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Communication networks have evolved from spe-
cialized research and tactical transmission systems 
to large-scale and highly complex interconnec-
tions of intelligent devices, increasingly becoming 
more commercial, consumer oriented, and hetero-

geneous. Propelled by emergent social networking services 
and high-definition streaming platforms, network traffic has 
grown explosively thanks to the advances in processing speed 
and storage capacity of state-of-the-art communication tech-
nologies. As “netizens” demand a seamless networking experi-
ence that entails not only higher speeds but also resilience and 
robustness to failures and malicious cyberattacks, ample 
opportunities for signal processing (SP) research arise. The 
vision is for ubiquitous smart network devices to enable data-
driven statistical learning algorithms for distributed, robust, 
and online network operation and management, adaptable to 
the dynamically evolving network landscape with minimal 

need for human intervention. This article aims to delineate 
the analytical background and the relevance of SP tools to 
dynamic network monitoring, introducing the SP readership 
to the concept of dynamic network cartography—a frame-
work to construct maps of the dynamic network state in an 
efficient and scalable manner tailored to large-scale heteroge-
neous networks.

INTRODUCTION
The emergence of multimedia-enriched social networking 
services and Internet-friendly portable devices is multiplying 
network traffic volume day by day [53]. Wireless connectivity 
under the envisioned dynamic spectrum paradigm [30] relies on 
mobile networks of diverse nodes, which are nevertheless 
united by unparalleled cognition capabilities, adaptability, and 
decision-making attributes. Moreover, the advent of networks of 
intelligent devices such as those deployed to monitor the smart 
power grid, transportation networks, medical information net-
works, and cognitive radio (CR) networks, will transform the 
communication infrastructure to an even more complex and 
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heterogeneous one. Thus, ensuring compliance to service-level 
agreements and quality-of-service (QoS) guarantees necessitates 
breakthrough management and monitoring tools providing 
operators with a comprehensive view of the network landscape. 
Situational awareness provided by such tools will be the key 
enabler for effective information dissemination, routing and 
congestion control, network health management, risk analysis, 
and security assurance.

But this great promise comes with great challenges. 
Acquiring network-wide performance and utilization metrics 
for large networks is no easy task. Suppose, for instance, that 
traffic volumes are of interest, not only for gauging instanta-
neous network health but also for more complex network 
management tasks such as intrusion detection, capacity 
provisioning, and network planning [56]. While traffic vol-
umes on links (also called link counts) are readily acquired 
using off-the-shelf tools such as the simple network manage-
ment protocol (SNMP), missing link-count measurements 
may still skew the network opera-
tor’s perspective. SNMP packets 
may be dropped, for instance, if 
some links become congested, 
rendering link-count information 
for those links more important 
as well as less available [48], 
[50]. Classical approaches relying 
either on simple time-series 
interpolation or on regularized 
least-squares (LS) formulations for predicting the missing link 
counts [51] have not been able to fully capture the complexity 
of the Internet traffic. This is evidenced by the recent upsurge 
of efforts toward advanced network tomography [14] and 
spatiotemporal traffic estimation algorithms for network 
monitoring [27], [50], [56].

Similarly, path metrics such as end-to-end delays are of great 
interest to service providers because they directly affect the end-
user experience. The challenge here is that the number of paths 
grows very fast as the number of nodes increases. Probing 
exhaustively all origin-destination (OD) pairs is impractical and 
wasteful of resources even for moderate-size networks [18], 
[49]. Accurate prediction of missing delays based on the inher-
ent, e.g., topology-induced correlation or smoothness traits 
among link and path quantities is therefore crucial for statisti-
cal analysis and monitoring tasks [33]. While the prevailing 
operational paradigm adopted in current networks entails nodes 
continuously communicating their link measurements to a cen-
tral monitoring station, in-network distributed cooperation 
through local interactions is preferred for scalability and 
robustness considerations [39].

Conventional network monitoring tools entail a couple of 
additional limitations. First, they are typically resource heavy 
and tend to overload network operators with crude, unrefined 
data, without enough processing to separate the “data wheat 
from the chaff”; see, e.g., [20] and references therein. It is 
thus of paramount importance to construct parsimonious 

descriptors of the network state, for the purpose of modeling, 
monitoring, and management of complex interconnected sys-
tems. Due to the diversity of modern networks, the network 
state can incorporate typical quantities such as traffic volumes 
and end-to-end delays, as well as latent social metrics such as 
hierarchy, reputation, and vulnerability. Second, malicious 
activities intended to undermine network functionality or com-
promise secrecy of data have grown in sophistication, thus ren-
dering traditional signature-based intrusion detection schemes 
increasingly obsolete. Intrusion attempts and malicious attacks 
manifest themselves as abrupt changes in network states [6], 
and such anomalous patterns are oftentimes hidden within the 
raw high-dimensional network data [55]. For these reasons, 
unveiling network anomalies in a reliable and computationally 
efficient manner is a challenging yet essential goal [34], 
[39], [55].

All in all, accurate network diagnosis and statistical analysis 
tools are instrumental for maintaining seamless end-user expe-

rience in dynamic environments 
as well as for ensuring network 
security and stability. In this 
direction, this tutorial advocates 
the concept of dynamic network 
cartography as a tool for statisti-
cal modeling, monitoring, and 
management of complex net-
works. Focus will be placed on 
two complementary aspects of 

network cartography, specifically, online construction of global 
network state maps using only a few measurements and the 
unveiling of network anomalies across network flows and time. 
The surveyed cartography algorithms leverage recent advances 
in machine learning and statistical SP methods, including 
sparsity-cognizant learning, kriged Kalman filtering of dynami-
cal processes over networks, nuclear norm minimization for 
low-rank matrix completion, semisupervised dictionary learning 
(DL), and in-network optimization via the alternating-
directions method of multipliers. Through a unifying treatment 
that revolves around network cartography, this article demon-
strates how benefits from foundational SP methods can perme-
ate to dynamic network monitoring and collectively enable 
inference of global network health, thus leading to enhanced 
network robustness and QoS.

