity except for small sam-
ple sizes [13]. Random sample consensus (RANSAC) provides a
computationally tractable, near-LTS alternative, especially popular
in computer vision for coping with a large number of outliers [4, 7].

A universal sparsity-controlling outlier rejection (USPACOR)
framework is introduced in this paper for robust learning. USPA-
COR is rooted at the crossroads of outlier-resilient estimation, the
least-absolute shrinkage and selection operator (Lasso) for sparse re-
gression, and convex optimization. It is shown that a sparsity-tuning
parameter (λ1) in Lasso controls the degree of sparsity in the esti-
mator, and the number of outliers rejected by USPACOR.

Related approaches for robust linear regression can be found
in [6, 10, 11]. The major difference is that λ1 in these works is
tied to a preselected outlier model, whereas here it is dictated by the
data. This promotes universality and a systematic approach leverag-
ing solvers for all robustification paths of Lasso; that is, for all values

∗Work in this paper was supported by the NSF grants CCF-0830480,
1016605, and ECCS-0824007, 1002180. Dr. Kekatos is funded by the Euro-
pean Community’s Seventh Framework Programme (grant no. 234914).

of λ1 [2, 5, 17]. In this sense, USPACOR capitalizes on but is not
limited to sparse settings (few outliers), since one can examine the
gamut of sparsity levels along the robustification path. Due to space
limitations, USPACOR is detailed only for linear regression. But its
universality is highlighted through diverse generalizations pertain-
ing to: i) the information used for selecting λ1; ii) the inlier model;
and iii) the criterion adopted to fit the chosen model. Simulated tests
demonstrate that USPACOR outperforms RANSAC in a linear re-
gression setup, especially when the percentage of outliers is high.

2. SPARSITY CONTROL FOR ROBUSTNESS

2.1. Robustifying linear regression

Consider the classical regression setup, where a real-valued scalar
response y is to be predicted using p known variables (inputs) col-
lected in the vector x := [x1, . . . , xp]′ ∈ R

p (′ stands for trans-
position). A linear approximation of the mean-square error (MSE)
optimal regression function E[y|x] is f(x) = x′

θ, where θ :=
[θ1, . . . , θp]′ ∈ R

p comprises the regression coefficients.
Given a set T := {yi,xi}N

i=1 of training data possibly con-
taminated with outliers, and supposingX := [x1, . . . ,xN ]′ has full
column rank for simplicity, the goal is to develop a robust estima-
tor of θ that is universal with respect to the outlier model. The LTS
estimator is universal in this sense, and is given by [14]

θ̂LTS := arg min
θ

s∑
i=1

r2
[i](θ) (1)

where r2
[i](θ) is the i-th order statistic among the squared residuals

r2
1(θ), . . . , r2

N (θ), and ri(θ) := yi − x′
iθ. The so-termed coverage

s determines the breakdown point of LTS [14], sinceN−s residuals
are not present in (1). Even though (1) is nonconvex, existence of a
minimizer θ̂LTS can be established as follows: i) for each subset of
T with cardinality s (there are

(
N

s

)
such subsets), solve the corre-

sponding LS problem to obtain a candidate estimator per subset; and
ii) pick θ̂LTS as the one among all

(
N

s

)
candidates with the least

cost. This solution procedure is combinatorially complex, and thus
intractable except for small sample sizes N . Algorithms to obtain
approximate LTS solutions are available; see e.g., [13].

Instead of discarding large residuals, the alternative approach
here explicitly accounts for outliers in the regression model. To
this end, consider the scalar variables {oi}N

i=1 one per training data
point, which take the value oi = 0whenever datum i is an inlier, and
oi �= 0 otherwise. This leads to the linear regression model

yi = x
′
iθ + oi + εi, i = 1, . . . , N (2)

where {εi}N
i=1 are zero-mean i.i.d. random variables capturing in-

lier errors, while oi can be deterministic or random with unspecified
distribution. In the under-determined linear system of equations (2),
both θ as well as theN × 1 vector o := [o1, . . . , oN ]′ are unknown.
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The percentage of outliers dictates the degree of sparsity (number
of zero entries) in o. Sparsity control will prove instrumental in
efficiently estimating o, rejecting outliers as a byproduct, and con-
sequently arriving at a robust estimator of θ. A natural criterion for
controlling outlier sparsity is to seek an estimator which solves

min
θ,o

N∑
i=1

(yi − x
′
iθ − oi)

2 + λ0‖o‖0 (3)

where ‖o‖0 denotes the nonconvex �0-(pseudo)norm that is equal to
the number of nonzero entries of o. Sparsity in ô can be directly
controlled by tuning the parameter λ0 ≥ 0.

