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ABSTRACT

The deviation between chronological age and biological age is a
well-recognized biomarker associated with cognitive decline and
neurodegeneration. Age-related and pathology-driven changes to
brain structure are captured by various neuroimaging modalities.
These datasets are characterized by high dimensionality as well
as collinearity, hence applications of graph neural networks in
neuroimaging research routinely use sample covariance matrices
as graphs. We have recently studied covariance neural networks
(VNNGs) that operate on sample covariance matrices using the archi-
tecture derived from graph convolutional networks, and we showed
VNNs enjoy significant advantages over traditional data analysis
approaches. In this paper, we demonstrate the utility of VNNs in
inferring brain age using cortical thickness data. Furthermore, our
results show that VNNs exhibit multi-scale and multi-site trans-
ferability for inferring brain age. In the context of brain age in
Alzheimer’s disease (AD), our experiments show that i) VNN out-
puts are interpretable as brain age predicted using VNNSs is signif-
icantly elevated as compared to the chronological age for AD with
respect to healthy subjects for different datasets; and ii) VNNs can
be transferable, i.e., VNNs trained on one dataset can be transferred
to another dataset with different dimensionality without retraining
for brain age prediction.

Index Terms— Graph convolutional network, covariance ma-
trix, brain age, Alzheimer’s disease, biomarkers.

1. INTRODUCTION

Ageing is a biologically complex process marked by progressive
anatomical and functional changes in the brain [1]. Critically, in-
dividuals age at different rates, captured by so-called “biological
aging”, and accelerated aging (e.g., when biological age is greater
than chronological age) is a precursor for cognitive decline and age-
related phenotypes like dementia [2]. Therefore, age-related bio-
logical changes are not uniform across the population. Hence, un-
derstanding the biological mechanisms of the aging brain is widely
relevant because of their implications on quality of life and clinical
interventions in vulnerable populations [3].

Different neuroimaging modalities provide complementary in-
sights into the changes of the brain due to pathology and healthy age-
ing [4,5]. Indeed, various statistical approaches to derive biomarkers
of pathology from neuroimaging datasets have been widely studied
in the literature [6]. The biomarker of interest in this paper is the
brain age gap, i.e., the difference between the predicted biological
age and the chronological age. The brain age gap for a pathology
can be conceptualized as a scalar representation of the accumulation
of longitudinal atypical changes in the brain leading to the pathol-
ogy [7]. Existing studies have reported an elevated brain age with
respect to controls for various neurodegenerative conditions, includ-
ing Alzheimer’s disease [7] and schizophrenia [8].

Inferring brain age from different neuroimaging modalities, in-
cluding structural magnetic resonance imaging (MRI), functional
MRI, and positron emission tomography, has been an active area
of research [9—14]. The statistical approaches utilized for predicting
brain age are usually specialized to the input structure (for e.g., con-

volutional neural networks for raw MRI images [9, 10]). In this pa-
per, we aim to predict brain age using cortical thickness measures de-
rived from structural MRI images. The cortical thickness measures
correspond to different brain regions that are pre-defined according
to a brain atlas used in the processing of the MRI images [15]. Cor-
tical thickness measures evolve with normal ageing [16] and are af-
fected due to neurodegeneration [17]. Thus, the age-related and dis-
ease severity related variations also appear in anatomical covariance
matrices evaluated from the correlation among the cortical thickness
measures across a population [18, 19].

Neuroimaging data analyses face challenges due to limited sam-
ple size, high cost of data acquisition, and heterogeneity in datasets
due to induced inter-site and inter-scanner variability [20]. To tackle
such challenges, existing studies deploy techniques from meta learn-
ing and transfer learning to develop data-efficient and compatible al-
gorithms [21, 22]. Specifically, transfer learning is closely related
to domain adaptation, where the inference algorithm trained on a
source domain is fine tuned for performance in a target domain [21].
In [22], learnable brain atlas transformations are studied to combine
datasets organized according to different brain atlases.