GLOBAL PERFORMANCE PREDICTION VIA 
DYNAMICAL NETWORK CARTOGRAPHY
This section deals with the problem of mapping the network 
state from incomplete sets of measurements and touches 
upon two application domains. A DL algorithm is intro-
duced first to efficiently impute missing link traffic vol-
umes, using measurements from a wide class of (possibly 
nonstationary) traffic patterns [27]. Subsequently, the prob-
lem of tracking and predicting end-to-end network delay is 
considered, and the dynamic network kriging approach of 
[46] is described.
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SEMISUPERVISED DICTIONARY 
LEARNING FOR TRAFFIC MAPS
Consider an Internet protocol (IP) network comprising N  nodes 
and L links, carrying the traffic of F OD flows (network connec-
tions). Let x ,l t denote the traffic volume (in bytes or packets) 
passing through link { , , }l L1 f!  over a fixed interval of time 
( , ).t t tD+  Link counts across the entire network are collected 
in the vector ,x Rt

L!  e.g., using the ubiquitous SNMP protocol. 
Since measured link counts are both unreliable and incomplete 
due to hardware or software malfunctioning, jitter, and commu-
nication errors [56], [48], they are expressed as noisy versions of 
a subset of S L1  links

 , , ,y t 1 2S xt t t t fe= + =  (1)

where St is an S L#  selection matrix with 0–1 entries whose 
rows correspond to rows of the identity matrix of size ,L  and te  
is an S 1#  zero-mean noise term with constant variance 
accounting for measurement and synchronization errors. Given 
yt the aim is to form an estimate 
xtt  of the full vector of link counts 

,xt  which in this case defines the 
network state.

A simple approach imple-
mented in measurement-process-
ing software, such as RRDtool 
[44], is to ignore the noise term 
and rely on one-dimensional 
interpolation for the time series 
{ }x ,l t  per link .l  The applicability and accuracy of this scheme is, 
however, limited since it tacitly assumes that the entries of xt  
are uncorrelated; missing entries x ,l t are few and do not occur 
in bursts; and the time series { }xt  is stationary. Nevertheless, 
none of these assumptions holds true in real networks [48].

The reliance on stationarity and availability of measure-
ments from contiguous time intervals can be foregone if esti-
mation of xt  is performed for each t individually. In principle, xtt  
can be obtained if the volumes of OD traffic flows z Rt

F!  are 
available, since they are related through

 x Rzt t= , (2)

where the so-termed routing matrix : [ ] { , }r 0 1R ,l f
L F!= #  is 

such that r 1,l f =  if link l carries the flow ,f  and zero otherwise. 
However, measuring zt is even more difficult and in practice zt 
is itself estimated from { }xt  through tomographic traffic infer-
ence [14], [33], where given R and noisy link counts, the goal is 
to estimate the OD flows as the solution of a linear inverse prob-
lem. Since the inverse problem is highly under-determined 

( ) ( ) ,O OF N L N2 &= =6 @  early approaches relied on prior 
knowledge in the form of statistical models for the OD flows 
(such as the Poisson, Gaussian, logit-choice, or gravity models), 
that ultimately serve as complexity-controlling (that is regular-
ization) mechanisms [33, Ch. 9]. Among these, the state-of-the-
art traffic matrix estimation algorithm uses an entropy-based 
regularizer and has been shown to be fast, accurate, robust, and 

flexible [54]. Time-series analysis-based approaches (such as the 
Kalman filter in [51]) have also been proposed for scenarios 
where link-count measurements are available over contiguous 
time slots.

Recently, a link-count prediction algorithm was put forth in 
[27], where missing entries of xt are estimated from historical 
measurements in : { }T yS t t

T
1= =  by leveraging the structural reg-

ularity of R through a semisupervised DL approach. Under the 
DL framework, data-driven dictionaries for sparse signal repre-
sentation are adopted as a versatile means of capturing 
parsimonious signal structures; see, e.g., [52] for a tutorial 
treatment. Propelled by the success of compressive sampling 
(CS) [24], sparse signal modeling has led to major advances in 
several machine learning, audio, and image processing tasks 
[52], [28]. Motivated by these ideas, it is postulated in [27] that 
link counts can be represented as a linear combination 
x Bwt t=  of a few ( )Q%  columns of an overcomplete dictionary 
(basis) matrix : [ , , ] ,B b b RQ

L Q
1 f != #  where w Rt

Q!  is a 
sparse vector of expansion coefficients. Many signals including 

speech and natural images admit 
sparse representations even under 
generic predefined dictionaries, 
such as those based on the Fou-
rier and the wavelet bases, respec-
tively [52]. Like audio and natural 
images, link counts can exhibit 
strong correlations as evidenced 
from the structure of R [cf. (2)]. 
For instance, the traffic volumes 

on links i and j are highly correlated if they both carry com-
mon flows. DL schemes are attractive due to their flexibility, 
since they utilize training data to learn an appropriate over-
complete basis customized for the data at hand. However, the 
use of DL for modeling network data is well motivated but so 
far relatively unexplored.

PREDICTION OF LINK COUNTS
Suppose for now that either a learned, or, a suitable prespecified 
dictionary B is available and consider predicting the missing 
link counts. Data-driven learning of dictionaries from historical 
data will be addressed in the ensuing subsection. Given R and 
the link count measurements ,yt  contemporary tools developed 
in the area of CS and semisupervised learning can be used to 
form ,xtt  which includes estimates for the missing L S-  link 
counts [9], [28], [24]. The spatial regularity of the link counts is 
captured through the auxiliary weighted graph G with L verti-
ces, one for each link in the network. The edge weights for all 
edges in G  are subsumed by the off-diagonal entries of the 
Gram matrix [ ] : ,gG RR R,i j

L L!= = #l  where ( )$ l denotes trans-
position. The off-diagonal entries g ,i j count the number of OD 
flows that are common to both links i and .j  Main diagonal 
entries of G count the number of OD flows that use the corre-
sponding links.