As with compressive sampling and sparse modeling schemes
that rely on the �0-norm [16], problem (3) is also NP-hard. In ad-
dition, the sparsity-controlling estimator (3) is intimately related to
LTS, as asserted next (proofs are omitted due to space limitations).
Proposition 1: If {θ̂, ô} minimizes (3) with λ0 chosen such that
‖ô‖0 = N − s, then θ̂ also solves (1).

The importance of Proposition 1 is threefold. First, it formally
justifies model (2) and its estimator (3) for robust linear regression,
in light of the well documented merits of LTS [14]. Second, it further
solidifies the connection between sparse linear regression and robust
estimation. Third, problem (3) lends itself naturally to efficient (ap-
proximate) solvers based on convex relaxation. For instance, recall
that the �1 norm ‖o‖1 :=

∑p

i=1 |oi| is the closest convex approx-
imation of ‖o‖0. This property also utilized by compressive sam-
pling [16], provides the motivation to relax (3) to

min
θ,o

N∑
i=1

(yi − x
′
iθ − oi)

2 + λ1‖o‖1. (4)

Being a (nondifferentiable) convex optimization problem, (4) can be
efficiently solved by, e.g., resorting to an alternating minimization
algorithm. The resulting iterations comprise a sequence of LS fits for
θ, and coordinatewise soft-thresholded updates for o. Alternatively,
one can show that the solutions {θ̂, ô} of (4) are respectively given
by θ̂ := X†(y− ôLasso) and ô := ôLasso, whereX† := (X′X)−1X′

and ôLasso is given by

ôLasso := arg min
o

‖(IN − XX
†)(y − o)‖2

2 + λ1‖o‖1. (5)

It is worth stressing at this point that selecting λ1 is challeng-
ing because existing techniques such as cross-validation (CV) do not
apply when outliers are present. USPACOR includes a general and
systematic approach to selecting λ1 by leveraging recent convex op-
timization solvers that yield the entire path of Lasso solutions, i.e.,
for all values of λ1 in (5) [2, 5]. Based on these robustification paths
and prior knowledge possibly available on the model (2), one can
effectively select λ1 – the subject dealt with in the next section.
Remark 1. The estimator obtained from (4) can be robust in the
Huber sense [6]. However, this only holds for a specific choice of λ1.
The last point appears mundane, but is at the heart of the USPACOR
novelty, since tuning λ1 is tantamount to controlling the number of
outliers rejected.

2.2. Selecting outlier sparsity

The ensuing methods for choosing λ1 depend on prior information
available about the inliers or the outliers (number or statistics).
Number of outliers is known. By direct inspection of the robusti-
fication paths one can determine the range of values for λ1, so that

the degree of sparsity in ô equals the number of outliers No. Spe-
cializing to the interval of interest, and after discarding the identified
outliers,K-fold CV methods can be applied to determine the “best”
λ∗

1. Note that No is also assumed known by RANSAC, in order to
determine the number of random draws needed to attain a prescribed
probability of success [4, 7].
Variance of the inlier noise is known. If the variance σ2

ε of the in-
lier noise εi in (2) is known, one can proceed as follows. Consider
the estimates θ̂g obtained using (4) and (5) after sampling the robus-
tification path for each point {λg}G

g=1 on a prescribed grid of size
G. Based on {θ̂g}G

g=1 and the data T , find the sample variances
{σ̂2

g}G
g=1 after neglecting those training data {yi,xi} identified as

outliers. The winner λ∗
1 := λg∗ corresponds to the grid point

g∗ := arg min
g

|σ̂2
g − σ2

ε | . (6)