In our recent work, we have studied coVariance neural networks
(VNNs) that derive their architecture from graph convolutional
networks [23] and operate on the sample covariance matrix as a
graph [24]. VNNs have two key features: i) VNN outputs are sta-
ble to perturbations in the covariance matrices; and ii) VNNs can
be transferable to datasets of dimensions different from that of
the training set while preserving performance. Both these features
translate into significant advantages in terms of generalizability and
reproducibility over traditional data analysis approaches like princi-
pal component analysis and regression that are typically used for the
analysis of cortical thickness data [13, 14, 18]. The notion of trans-
ferability in this paper is derived from the properties of coVariance
filters whose parameters do not depend on the covariance matrix
and therefore, the VNNs can be transferred to process a dataset of a
different dimensionality. Hence, the notion and implementation of
transferability in this paper is distinct from the approaches in [21]
and [22]. Our contributions in this paper are summarized below.
Contributions: We study a VNN-based framework for brain age
prediction on various datasets consisting of controls, subjects with
mild cognitive impairment (MCI) and subjects with Alzheimer’s dis-
ease (AD), where MCI is an intermediate clinical stage between no
cognitive impairment and AD [25]. We consider two independent
datasets with cortical thickness features extracted according to dis-
tinct brain atlases or templates. One dataset is a multi-scale cortical
thickness dataset curated according to different resolutions of Schae-
fer’s atlas [26]. In this context, our observations are as follows:

1. Interpretablity: Brain age gap predicted using VNNs was signifi-
cantly elevated for AD with respect to controls and the brain age gap
for the MCI cohort was intermediate between AD and controls. This
observation was qualitatively consistent with the findings of other
brain age approaches in the literature [11]. Furthermore, our results
showed that brain age gap was significantly asssociated with clinical
dementia rating (CDR). CDR is a marker of dementia severity [27].
These findings implied that brain age predicted using VNN is a po-
tential biomarker for AD and exhibits clinical interpretability.

2. Transferability: The proposed brain age prediction framework ex-
hibited multi-scale transferability, i.e., it could be transferred across

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2023 at 07:23:25 UTC from IEEE Xplore. Restrictions apply.



the different scales of the multi-scale dataset with no retraining and
minimal deviation in performance. Moreover, our results showed
that the VNN-based framework was transferable for brain age pre-
diction while preserving interpretability without any atlas transfor-
mation.

2. SETTING

In this section, we briefly discuss the preliminaries of the cortical
thickness datasets. We denote the number of subjects in the dataset
by n. For every subject, we have mean cortical thickness data
available at m distinct cortical regions. Therefore, for a subject
it €{1,...,n}, we have a vector of mean cortical thickness data
x; € R™*1 and their chronological age y; € R. Using the samples
{x; }i=1, the covariance matrix is evaluated as

ca %;(xi—i)(xi—i)-r, 1)

where X is the sample mean of n samples and - is the transpose
operator. Furthermore, we also investigate brain age prediction on a
multi-scale cortical thickness dataset described next.

Multi-scale Cortical Thickness Dataset: In a multi-scale set-
ting, the cortical thickness data across the whole brain is avail-
able at different scales or resolutions. Examples of brain atlases
that allow multi-scale brain parcellations include Schaefer’s at-
las [26] and Lausanne atlas [28]. A multi-scale brain atlas parti-
tions the cortical surface into variable number of regions at dif-
ferent scales. For a multi-scale dataset with S > 1 scales, let
the dimension of cortical thickness at s-th scale be denoted by
ms,s € {1,...,S}. In the s-th scale, the cortical thickness data
for subject i is given by x** € R™=*!, Subsequently, we denote
the covariance matrix at scale ms by C,,_ , where C,,_ is eval-
uated from x.**,4¢ € {1,...,n} according to (1). Therefore, a
multi-scale cortical thickness dataset from n subjects is represented
as {{x7"*}_,}5_;. Next, we discuss the framework for brain age
prediction using VNNGs.

3. METHODS

We start by discussing the architecture and the notion of multi-scale
transferability of VNNs.

3.1. coVariance Neural Networks

VNN inherit the architecture of graph convolutional networks and
therefore, consist of a bank of convolutional filters and pointwise
non-linear activation function. The convolutional filters for VNN,
referred to as coVariance filters, operate on the sample covariance
matrix. If m dimensions of the data can be considered as individual
nodes of an undirected graph, the covariance matrix C represents its
adjacency matrix, where the off-diagonal elements of C represent
the linear relationship between different dimensions of the dataset.

