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Introduction

* |Individual rate of "aging’ is driven by a variety of factors, including environment,
genetics, neurodegeneration

* Brain age provides a biological estimate of an individual’s age, derived from different
brain imaging modalities

* Brain age gap: Deviation between brain age and chronological age (time since birth)
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Brain age gap evaluation using ML

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features
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Step 2. Linear regression-based age-bias correct for outputs of ML model



Brain age gap evaluation using ML

Step 1. Train ML model to predict chronological age for healthy controls from cortical thickness features

perfect fit Least squares line

™ line " obtained on outputs of

() ML model
oo
(q¢)
-c -

Data from = ML Mode|l =——> O L=~
(@) -

healthy controls = e

o
o

True age

Step 2. Linear regression-based age-bias correct for outputs of ML model

Step 3. Obtain brain age gap for healthy controls and individuals with neurodegenerative condition.

m Healthy ™ Neurodegeneration
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coVariance neural networks (VNN) provide an anatomically interpretable brain age gap
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Graph Filters and coVariance Filters

* Graph filterl@

K _
: z = H(S)x
Graph signal X 7 — Z By S x

k=0

hy: filter taps
Graph filter of order K supported on undirected graph S= RFR'

[a] Ortega, Antonio, et al. "Graph signal processing: Overview, challenges, and applications." Proceedings of the IEEE 106.5 (2018): 808-828.



Graph Filters and coVariance Filters

e Graph filter
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hy: filter taps

Graph filter of order K supported on undirected graph S= RFR'

[b] Sihag et al. "coVariance Neural Networks”, NeurlPS 2022.

e coVariance filter [°]

For an m-dimensional dataset of n samples, x,, € R™*"™,

sample covariance matrix C= %(xn — Xp)(Xp — Xy,
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- Spectral representation of coVariance filter H(C)

K
UTH(C) x= > h;W* UTx = h(W) U'x =»PCAl!

[b] Sihag et al. "coVariance Neural Networks”, NeurlPS 2022.
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* coVariance perceptron
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VNN Architecture

®(x;C,H)

o(-): pointwise non-linearity function (e.g. RelLU, tanh)
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e coVariance Neural Networks (VNN)

Xp = X

l

K
Z] — Z hlk Ck X
k=0

X1

A 4

K
k
zp =) hyCix
k=0

X2

Y

K
k
23 =Y  h3 Cxy
k=0

Z]
> X]_:O'|:Z]_i|
X
Y 1
Z)
> X2:O'|:22:|
X
Y 2
Z3
> X3:U|:Z3i|

L x3 = ®(x; C, H)

Layer 1

Layer 2

Layer 3



Advantages offered by VNNs

e Stability to perturbations in sample covariance matrix, overcome limitations of PCA

VNN VNN
Data x — 5 — QOutput ®(x;C,H) Data x — 2 — Output &(x;C", H)
1 1
C C/

Provably stable: ||®(x; C;H) — ®(x; C’;H)|| is bounded [b]

[b] Sihag et al. "coVariance Neural Networks”, NeurlPS 2022.
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* Transferability of learnt parameters to datasets of different dimensionalities

Transfer of H v
VNN VNN
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[b] Sihag et al. "coVariance Neural Networks”, NeurlPS 2022.



VNN performance is transferable across different covariance matrices derived from same covariance function
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VNN performance is transferable across different covariance matrices derived from same covariance function
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VNN performance is transferable across different covariance matrices derived from same covariance function
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Theoretical guarantees (Theorem 3 in [c])
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[d] Sihag et al. ” Transferability of coVariance Neural Networks and Application to Interpretable Brain Age Prediction using Anatomical Features ”, arxiv:2305.01807
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Brain age gap prediction using VNNs
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Transferability of VNNs allows cross-validation of brain age gap on different resolutions
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Results

 Whole brain cortical thickness datasets on two populations
1. healthy controls (HC, n =105, age = 62.6 + 7.62 years, 57 females)
2. individuals with mild cognitive impairment or Alzheimer’s disease diagnosis
(AD+, n = 67, age = 68.52 £ 9.29 years, 28 females)

 Three multi-scale datasets (organized according to different versions of Schaefer’s atlas)
FTDC Datasets
- FTDC100 (number of features =100) - FTDC300 (number of features =300) - FTDC500 (number of features = 500)
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Objective: Regression of cortical thickness against chronological age for HC cohort

Three multi-scale datasets (organized according to different versions of Schaefer’s atlas)

- FTDC500 (number of features = 500)

Testing
o FTDC100 (HC) | FTDC300 (HC) | FTDC500 (HC)
Training
FTDC100 (HC) 5.39 + 0.084 5.5+ 0.101 5.61 + 0.132
FTDC300 (HC) 5.39 £+ 0.193 5.41 £0.167 5.47 £+ 0.169
FTDC500 (HC) 5.43 £ 0.2 5.38 £ 0.15 9.4 +0.169
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Results
Objective: Brain age gap prediction in HC and AD+ cohorts from VNNs trained on FTDC100 dataset

d
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* Results on brain age gap
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- . VNN to 300 and 500-feature
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Conclusions

* VNNs provide an anatomically interpretable perspective to brain age

* Transferability of VNNs help cross-validate interpretability across datasets of different
dimensionalities

* VNN-derived brain age is a potential biomarker for early detection of
neurodegeneration and disease monitoring