This is an absolute variance deviation (AVD) criterion for selecting
λ∗

1. Knowledge of σ2
ε is also required by RANSAC; see also Sec. 5.

Variance of the inlier noise is unknown. If σ2
ε is unknown, one can

still compute a robust estimate of the variance σ̂2
ε , and repeat the

previous procedure after replacing σ2
ε with σ̂2

ε in (6). One simple
option is based on the median absolute deviation (MAD) estimator,
where σ̂ε := 1.48×mediani (|r̂i −medianj (|r̂j |) |). The residuals
r̂i are formed based on a nonrobust estimate of θ, e.g., obtained via
an LS fit using a small subset of the training data T . The factor
1.48 provides an approximately unbiased estimate of σε, when the
inlier noise is Gaussian. In general, MAD requires knowledge of
εi’s symmetric pdf to determine the leading factor in σ̂ε [14].
Contamination model. One may know a priori that the disturbances
{oi + εi} in (2) adhere to Huber’s contamination model [9]. Here εi

can be thought of as nominal noise, and oi as the contamination. If
in this case λ1 equals the threshold value in Huber’s function, then
θ̂ enjoys asymptotic optimality in a well defined minimax sense [6].
Bayesian framework. Adopting a Bayesian perspective, one could
model θ as having i.i.d. entries obeying a non-informative (i.e., uni-
form) prior, independent of o, which is assumed to have i.i.d. entries
adhering to a common Laplacian distribution with parameter 2/λ∗

1.
Using λ1 = λ∗

1 in (4), USPACOR yields estimates θ̂ (and ô) which
are optimal in the maximum a posteriori sense; see also [10].

Building on (4), it is possible to envision a number of interesting
generalizations beyond linear regression, which further justify the
universality of the proposed USPACOR framework. These pertain
to the: i) models adopted for the inliers; ii) loss functions chosen to
penalize the fitting errors; and iii) regularization terms for θ and o.

3. UNIVERSALITY WITH RESPECT TOMODELS

This section shows how the USPACOR approach generalizes to
models other than linear time-invariant regression in (2).
Errors-in-variables (EIV) and total least-squares (TLS). TLS ex-
tends ordinary LS to fully-perturbed linear models, such as the EIV
one; see e.g., [12]. With S̄ denoting the sample covariance of the
data vectors {[x′

i yi]
′}N

i=1, the TLS estimator corresponds to the
eigenvector associated with the smallest eigenvalue of S̄. As such,
TLS performs “orthogonal regression,” which minimizes the sum of
squared orthogonal distances from [x′

i yi]
′ to the fitting hyperplane,

as opposed to the vertical distance minimized by LS [12]. To ro-
bustify TLS against outliers, USPACOR can be applied to yield the
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desired robust estimator θ̂ as solution of

min
θ,o

N∑
i=1

(yi − x′
iθ − oi)

2

1 + ‖θ‖2
2

+ λ1‖o‖1 . (7)

Alternating minimization between variables θ and o can converge to
a stationary point of this nonconvex criterion. Each sub-problem per
iteration reduces to either TLS or a scalar Lasso, and in both cases
the solutions admit analytical forms.
Dynamical models for recursive (R)LS and Kalman smoothing.
RLS schemes are of paramount importance for reducing complexity
and memory requirements in estimating stationary signals as well as
for tracking slowly varying processes, when no model is available for
the variations and quadratic convergence is desired. Similar to LS,
the quadratic cost minimized online by RLS is not robust against out-
liers. With data (2) becoming available sequentially, USPACOR can
estimate outliers online and apply RLS to the outlier-compensated
data yi − ôi. Specifically, at time i = N it solves

min
θ,o

N∑
i=1

τN−i
[
(yi − x

′
iθ − oi)

2 + λ1|oi|
]

where τ ∈ (0, 1] denotes the forgetting factor. Since the cost here is
convex, it can be solved using, e.g., coordinate descent (CD) [5].

The USPACOR approach can be tailored also for Kalman filter-
ing and smoothing, when the time-varying parameters sought obey a
model. The major novelty here is USPACOR’s ability to cope with
outliers present not only in the measurements but also in the state
equation (the latter capture unmodeled dynamics of e.g., abrupt tar-
get maneuvering). To outline this doubly-robust approach over a
smoothing horizon i = 1, . . . , N , consider the state space model
θi = Fiθi−1 + oθ,i + wi, where Fi denotes the known state tran-
sition matrix, wi ∼ N (0,Qi) the Gaussian process noise, θ0 ∼
N (m0,Σ0) the Gaussian initial state, and oθ,i (oy,i) the state (mea-
surement) outliers. Extending (2) to the vector case yields the mea-
surement equation yi = Xiθi + oy,i + εi, where εi ∼ N (0,Ri).
The doubly-robust smooth estimate θ̂ := [θ̂′