3.1.1. Architecture

Analogously to a graph convolutional filter that combines informa-
tion according to the graph topology, we define coVariance filter as

K
H(C) 2> mC*, 2
k=0

where parameters {hy}f_, are scalars and referred to as filter
taps. Accordingly, the output of the graph filter for some data
x € R™ ! is given by H(C)x = Y5 hCFx. In a sin-
gle layer of VNN, the coVariance filter output is further passed

through a non-linear activation function (e.g. RelLU,tanh), such
that, the output of a single layer VNN with input x is given

by z = U(H(C)x , where o(-) is a pointwise non-linear func-

tion, such that, o(u) = [o(u1),...,0(um)] foru = [u, ..., Um].

To incorporate sufficient expressive power in the VNN architec-
ture for a learning task, in practice, a VNN may consist of multi-
ple layers and parallel features per layer to form filter banks at ev-
ery layer. For a VNN layer with Fi, features at input, such that,
Xin = [Xin[1],...,Xin[Fin]], and Fo, features at the output, such
that, Xout = [Xout[1], - - ., Xout[Fout]], the relationship between the
f-th output X.u:[f] and the input xi, is given by

Xout[f] =0 <zm: Hfg(C)xin[9]> . 3

Finally, the node-level features at the output of the final VNN
layer are aggregated via unweighted mean, thus, rendering the VNN
architecture to be permutation invariant. We denote the VNN ar-
chitecture using the notation ®(x; C, ), where H is the set of all
filter taps associated with the coVariance filters in all layers of the
VNN. For a supervised learning objective with a training dataset
{xi, i }i=1, the filter taps in H are chosen to minimize the train-
ing loss, i.e.,

1y
Hopt :n%-ltnﬁ;e(é(xﬁcar’%)’yi) ) @

where ¢(-) is the mean squared error (MSE) loss function that satis-
fies £(®(xi; C, H), ys) = 0iff &(x4; C, H) = ys.

3.1.2. Transferability of VNNs

The filter taps in the graph filter in (2) are independent of the dimen-
sion of the covariance matrix. Therefore, in the multi-scale setting,
we can readily replace the covariance matrix at scale my, i.e., Cy,,
in H(C,», ) with C,,, to process the cortical thickness data at scale
mo using VNN trained at scale mi. The VNN with filter taps ‘H
is transferable in the multi-scale setting if the difference between
the outputs ®(x; *; Cyn, , H) and ®(x.*?; Cyy,, H) for subject i is
bounded. This notion is formalized in the following definition.

Definition 1 (Transferable coVariance Neural Networks). Consider
a multi-scale dataset {x]**, x*? Y7y, where x]"* € R™*! and
x"? € R™2*! A VNN architecture ®(-) with a set of filter taps H
is transferable between data {x; "' };—1 and {x]"?}i—, if we have

“I’(X;m;CmuH) - (I)(X?Q; CmmH)l S €, (5)

where € > 0 is some finite constant, C,,, is the sample covariance

. mi1yn . . .
matrix for data {xi }i:l and C,,, is the sample covariance matrix
for data {x]"?}i_,.

Existing studies report the transferability property to hold for
GNNs between graphs that are sampled from the same limit object
(graphon) [29]. Since the multi-scale dataset (described in Section 2)
involves a variable number of partitions of the same surface across
scales, we anticipate VNNs to be transferable for applications in-
volving such datasets. The implication of the permutation-invariance
of VNNss is that the cortical thickness datasets curated according to
different brain atlases or templates do not have to be aligned for (5)
to hold. Therefore, we will also investigate whether transferability
exists for datasets of different dimensions collected from indepen-
dent sites. Moreover, the property of transferability enables VNNs
to be computationally efficient (for instance, by training on low
resolution data and deploying on high resolution data) [24].

In this paper, we deploy VNN as a regression model to learn
the relationship between cortical thickness and chronological age,
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thus, capturing the variations in cortical thickness due to ageing. The
details on the evaluation of brain age and using it as a biomarker of
pathology are discussed next.