Given a snapshot of incomplete link counts yt dur-
ing the operational phase (where a suitable basis B is 
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available), the sparse basis expansion coefficient vector wt 
is estimated as

 : arg minw y S Bw w w B LBwt t t t w t g t t2
2

1
wt

< < < <m m= - + + l lt , (3)

where : ( )1diagL G GL= -  denotes the Laplacian matrix of ;G  
, 0w g 2m m  are tunable regularization parameters; and 1L is the 

L 1#  vector of all ones. The criterion in (3) consists of an LS 
error between the observed and postulated link counts, along 
with two regularizers. The 1, -norm wt 1< <  encourages sparsity in 
the coefficient vector wtt  [24], [28]. With : [ , , ]x xx , ,t t L t1 f= l  
given by ,x Bwt t=  the Laplacian regularization can be explicitly 
written as ( / ) ( ) .g x x1 2w B LBw , , ,t t i

L
i j i t j tj

L
1

2
1= -

= =
l l / /  It is 

thus apparent that w B LBwt tl l  encourages the link counts to 
be close if their corresponding vertices are connected in .G  
Each summand is weighted according to the number of OD 

flows common to links i and .j  Typically adopted for semisuper-
vised learning, such a regularization term encourages Bwt to lie 
on a smooth manifold approximated by ,G  which constrains 
how the measured link counts relate to xt [9], [45]. It is also 
common to use normalized variants of the Laplacian instead of 
L [33, p. 46].

The cost in (3) is convex but nonsmooth, and customized 
solvers developed for 1, -norm regularized optimization can be 
employed here as well, e.g., [28, p. 92]. Once wtt  is available, an 
estimate of the full vector of link counts is readily obtained as 

: .x Bwt t=t t  It is apparent that the quality of the imputation 
depends on the chosen ,B  and DL from historical network data 
in TS is described next.

DATA-DRIVEN DL
In its canonical form, DL seeks a (typically fat) dictionary B so 
that training data : { }T xL t t

T
1= =  are well approximated as 

,x Bwt t.  , , ,t T1 f=  for some sparse vectors wt of expansion 
coefficients [52]. Standard DL algorithms cannot, however, be 
directly applied to learn B since they rely on the entire vector .xt  
To learn the dictionary in the training phase using incomplete 
link counts TS instead of ,TL  the idea is to capitalize on the 
structure in ,xt  of which G is an abstraction [27]. To this end, 
one can adopt a similar cost function as in the operational phase 
[cf. (3)], yielding the data-driven basis and the corresponding 
sparse representation

{ , }W Bt t

: ,arg min y S Bw w w B LBw
:{ }

t t t w t g t t
t

T

1
2
2

1
1W, B bq q

Q
2 1

< < < <m m= - + +
< < # ==

l l6 @/
  (4)

where : [ , , ] .W w w RT
Q T

1 f != #t t t  The constraints { }1bq q
Q

2 1< < # =  
remove the scaling ambiguity in the products Bwt and prevent 
the entries in B from growing unbounded. Again, the combined 
regularization terms in (4) promote both sparsity in wt through 
the 1, -norm, and smoothness across the entries of Bwt via the 
Laplacian .L  The regularization parameters wm  and gm  are 
typically cross-validated [28, Ch. 7]. Although (4) is nonconvex, a 
block coordinate-descent (BCD) solver still guarantees conver-
gence to a stationary point [10]. The BCD updates involve 
solving for B and W in an alternating fashion, both doable effi-
ciently via convex programming [27]. Alternatively, the online 
DL algorithm in [37] offers enhanced scalability by sequentially 
processing the data in .TS  The training and operational 
(prediction) phases are summarized in Figure 1, where ( )C B, wt  
denotes the tth summand from the cost in (4), and , ,k 1 2 f=  
indicate iterations of the BCD solver employed during the train-
ing phase.

The explicit need for Laplacian regularization is apparent 
from (4). Indeed, if measurements from a certain link are not 
present in ,TS  the corresponding row of B may still be estimated 
with reasonable accuracy because of the third term in ( ).C ,B wt  
On top of that, it is because of Laplacian regularization that the 
prediction performance degrades gracefully as the number of 

Training Phase Operational Phase

yt t
T

1=" ,
( [ ], , , ,B wmin C k t T1

w t t
t

f=

[ ]W kt

( , [ ])B wmin C k
b

t t
t

T

11q # =

/

[ ]B k 1+

,y t T>t

Bt
( , )B wmin C

w t t
t

t

wtt

x Bwt t=t t t

xtt

)

[FIG1] Training and operational phases of the semisupervised DL 
approach for link-traffic cartography in [27], where Ct (B,w)
denotes the tth summand from the cost in (4) and , , ...k 1 2=
indicate iterations of the BCD solver.
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[FIG2] Link-traffic cartography of Internet-2 data [1]. Comparison 
of NRE for different values of S [27]. (Figure used with permission 
from [27].)
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missing entries in yt increases; see also Figure 2. It is worth 
stressing that the time series { }yt  need not be stationary or even 
contiguous in time. The link-traffic cartography approach 
described so far can also be adapted to accommodate time-
varying network topologies or routing matrices, using a time-
dependent Laplacian .Lt  A word of caution is due, however, since 
drastic changes in either Lt or in the statistical properties of the 
underlying OD flows ,zt  will neces-
sitate retraining B to attain satis-
factory performance. Finally, note 
that DL techniques incur a com-
plexity at least cubic in the size of 
the network and are better suited 
for monitoring of backbone wide-
area networks which are typically 
not very large.

Next, a numerical test on link count data from the Inter-
net-2 measurement archive [1] is outlined. The data consists 
of link counts, sampled at five-minute intervals, collected over 
several weeks. For the purposes of comparison, the training 
phase consisted of 2,000 time slots, with a random subset of 50 
links measured (out of L 54=  per time slot). The performance 
of the learned dictionary is then assessed over the next T0 = 
2,000 time slots. Each test vector yt is constructed by ran-
domly selecting S entries of the full link count vector .xt  The 
tuning parameters are chosen via cross-validation ( .0 1sm =  
and 10g

5m = - ). Figure 2 shows the normalized reconstruction 
error (NRE), evaluated as ( )LT y xt tt

T
0

1 2
1

0 --

=
t/  for different 

values of Q and .S  For comparison, the prediction performance 
with a fixed diffusion wavelet matrix [19] (instead of the data-
trained dictionary), as well as that of the entropy-penalized LS 
method [54] is also shown. The latter approach solves a LS 
problem augmented with a specific entropy-based regularizer 
that encourages the traffic volumes at the source/destination 
pairs to be stochastically independent. The DL-based method 
markedly outperforms the competing approaches, especially 
for low values of .S  Furthermore, note how performance 
degrades gracefully as S decreases. Remarkably, the predic-
tions are close to the actual traffic even when using only 
30 link counts during the prediction phase.