0, . . . , θ̂
′
N ]′ is given by

min
θ,oθ,oy

N∑
i=1

[
‖yi − Xiθi − oy,i‖2

R
−1

i

+ ‖θi − Fiθi−1 − oθ,i‖2

Q
−1

i

]

+ ‖θ0 − m0‖2

Σ
−1

0

+
N∑

i=1

[λ1,θ‖oθ,i‖1 + λ1,y‖oy,i‖1] . (8)

where ‖x‖A := x′Ax for a positive definite matrix A. Again, (8)
can be solved via alternating minimization, and λ1,θ , λ1,y can be
chosen along the lines outlined in Sec. 2.2.
Generalized linear models (GLM). The MSE-optimal regression
function E[y|x] is modeled here by the so-termed activation func-
tion f(x′

θ). A special case popular for (say binary) classification
leads to logistic regression, where f(u) :=

(
1 + e−u

)−1, and yi

equals 1 when xi belongs to the first class, and 0 otherwise [8, p.
119]. To robustify logistic regression USPACOR estimates θ by

min
θ,o

−
N∑

i=1

yi log zi + (1 − yi) log(1 − zi) + λ‖o‖1 (9)

where zi := f(x′
iθ + oi). Problem (9) is convex and can be effi-

ciently solved by reweighted LS iterations [8, p. 120]. The result
can be extended readily to: i) multiclass classification; and ii) probit
regression, where f(u) is replaced by the standard Gaussian cumu-
lative distribution function.

Nonparametric (kernel) regression. Nonparametric regression is
widely applicable to statistical learning problems, since it only as-
sumes that the regression function f belongs to a (possibly infinite
dimensional) space of e.g., “smooth” functions H. As estimating
f ∈ H from finite data is inherently ill-posed, the problem is typ-
ically solved by minimizing appropriately regularized criteria; see
e.g. [8, p. 167]. USPACOR can be extended to this nonparametric
context, to yield the desired robust estimate f̂ as solution of

min
f∈H,o

N∑
i=1

(yi − f(xi) − oi)
2 + μ‖f‖2

H + λ1‖o‖1 (10)

where μ ≥ 0 is chosen to tradeoff fidelity (to the outlier compen-
sated) data for the degree of “smoothness” measured by ‖f‖2

H. In-
terestingly, it can be shown that whenH has the structure of a repro-
ducing kernel Hilbert space, it suffices to solve a particular instance
of Lasso as in (5), in order to obtain f̂ in (10).

4. UNIVERSALITYWITH RESPECT TO CRITERIA

This section shows how flexible USPACOR is to encompass a num-
ber of criteria suitable for various statistical inference tasks.

4.1. Loss functions

Problem (4) relies on a square loss function V (u) = u2 of the fitting
errors {yi − x′

iθ − oi}N
i=1. If the inlier noise distribution is non-

Gaussian and known, ML or MAP loss functions can replace the LS
cost. Adopting V (u) = |u| for instance, gives rise to �1 regression
that is robust and enjoys ML optimality for Laplacian distributed
(inlier) noise. In addition, USPACOR can be endowed with an inner
layer of robustness by choosing V as Huber’s function [9]. Alterna-
tively, use of an ε-insensitive loss function V (u) := max(0, |u|− ε)
links USPACOR with robust support vector machine formulations.
Upon departing from a square loss, Lasso can no longer be employed
in the alternating minimization process.

Nonconvex loss functions could be of interest as well, such as
the θ-dependent weighted loss arising with USPACOR-based TLS
formulations [cf. (7)].

4.2. Regularization terms

Concave functions such as the SCAD penalty [3], or the sum-of-
logs regularizer in [1], can approximate better ‖o‖0 in (3) but lead
to nonconvex cost functions with multiple local minima. However,
when initialized properly, e.g., with the USPACOR solution of (4),
they typically provide considerable improvements after a few itera-
tions. Noting that λ1‖o‖1 biases ô towards zero, the performance
gains due to nonconvex regularizers can be leveraged to bias reduc-
tion [3]. An appealing convex alternative is the weighted �1 norm of
o, which also corrects for bias errors in estimating o [8, p. 92].