3.2. Brain Age Evaluation and A-Age

The gap between estimated brain age and the chronological age is
a biomarker of pathology [7]. Using VNNs, we obtain an estimate
®(x;; C,H) for chronological age y;. However, there may exist a
systemic bias in the gap between ®(x;; C, H) and y;, where the age
is underestimated for older subjects and overestimated for younger
subjects [30]. Such a bias may exist, for example, when the corre-
lation between VNN output and chronological age is smaller than 1.
In practice, this age bias can confound the interpretations of brain
age. Therefore, to correct for age-related bias, we adopt a linear
model based post hoc bias correction approach from the existing
literature [31]. Under this approach, we follow the following bias
correction steps on the VNN estimated age ®(x; C,H) to obtain
the brain age yg for a subject with chronological age y and cortical
thickness data x:

Step 1: Fit a linear regression model to determine o and (8 in the
following model:

P(x;CH)—y=ay+p. ©)
Step 2: Obtain corrected predicted age or brain age as follows:
ie = B(x; C, 1) — (ay + B) . %)

Therefore, yg forms the brain age after bias correction for a subject
with chronological age y. The gap between g and y is the biomarker
of interest which is defined below.

Definition 2 (A-Age). For a subject with cortical thickness x and
chronological age vy, the brain age gap is defined as

A-Age £ —y , ®)

where §g is determined from the VNN estimate ®(x; C,H) and y
according to steps in (6) and (7).

In our experiments, we obtain VNN estimates on the combined
dataset of healthy subjects and pathological subjects. The age-
bias correction in (6) and (7) is performed over healthy subjects to
account for bias in the VNN estimates due to healthy ageing and ap-
plied to the pathological cohort. Further, the distributions of A-Age
are obtained for healthy controls and pathological subjects. A-Age
for subjects with pathology is expected to be elevated as compared
to healthy subjects.

4. RESULTS

In this section, we discuss our experiments on brain age prediction
for different datasets using the methodology outlined in Section 3.
The datasets consist of heterogeneous populations of healthy sub-
jects (HC), subjects with MCI, and subjects with AD. We consider
the following datasets:

Multi-scale FTDC Datasets: These datasets consisted of the corti-
cal thickness data extracted at different resolutions from healthy sub-
jects (HC; n = 170, age = 64.26£8.26 years, 101 females), subjects
with MCI (MCI; n = 53, age = 68.56 + 8.58 years, 22 females),
and subjects with AD (AD; n = 62, age = 67.25£8.83 years, 30 fe-
males). For each subject, we had the cortical thickness data curated
according to multi-resolution Schaefer atlas [26], at 100 parcel, 300
parcel, and 500 parcel resolutions. Accordingly, we formed three
datasets: FTDC100, FTDC300 and FTDC500, which are the corti-
cal thickness datasets corresponding to 100, 300 and 500 features
resolutions, respectively. For 23 MCI and 17 AD subjects, we also
had the CDR sum of boxes scores. CDR sum of boxes scores are

commonly used in clinical and research settings to quantify demen-
tia severity. A higher CDR score is associated with cognitive and
functional decline [32].

ABC Dataset: This dataset was collected from a population of 308
subjects, which composed of healthy subjects (HC; n = 171 sub-
jects, age = 71.88 4 7.05 years, 116 females), subjects with MCI
MCI; n = 47, age = 72.85 £ 8.52 years, 18 females), subjects
with AD (AD; n = 51, age = 70.92 £ 8.23 years, 23 females), and
remaining subjects with other forms of dementia. For each subject,
joint-label fusion [33] was used to quantify mean cortical thickness
in m = 96 cortical regions.

Our goal was to evaluate whether the VNN-based brain age pre-
diction framework outputs could act as biomarkers of disease in AD
or MCIL. For this purpose, we focused on group differences in A-
Age for HC, MCI, and AD for all experiments and the correlation
of A-Age with CDR scores. To determine the success of transfer-
ability, we evaluated if group differences in A-Age were retained
and if the A-Age scores correlated with CDR scores after transfer-
ring the model. In Section 4.1, we provide the experimental details
and results for the brain age prediction task on FTDC300 and ABC
datasets. The performances reported in this section correspond to the
training performance. In Section 4.2, we leverage the transferability
of VNNGs to test the brain age prediction models from Section 4.1 for
multi-scale and multi-site transferability.