DELAY CARTOGRAPHY VIA 
DYNAMIC NETWORK KRIGING
Instead of link counts, consider now the problem of monitoring 
delays d ,p t on a set of multihop paths ,Pp !  that connect 

: | |PP =  source-destination pairs in an IP network. Path delays 
are important metrics required by network operators for assess-
ment, planning, and fault diagnosis [18], [33], [46]. However, 
monitoring path metrics is challenging primarily because P 
generally grows as the square of the number of nodes in the net-
work. Therefore, at any time t delays can only be measured on a 
subset of paths ,S Pt 1  collected in the vector .dt

s  Based on the 
partial current and past measurements : { } ,H dt

s t
1= x x=  delay car-

tography amounts to predicting the remaining path delays 
: { } .dd , \P St

s
p t p= !

r

A promising approach in this context has been the application 
of kriging, a tool for spatial prediction popular in geostatistics and 
environmental sciences [22]. A network kriging scheme was 
developed in [18], which advocates prediction of network-wide 
path delays using measurements on a fixed subset of paths. The 
class of linear predictors introduced therein leverages network 
topology information to model the covariance among path delays. 

Building on these ideas, a dynamic 
network kriging approach capable 
of real-time spatiotemporal delay 
predictions was put forth in [46]. 
Specifically, a kriged Kalman filter 
(KKF) is employed to explicitly cap-
ture temporal variations due to 
queuing delays, while retaining the 

topology-based spatial kriging predictor. The per-path delay d ,p t 
comprises several independent components due to contributions 
from each intermediate link and router and is modeled in [46] as

 .d , , , ,p t p t p t p t| o f= + +  (5)

The queuing delay ,p t|  (collected in Rt
P!| ) depends on the 

traffic and exhibits spatiotemporal correlation, periodic behav-
ior as well as occasional bursts, prompting the following 
random walk model

 t t t1| | h= +- , (6)

where the driving noise th  has zero mean and covariance matrix 
.Ch  The second term in (5), collected in the vector ,to  combines 

the processing, transmission, and propagation delays and is 
temporally white but spatially correlated, owing to the overlap 
between paths. Similar to [18], the correlation between two 
paths is modeled as being proportional to the number of links 
they share, so that the covariance matrix ,C UUa=o l  where a is 
a parameter to be estimated from training path-delay data; 
while u 1,p l =  if path p contains link ,l  and u 0,p l =  otherwise. 
Finally, the noise term ,p te  is zero mean independent and identi-
cally distributed (i.i.d.) with known variance .2v  Defining the 
S P#  path selection matrix as in the section “Semisupervised Dic-
tionary Learning for Traffic Maps,” the measurement equation can 
be written as (introduce : St

s
t to o=  and likewise t

se )

 .d St
s

t t t
s

t
s| o e= + +  (7)

In the absence of ,St  the spatiotemporal model in (6) and (7) 
is widely employed in geostatistics, where t|  is generally 
referred to as trend, and to  captures the random fluctuations 
around ;t|  see, e.g. [41]. Similar models have been employed in 
[31] to describe the dynamics of wireless propagation channels, 
and in [21] for spatiotemporal random field estimation. For a 
static selection matrix, i.e., :S St =  for all ,t  the network kriging 
approach [18] entails the following two-step procedure: Step 1) 
treat t

so  as noise, and estimate t|  using the generalized LS crite-
rion; and Step 2) use the aforesaid estimate to find the linear 

A PROMISING APPROACH IN THIS 
CONTEXT HAS BEEN THE APPLICATION 

OF KRIGING, A TOOL FOR SPATIAL 
PREDICTION POPULAR IN GEOSTATISTICS 

AND ENVIRONMENTAL SCIENCES. 



 IEEE SIGNAL PROCESSING MAGAZINE [134] MAY 2013

minimum mean-square error (LMMSE) estimator (denoted 
by E*) for ,t

so  specifically

 | .SC S SC S I d SE*
t
s

t S t
s

t t
2 1

o | |v= + -o o
-l l^ h6 6@ @  (8)

Recently, a CS-based approach has also been reported for 
predicting network-wide performance metrics [19]. For instance, 
diffusion wavelets were utilized in [19] to obtain a compressible 
representation of the delays and account for spatial and temporal 
correlations. Although this allows for enhanced prediction accu-
racy relative to [18], it requires batch processing of measure-
ments, which does not scale well to large networks for real-time 
operation. Pictorially, the performance of different algorithms 
can be assessed through the delay maps shown in Figure 3.

The spatiotemporal model set forth earlier can provide a 
better estimate of t|  by efficiently processing both present and 
past measurements jointly. Towards this end, a Kalman filter is 

employed in [46], which at time t yields the following update 
equations:

 : ( )H K d SE*
t t t t t t

s
t t1 1;| | | |= = + -- -t t t6 @

 : ( ) ( ) ( ) ( ),M I K S M CEt t t t t P t t t 1| | | |= - - = - + o-lt t6 @
where : ( ) ( ) IK M C S S C C M St t t t t t S1 1

2 1
v= + + + +o o h- -

-l l6 @  is 
the so-termed Kalman gain. The final predictor, referred also as 
the KKF, is given by