USPACOR is also flexible to include group-Lasso counterparts
of the �1-norm of o [11]. These are useful when one knows a priori
that outliers are clustered, and collections of them can be (non)zero
as a group; or, with high-dimensional data, e.g., images, where due
to occlusion one may wish to discard the entire image instead of
individual pixels. Group regularization terms does not sacrifice con-
vexity and thus USPACOR’s computational efficiency, since effi-
cient group Lasso solvers are now available. In particular, the group
LARS algorithm in [17] returns the entire robustification path. A dif-
ferent notion of grouping can be effected by superimposing �1-norms
of different o terms appearing e.g., with USPACOR-based Kalman
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smoothing formulations [cf. (8)]. While in this case sparsity is not
enforced at group level, each group has its own tuning parameter.

Regarding vector θ, �1-norm regularization is prudent if there is
prior information that the unknown vector is sparse, thus robustify-
ing the Lasso. Ridge penalties of the form λ2‖θ‖2

2 are also useful
when the regression matrix X is ill-conditioned. A convex combi-
nation of �1 and �2 norms is known as the elastic net, which encour-
ages sparsity while effectively dealing with strong correlation among
variables [8, p. 662]. Note that being flexible to include these regu-
larization terms, USPACOR can reject outliers even when the linear
regression problem is under-determined. Group-Lasso counterparts
can be incorporated as standalone regularizers, or jointly with the
�1-norm of θ to encourage hierarchical sparsity across and within
groups [15]. If there is structure in the data such as smoothness or
piecewise constancy, fused Lasso regularization can be adopted as
well [8, p. 666]. The resulting convex cost may be challenging to
optimize however, since coupling of variables renders CD solvers
ineffective.
Remark 2. The limited space allows only for a closing comment on
areas not covered here, which can also benefit from the USPACOR-
based approach. Those that will be reported in the near future in-
clude robust nonlinear (e.g., Volterra) kernel regression, principal
component analysis, and clustering.

5. NUMERICAL COMPARISON: USPACOR VS. RANSAC

A numerical experiment is carried out in this section, to compare
the performance of USPACOR against RANSAC in a linear regres-
sion setting. For N = 100, inliers adhere to the linear Gaussian
model yi = x′

iθ0 + εi, where the “true” parameter vector θ0 ∼
N (10 × 110, I10), and 110 denotes the 10 × 1 vector of all ones.
The i.i.d. data are xi ∼ N (010, I10) and εi ∼ N (0, 1). Out-
liers are Laplacian distributed with zero-mean and standard devia-
tion

√
2 × 103, i.e., yi ∼ L(0, 103) and i.i.d.. Contamination levels

ranging from 0% to 80% are examined. The inlier noise variance
σ2

ε = 1 is assumed known.
For USPACOR, the optimum tuning parameter λ∗

1 is obtained
using an AVD criterion in (6). Ten samples of the robustification
path are employed, equispaced on a logarithmic λ1 scale. To further
enhance the performance of USPACOR, a single iteration is carried
out to minimize a concave sum-of-logs surrogate of (3). The refine-
ment step is initialized with the solution to (4), for λ1 = λ∗

1. The
number of RANSAC iterations is fixed to either 1,000 or 10,000; and
the threshold used to decide whether a data point is an outlier is set to
3×σε. RANSAC is enhanced with a follow-up Huber M-estimation
step using the RANSAC-generated inlier set. The Huber function
parameter is set to 1.345 × σε as suggested in [6].

Fig. 1 compares RANSAC with USPACOR in terms of root
mean square error (RMSE), defined as RMSE := E[‖θ̂ − θ0‖2],
and approximated by sample averaging over 100 Monte Carlo runs.
It is apparent that both methods generate very accurate results for
small percentages of contamination. However, as the fraction of
outliers increases, RANSAC breaks down resulting in large RM-
SEs with high variability. USPACOR provides accurate results up
to 40% contamination, and degrades gracefully beyond this level.
In terms of complexity, USPACOR falls in between RANSAC 1,000
and RANSAC 10,000. These results corroborate that USPACOR is a
competitive alternative for robust linear regression, and outperforms
state of the art RANSAC methods.
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Fig. 1. USPACOR vs. RANSAC: RMSE comparison.
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