4.1. Brain Age Prediction using VNN

We first evaluated the proposed VNN-based framework for brain
age prediction on FTDC300 and ABC datasets. The VNN models
are trained using two distinct approaches for FTDC300 and ABC
datasets. For FTDC300, we trained VNN to predict chronological
age using only HC cohort. In contrast, for ABC dataset, we used the
complete, hetereogeneous dataset for training VNNs. The former
approach is more commonly used, while the latter has been used to
disentangle neurodegeneration from healthy ageing [34]. The subse-
quent steps to evaluate the brain age for HC, MCI, and AD cohorts
were the same in both approaches.

FTDC300 Dataset: The VNN was trained as a regression model be-
tween cortical thickness and chronological age using data from only
HC cohort. For this purpose, we randomly divided the HC cohort
in a 80/10/10 train/validation/test split. The sample covariance ma-
trix was evaluated from the training set and normalized, such that
its largest eigenvalue was 1. For FTDC300, the VNN model con-
sisted of 2-layer architecture, with 2 filter taps per layer, 44 features
per dimension for m = 300 dimensions in both layers, and was
trained using mean squared error as the loss function. The learn-
ing rate for the Adam optimizer was 0.0033. The hyperparameters
for the VNN architecture were chosen using a hyperparameter opti-
mization framework applied on the training set [35]. The model was
trained up to 100 epochs and the best model was chosen based on its
performance on the validation set. We trained 100 VNN models on
different permutations of the training and validation sets.

To evaluate brain age for the FTDC300, we used the sample
covariance matrix from the whole dataset and evaluated the VNN
predicted age for a subject as the mean of all 100 VNN models.
The bias due to chronological age was corrected according to the
methodology described in (6) and (7), where the linear regression
model for bias correction was trained on the HC cohort. The mean
absolute error (MAE) between the predicted brain age (after bias
correction of VNN outputs) and chronological age for HC subjects
was 3 years, MCI subjects was 5.25 years and AD subjects was 7.06
years, suggesting an elevated A-Age for AD and MCI with respect
to HC. Figure 1 depicts the distributions of A-Age for HC, MCI, and
AD cohorts for the FTDC300 dataset. Significant group differences
existed for the A-Age metric among AD, MCI, and HC (ANOVA:
F-value = 35.92, p-value< 107 '°). As expected, the A-Age for HC
was significantly lower than that for AD cohort (post hoc Tukey’s
HSD test: FWER corrected p-value = 0.001 for AD vs HC), with
the A-Age for MCI intermediate between the two (post hoc Tukey’s

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 04,2023 at 07:23:25 UTC from IEEE Xplore. Restrictions apply.



HSD test: FWER corrected p-values are 0.002 for MCI vs HC and
0.001 for AD vs MCI).

ABC Dataset: For this dataset, we used cortical thickness data for
the complete dataset for training VNNs. The dataset was split into
an 80/10/10 train/validation/test split. The VNN architecture con-
sisted of 2 layers with 2 filter-taps per layer, 13 features per dimen-
sion for m = 96 dimensions in both layers. The selection of VNN
hyperparameters and the training procedure were similar to that for
FTDC300 dataset. The subsequent brain age evaluation procedure
was similar to that followed for FTDC300 and focused on correcting
for bias due to healthy ageing. The MAE between predicted brain
age and chronological age was 4.09 years for HC, 6.8 years for MCI,
and 8.23 years for AD. The box plots illustrating the distributions of
A-Age for the three cohorts in the ABC dataset are shown in Fig. 2.
Significant group differences existed between A-Age for the AD,
MCI, and HC cohort (ANOVA: F-value= 35.83, p-value< 1071%).
The A-Age for HC was significantly lower than that for AD (post
hoc Tukey’s HSD test: FWER corrected p-value = 0.001 for AD vs
HC), with MClI intermediate between the two (post hoc Tukey’s HSD
test: FWER corrected p-values are 0.001 for AD vs MCI and 0.0762
for MCI vs HC). Therefore, the approaches adopted for FTDC300
and VNN datasets provided similar qualitative results in terms of
relative elevation of brain age on the HC-MCI-AD spectrum.