 : [ ]d S S C S S C S I d St
s

t t t t t t S t
s

t t
2 1

| |v= + + -o o
-l lt r t r tr ^ h

and the prediction error covariance matrix is

 :M d d d dEt
s

t
s

t
s

t
s

t
s= - - lt tr r r r r^ ^h h6 @

 .1I S M C C S S SS t t t t t
2

1
1

2

1
v

v
= + + + +o h-

-
-

l lr r^ h; E

[FIG3] True and predicted delay map for 62 paths in the Internet-2 data set [1] over an interval of 100 min. (a) True delays. (b) Network 
kriging [18]. (c) Difussion wavelets [19]. (d) KKF [46]. Delays of several paths change slightly around ,t 80=  but this change is only 
discernible from the delay predictions offered by KKF. Delay maps summarize the network state and are useful tools aiding operational 
decision in network monitoring and control stations [46]. (Figure used with permission from [46].)
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Robust PCA as Bilinear Decomposition
With Outlier-Sparsity Regularization
Gonzalo Mateos, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—Principal component analysis (PCA) is widely used
for dimensionality reduction, with well-documented merits in
various applications involving high-dimensional data, including
computer vision, preference measurement, and bioinformatics.
In this context, the fresh look advocated here permeates benefits
from variable selection and compressive sampling, to robustify
PCA against outliers. A least-trimmed squares estimator of a
low-rank bilinear factor analysis model is shown closely related
to that obtained from an -(pseudo)norm-regularized criterion
encouraging sparsity in a matrix explicitly modeling the outliers.
This connection suggests robust PCA schemes based on convex
relaxation, which lead naturally to a family of robust estimators
encompassing Huber’s optimal M-class as a special case. Out-
liers are identified by tuning a regularization parameter, which
amounts to controlling sparsity of the outlier matrix along the
whole robustification path of (group) least-absolute shrinkage
and selection operator (Lasso) solutions. Beyond its ties to robust
statistics, the developed outlier-aware PCA framework is versatile
to accommodate novel and scalable algorithms to: i) track the
low-rank signal subspace robustly, as new data are acquired in
real time; and ii) determine principal components robustly in
(possibly) infinite-dimensional feature spaces. Synthetic and real
data tests corroborate the effectiveness of the proposed robust
PCA schemes, when used to identify aberrant responses in person-
ality assessment surveys, as well as unveil communities in social
networks, and intruders from video surveillance data.

Index Terms—(Group) Lasso, outlier rejection, principal com-
ponent analysis, robust statistics, sparsity.

I. INTRODUCTION

P RINCIPAL component analysis (PCA) is the workhorse
of high-dimensional data analysis and dimensionality re-

duction, with numerous applications in statistics, engineering,
and the biobehavioral sciences; see, e.g., [22]. Nowadays ubiq-
uitous e-commerce sites, the Web, and urban traffic surveil-
lance systems generate massive volumes of data. As a result,
the problem of extracting the most informative, yet low-dimen-
sional structure from high-dimensional datasets is of paramount
importance [17]. To this end, PCA provides least-squares (LS)
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optimal linear approximants in to a data set in , for .
The desired linear subspace is obtained from the dominant
eigenvectors of the sample data covariance matrix [22].
Data obeying postulated low-rank models include also out-

liers, which are samples not adhering to those nominal models.
Unfortunately, LS is known to be very sensitive to outliers
[19], [32], and this undesirable property is inherited by PCA as
well [22]. Early efforts to robustify PCA have relied on robust
estimates of the data covariance matrix; see, e.g., [4]. A fast al-
gorithm for computer vision applications was put forth in [35].
Related approaches are driven from statistical physics [41], and
also from M-estimators [8]. Recently, polynomial-time algo-
rithms with remarkable performance guarantees have emerged
for low-rank matrix recovery in the presence of sparse—but
otherwise arbitrarily large—errors [5], [7]. This pertains to an
“idealized robust” PCA setup, since those entries not affected
by outliers are assumed error free. Stability in reconstructing
the low-rank and sparse matrix components in the presence of
“dense” noise have been reported in [40], [44]. A hierarchical
Bayesian model was proposed to tackle the aforementioned
low-rank plus sparse matrix decomposition problem in [9].
In the present paper, a robust PCA approach is pursued

requiring minimal assumptions on the outlier model. A
natural least-trimmed squares (LTS) PCA estimator is first
shown closely related to an estimator obtained from an
-(pseudo)norm-regularized criterion, adopted to fit a low-rank

bilinear factor analysis model that explicitly incorporates an
unknown sparse vector of outliers per datum (Section II). As in
compressive sampling [37], efficient (approximate) solvers are
obtained in Section III, by surrogating the -norm of the outlier
matrix with its closest convex approximant. This leads naturally
to an M-type PCA estimator, which subsumes Huber’s optimal
choice as a special case [13]. Unlike Huber’s formulation
though, results here are not confined to an outlier contamina-
tion model. A tunable parameter controls the sparsity of the
estimated matrix, and the number of outliers as a byproduct.
Hence, effective data-driven methods to select this parameter
are of paramount importance, and systematic approaches are
pursued by efficiently exploring the entire robustifaction (a.k.a.
homotopy) path of (group-) Lasso solutions [17], [43]. In
this sense, the method here capitalizes on but is not limited
to sparse settings where outliers are sporadic, since one can
examine all sparsity levels along the robustification path. The
outlier-aware generative data model and its sparsity-controlling
estimator are quite general, since minor modifications discussed
in Section III-D enable robustifiying linear regression [14],
dictionary learning [24], [36], and K-means clustering as well
[12], [17]. Section IV deals with further modifications for bias
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reduction through nonconvex regularization, and automatic
determination of the reduced dimension .
Beyond its ties to robust statistics, the developed out-

lier-aware PCA framework is versatile to accommodate
scalable robust algorithms to: i) track the low-rank signal
subspace, as new data are acquired in real time (Section V); and
ii) determine principal components in (possibly) infinite-di-
mensional feature spaces, thus robustifying kernel PCA [34],
and spectral clustering as well [17, p. 544] (Section VI). The
vast literature on non-robust subspace tracking algorithms
includes [24], [42], and [2]; see also [18] for a first-order algo-
rithm that is robust to outliers and incomplete data. Relative
to [18], the online robust (OR-) PCA algorithm of this paper
is a second-order method, which minimizes an outlier-aware
exponentially-weighted LS estimator of the low-rank factor
analysis model. Since the outlier and subspace estimation
tasks decouple nicely in OR-PCA, one can readily devise a
first-order counterpart when minimal computational loads are
at a premium. In terms of performance, online algorithms are
known to be markedly faster than their batch alternatives [2],
[18], e.g., in the timely context of low-rank matrix completion
[29], [30]. While the focus here is not on incomplete data
records, extensions to account for missing data are immediate
and will be reported elsewhere.
In Section VII, numerical tests with synthetic and real data

corroborate the effectiveness of the proposed robust PCA
schemes, when used to identify aberrant responses from a
questionnaire designed to measure the Big-Five dimensions
of personality traits [21], as well as unveil communities in a
(social) network of college football teams [15], and intruders
from video surveillance data [8]. Concluding remarks are given
in Section VIII.
Notation: Bold uppercase (lowercase) letters will denote ma-

trices (column vectors). Operators , , , and
will denote transposition, matrix trace, median, and Hadamard
product, respectively. Vector collects the diagonal en-
tries of , whereas the diagonal matrix has the en-
tries of on its diagonal. The -norm of is

for ; and is the
matrix Frobenius norm. The identity matrix will be repre-
sented by , while will denote the vector of all zeros,
and . Similar notation will be adopted for vec-
tors (matrices) of all ones. The -th vector of the canonical basis
in will be denoted by .

II. ROBUSTIFYING PCA

Consider the standard PCA formulation, in which a set of data
in the -dimensional Euclidean input space is

given, and the goal is to find the best -rank linear
approximation to the data in ; see e.g., [22]. Unless otherwise
stated, it is assumed throughout that the value of is given. One
approach to solving this problem, is to adopt a low-rank bilinear
(factor analysis) model

(1)

where is a location (mean) vector; matrix
has orthonormal columns spanning the signal subspace;

are the so-termed principal components, and
are zero-mean i.i.d. random errors. The unknown variables in
(1) can be collected in , and they are
estimated using the LS criterion as

(2)

PCA in (2) is a nonconvex optimization problem due to the bi-
linear terms , yet a global optimum can be shown to exist;
see e.g., [42]. The resulting estimates are and

; while is formed with
columns equal to the -dominant right singular vectors of the

data matrix [17, p. 535]. The prin-
cipal components (entries of) are the projections of the cen-
tered data points onto the signal subspace. Equiv-
alently, PCA can be formulated based onmaximum variance, or,
minimum reconstruction error criteria; see e.g., [22].

A. Least-Trimmed Squares PCA

Given training data possibly contaminated
with outliers, the goal here is to develop a robust estimator of
that requires minimal assumptions on the outlier model. Note

that there is an explicit notational differentiation between: i) the
data in which adhere to the nominal model (1); and ii) the
given data in that may also contain outliers, i.e., those
not adhering to (1). Building on LTS regression [32], the desired
robust estimate for a prescribed

can be obtained via the following LTS PCA estimator
[cf. (2)]

(3)

where is the -th order statistic among the squared
residual norms , and

. The so-termed coverage determines the breakdown
point of the LTS PCA estimator [32], since the largest
residuals are absent from the estimation criterion in (3). Beyond
this universal outlier-rejection property, the LTS-based estima-
tion offers an attractive alternative to robust linear regression
due to its high breakdown point and desirable analytical proper-
ties, namely -consistency and asymptotic normality under
mild assumptions [32].
Remark 1 (Robust Estimation of the Mean): In most applica-

tions of PCA, data in are typically assumed zero mean. This
is without loss of generality, since nonzero-mean training data
can always be rendered zero mean, by subtracting the sample
mean from each . In modeling zero-mean data,
the known vector in (1) can obviously be neglected. When
outliers are present however, data in are not necessarily
zero mean, and it is unwise to center them using the non-robust
sample mean estimator which has a breakdown point equal to
zero [32]. Towards robustifying PCA, a more sensible approach
is to estimate robustly, and jointly with and the principal
components .
Because (3) is a nonconvex optimization problem, a non-

trivial issue pertains to the existence of the proposed LTS PCA
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estimator, i.e., whether or not (3) attains a minimum. Fortu-
nately, the answer is in the affirmative as asserted next.
Property 1: The LTS PCA estimator is well defined, since (3)

has (at least) one solution.
Existence of can be readily established as follows: i)

for each subset of with cardinality (there are such sub-
sets), solve the corresponding PCA problem to obtain a unique
candidate estimator per subset; and ii) pick as the one
among all candidates with the minimum cost.
Albeit conceptually simple, the solution procedure outlined

under Property 1 is combinatorially complex, and thus in-
tractable except for small sample sizes . Algorithms to obtain
approximate LTS solutions in large-scale linear regression
problems are available; see e.g., [32].

B. -Norm Regularization for Robustness

Instead of discarding large residuals, the alternative ap-
proach here explicitly accounts for outliers in the low-rank
data model (1). This becomes possible through the vector
variables one per training datum , which take the
value whenever datum is an outlier, and
otherwise. Thus, the novel outlier-aware factor analysis model
is

(4)

where can be deterministic or random with unspecified dis-
tribution. In the under-determined linear system of equations
(4), both as well as the matrix
are unknown. The percentage of outliers dictates the degree of
sparsity (number of zero rows) in . Sparsity control will prove
instrumental in efficiently estimating , rejecting outliers as a
byproduct, and consequently arriving at a robust estimator of .
To this end, a natural criterion for controlling outlier sparsity is
to seek the estimator [cf. (2)]

(5)

where ,
, and denotes the nonconvex -norm that is equal

to the number of nonzero rows of . Vector (group) sparsity
in the rows of can be directly controlled by tuning the
parameter .
As with compressive sampling and sparse modeling schemes

that rely on the -norm [37], the robust PCA problem (5) is
NP-hard [26]. In addition, the sparsity-controlling estimator (5)
is intimately related to LTS PCA, as asserted next.
Proposition 1: If minimizes (5) with chosen such

that , then .
Proof: Given such that , the goal is to

characterize as well as the positions and values of the nonzero
rows of . Because , the last term in the cost
of (5) is constant, hence inconsequential to the minimization.
Upon defining , the rows of satisfy