4.2. Transferability of VNNs for Brain Age Prediction

In this set of experiments, we evaluated the transferability of brain
age prediction frameworks trained on FTDC300 and ABC datasets.
We focused on two aspects of transferability: i) multi-scale transfer-
ability from FTDC300 to FTDC100 and FTDC500 datasets; and ii)
multi-site transferability from FTDC300 to ABC dataset and ABC
dataset to FTDC100, FTDC300, and FTDC500 datasets.
Multi-Scale Transferability: Our results in [24, Section 5.2]
showed that VNN outputs are transferable as per Definition 1 (in
terms of MAE) across the multi-scale FTDC datasets. Therefore, we
transferred the filter taps from the VNN models trained on FTDC300
and the age bias-correction linear model to determine the brain age
using cortical thickness from FTDC100 (100 features resolution)
and FTDCS500 (500 features resolution). Our results in Figure 1
showed that the significant group differences existed in A-Age
for the three cohorts in both FTDC100 and FTDC500 (ANOVA:
p-value< 107'°), and post hoc analyses reveals that A-Age for
AD was significantly elevated with respect to HC, with MCI in-
termediate between the two for FTDC100 and FTDC500 datasets.
Thus, these findings were qualitatively consistent with those on
FTDC300 model and hence, the brain age prediction model learnt
on FTDC300 could be transferred to FTDC100 and FTDC500 for
brain age prediction.

Multi-Site Transferability: We evaluated the multi-site transfer-
ability from FTDC300 to ABC, and ABC to FTDC100, FTDC300,
and FTDC500 datasets. The methodology to evaluate multi-scale
transferability was similar to that for multi-site transferability with
one difference: here, we re-evaluated the linear model for age bias
correction on the HC cohort in the test dataset. We remark that the
relative elevation of A-Age for AD and MCI with respect to HC was
preserved even without re-learning the age bias correction model in
the test set. However, in this scenario, there existed a constant off-
set in the A-Age for HC when the model was transferred from ABC
dataset to FTDC dataset or FTDC300 to ABC dataset. In Figures 1
and 2, we observed that the VNN models learnt on FTDC300 and
ABC datasets using the procedures described in Section 4.1 could be
transferred to ABC and FTDC datasets, respectively, while preserv-
ing interpretability of A-Age. Specifically, we observed the pattern
of progressive increase in A-Age from HC to MCI to AD after trans-
ferring the VNNs to the test datasets. In the experiment to evaluate
transferability from FTDC300 to ABC dataset (Fig. 1), we observed
significant group differences in A-Age (ANOVA: F-value = 43.15)
and significant pairwise differences (post hoc Tukey’s HSD test: p-
values < 0.05 for all pairwise comparisons). For case of ABC to

I HC = MCl s AD
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Fig. 1: A-Age for all datasets with FTDC300 dataset as training set.
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Fig. 2: A-Age for all datasets with ABC dataset as training set.

FTDC300 (Fig. 2), we made similar observations: F-value = 31.76
for ANOVA and p-values < 0.05 for all post hoc tests. Therefore,
we observed evidence of multi-site transferability for brain age pre-
diction.

4.3. A-Age and CDR Sum of Boxes Scores

The A-Age inferred from the brain age prediction model trained on
the FTDC300 dataset was significantly associated with CDR sum
of boxes scores from 40 MCI and AD subjects (p = 0.38, p-val
= 0.013). Furthermore, the A-Age inferred for the FTDC300 datset
from the prediction model trained on the ABC dataset was also sig-
nificantly associated with the CDR sum of boxes scores (p = 0.44,
p-val = 0.003). The observations in this section and Section 4.2
imply that the A-Age derived using our framework was clinically
interpretable and the interpretability was retained after transfering
the model.

5. CONCLUSIONS

In this paper, we have proposed a VNN-based brain age predictor
from cortical thickness data. By leveraging the property of transfer-
ability in VNNs, we have illustrated cross-resolution and cross-site
transferability of brain age prediction. Moreover, in the context of
Alzheimer’s disease, our experiments have shown that the brain age
predictions are biomarkers for AD and clinically interpretable. Fu-
ture work includes expanding the application to other pathologies
and neuroimaging modalities.
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