(6)

This follows by noting first that (5) is separable across the rows
of . For each , if then the optimal cost
becomes . If on the other hand

, the optimality condition for yields , and
thus the cost reduces to . In conclusion, for the chosen value
of it holds that squared residuals effectively do not
contribute to the cost in (5).
To determine and the row support of , one alternative is

to exhaustively test all admissible row-support
combinations. For each one of these combinations (indexed by
), let be the index set describing the row
support of , i.e., if and only if ; and

. By virtue of (6), the corresponding candidate
solves subject to , while is
the one among all that yields the least cost. Recognizing
the aforementioned solution procedure as the one for LTS PCA
outlined under Property 1, it follows that .
The importance of Proposition 1 is threefold. First, it formally

justifies model (4) and its estimator (5) for robust PCA, in light
of the well documented merits of LTS [32]. Second, it further
solidifies the connection between sparsity-aware learning and
robust estimation. Third, problem (5) lends itself naturally to
efficient (approximate) solvers based on convex relaxation, the
subject dealt with next.

III. SPARSITY-CONTROLLING OUTLIER REJECTION

Recall that the row-wise -norm sum
of matrix is

the closest convex approximation of [37]. This property
motivates relaxing problem (5) to

(7)
The nondifferentiable -norm regularization term encourages
row-wise (vector) sparsity on the estimator of , a property that
has been exploited in diverse problems in engineering, statis-
tics, and machine learning [17]. A noteworthy representative is
the group Lasso [43], a popular tool for joint estimation and
selection of grouped variables in linear regression. Note that
(7) is only nondifferentiable at the origin, which is a minimal
restriction.
It is pertinent to ponder on whether problem (7) still has the

potential of providing robust estimates in the presence of out-
liers. The answer is positive, since (7) is equivalent to anM-type
estimator

(8)

where is a vector extension to Huber’s convex
loss function [19]; see also [23], and

(9)

Towards establishing the equivalence between problems (7) and
(8), consider the pair that solves (7). Assume that is
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Abstract

Many real-world processes evolve in cascades over networks, whose topologies
are often unobservable and change over time. However, the so-termed adoption
times when for instance blogs mention popular news items are typically known,
and are implicitly dependent on the underlying network. To infer the network
topology, a dynamic structural equation model is adopted to capture the relation-
ship between observed adoption times and the unknown edge weights. Assuming
a slowly time-varying topology and leveraging the sparse connectivity inherent to
social networks, edge weights are estimated by minimizing a sparsity-regularized
exponentially-weighted least-squares criterion. To this end, a solver is developed
by leveraging (pseudo) real-time sparsity-promoting proximal gradient iterations.
Numerical tests with synthetic data and real cascades of online media demonstrate
the effectiveness of the novel algorithm in unveiling sparse dynamically-evolving
topologies, while accounting for external influences in the adoption times.

1 Introduction

Networks arising in natural and man-made settings provide the backbone for the propagation of con-
tagions such as the spread of popular news stories, the adoption of buying trends among consumers,
and the spread of infectious diseases [28, 8]. For example, a terrorist attack may be reported within
minutes on mainstream news websites. An information cascade emerges because these websites’
readership typically includes bloggers who write about the attack as well, influencing their own
readers in turn to do the same. Although the times when “nodes” get infected are often observable,
the underlying network topologies over which cascades propagate are typically unknown and dy-
namic. Knowledge of the topology plays a crucial role for several reasons e.g., when social media
advertisers select a small set of initiators so that an online campaign can go viral, or when healthcare
initiatives wish to infer hidden needle-sharing networks of injecting drug users.

The propagation of a contagion is tantamount to causal effects or interactions being exerted among
entities such as news portals and blogs, consumers, or people susceptible to being infected with
a contagious disease. Acknowledging this viewpoint, structural equation models (SEMs) pro-
vide a general statistical modeling technique to estimate causal relationships among traits; see
e.g., [12, 24]. These directional effects are often not revealed by standard linear models involv-
ing symmetric associations between random variables, such as those represented by covariances or
correlations, [20], [9], [14]. SEMs are attractive because of their simplicity and ability to capture
edge directionalities. They have been widely adopted in many fields, such as economics, psychomet-
rics [22], social sciences [10], and recently in genetics for static gene regulatory network inference;
see e.g., [5, 18] and references therein. However, SEMs have not been utilized to track the dynamics
of causal effects among interacting nodes. In this context, the present paper proposes a dynamic
SEM to account for time-varying directed networks over which contagions propagate, and describes
how node infection times depend on both topological and external influences. Accounting for ex-
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ternal influences is well motivated by drawing upon examples from online media, where established
news websites depend more on on-site reporting than blog references. External influence data is also
useful for model identifiability, and has been shown necessary to resolve directional ambiguities [3].

Supposing the network varies slowly with time, parameters in the proposed dynamic SEM are es-
timated adaptively by minimizing a sparsity-promoting exponentially-weighted least-squares (LS)
criterion (Section 3). To account for the inherently sparse connectivity of social networks, an ℓ1-
norm regularization term that promotes sparsity on the entries of the network adjacency matrix is
incorporated in the cost function; see also [6, 15, 1]. A novel algorithm to jointly track the network’s
adjacency matrix and the weights capturing the level of external influences is developed in Section
3.1, which minimizes the resulting non-differentiable cost function via a proximal-gradient (PG)
solver; see e.g., [23, 7, 4]. The resulting dynamic iterative shrinkage-thresholding algorithm (ISTA)
is provably convergent, and offers parallel, closed-form, and sparsity-promoting updates per itera-
tion. Numerical tests on synthetic network data demonstrate the superior error performance of the
developed algorithms, and highlight their merits when compared to the sparsity-agnostic approach
in [27]. Experiments in Section 4 involve real temporal traces of popular global events that prop-
agated on news websites and blogs in 2011 [17]. Interestingly, topologies inferred from cascades
associated to the meme “Kim Jong-un” exhibit an abrupt increase in the number of edges following
the appointment of the new North Korean ruler.

Related work. Inference of networks using temporal traces of infection events has recently become
an active area of research. According to the taxonomy in [13, Ch. 7], this can be viewed as a problem
involving inference of association networks. Several prior approaches postulate probabilistic models
and rely on maximum likelihood estimation (MLE) to infer edge weights as pairwise transmission
rates between nodes [26], [21]. However, these methods assume that the network does not change
over time. A dynamic algorithm has been recently proposed to infer time-varying diffusion networks
by solving an MLE problem via stochastic gradient descent iterations [27]. Although successful
experiments on large-scale web data reliably uncover information pathways, the estimator in [27]
does not explicitly account for edge sparsity prevalent in social and information networks. Moreover,
most prior approaches only attribute node infection events to the network topology, and do not
account for the influence of external sources such as a ground crew for a mainstream media website.

Notation. Bold uppercase (lowercase) letters will denote matrices (column vectors), while operators
(·)⊤, λmax(·), and diag(·) will stand for matrix transposition, spectral radius, and diagonal matrix,
respectively. The N ×N identity matrix will be represented by IN , while 0N will denote the N × 1
vector of all zeros, and 0N×P := 0N0⊤

P . The ℓp and Frobenius norms will be denoted by ∥ · ∥p, and
∥ · ∥F , respectively.

2 Network Model and Problem Statement

Consider a dynamic network with N nodes observed over time intervals t = 1, . . . , T , whose ab-
straction is a graph with topology described by an unknown, time-varying, and weighted adjacency
matrix At ∈ RN×N . Entry (i, j) of At (henceforth denoted by atij) is nonzero only if a directed
edge connects nodes i and j (pointing from j to i) during the time interval t. As a result, one in gen-
eral has atij ̸= atji, i.e., matrix At is generally non-symmetric, which is suitable to model directed
networks. Note that the model tacitly assumes that the network topology remains fixed during any
given time interval t, but can change across time intervals.

Suppose C contagions propagate over the network, and the infection time of node i by contagion c is
denoted by ytic. In online media, ytic can be obtained by recording the time when website i mentions
news item c. For uninfected nodes at slot t, ytic is set to an arbitrarily large number. Assume that the
susceptibility xic of node i to external (non-topological) infection by contagion c is known and time
invariant over the observation interval. In the web context, xic can be set to the search engine rank
of website i with respect to (w.r.t.) keywords associated with c.

The infection time of node i during interval t is modeled according to the following dynamic struc-
tural equation model (SEM)

ytic =
∑

j ̸=i

atijy
t
jc + btiixic + etic (1)
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where btii captures the time-varying level of influence of external sources, and etic accounts for
measurement errors and unmodeled dynamics. It follows from (1) that if atij ̸= 0, then ytic is

affected by the value of ytjc. With Bt := diag(b11, . . . , bNN ), collecting observations for the entire
network and all C contagions yields the dynamic matrix SEM

Yt = AtYt +BtX+Et (2)

where Yt := [ytic], X := [xic], and Et := [etic] are all N × C matrices. A single network topology
At is adopted for all contagions, which is suitable e.g., when information cascades are formed
around a common meme or trending (news) topic in the Internet; see also the data in Section 4.

Given {Yt}Tt=1 and X adhering to (2), the goal is to track the underlying network topology {At}Tt=1

and the effect of external influences {Bt}Tt=1. To this end, the algorithm developed in the next
section assumes slow time variation of the network topology and leverages the inherent sparsity of
edges that is typical of social networks.

3 Topology Tracking Algorithm

To estimate {At,Bt} in a static setting, one can solve the following regularized LS problem

{Â, B̂} = arg min
A,B

1

2

T
∑

t=1

∥Yt −AYt −BX∥2F + λ∥A∥1

s. to aii = 0, bij = 0, ∀i ̸= j (3)

where ∥A∥1 :=
∑

i,j |aij | is a sparsity-promoting regularization, and λ > 0 controls the sparsity

level of Â. Absence of a self-loop at node i is enforced by the constraint aii = 0, while having

bij = 0, ∀i ̸= j, ensures that B̂ is diagonal as in (2). The batch estimator (3) yields single estimates

{Â, B̂} that best fit the data {Yt}Tt=1 and X over the whole measurement horizon t = 1, . . . , T ,
and as such (3) neglects potential network variations across time intervals.

Exponentially-weighted LS estimator. In practice, measurements are typically acquired in a se-
quential manner and the sheer scale of social networks calls for estimation algorithms with minimum
storage requirements. Recursive solvers enabling sequential inference of the underlying dynamic
network topology are thus preferred.

For t = 1, . . . , T , consider the sparsity-regularized exponentially-weighted LS estimator (EWLSE)

{Ât, B̂t} = arg min
A,B

1

2

t
∑

τ=1

βt−τ∥Yτ −AYτ −BX∥2F + λt∥A∥1

s. to aii = 0, bij = 0, ∀i ̸= j (4)

where β ∈ (0, 1] is the forgetting factor that forms estimates {Ât, B̂t} using all measurements
acquired until time t. Whenever β < 1, past data are exponentially discarded thus enabling tracking
of dynamic network topologies. The first summand in the cost corresponds to an exponentially-
weighted moving average (EWMA) of the squared model residuals norms. The EWMA can be seen
as an average modulated by a sliding window of equivalent length 1/(1 − β), which clearly grows
as β → 1. In the infinite-memory setting whereby β = 1, (4) boils down to the batch estimator (3).

Selection of the (possibly time-varying) tuning parameter λt is an important aspect of regularization
methods such as (4), because λt controls the sparsity level of the inferred network and how its
structure may change over time. For sufficiently large values of λt one obtains the trivial solution

Ât = ON×N , while increasingly more dense graphs are obtained as λt → 0. An increasing λt

will be required for accurate estimation over extended time-horizons, since for β ≈ 1 the norm
of the LS term in (4) grows due to noise accumulation. This way the effect of the regularization
term will be downweighted unless one increases λt at a suitable rate, for instance proportional to√
σ2t as suggested by large deviation tail bounds when the errors are assumed etic ∼ N (0,σ2),

and the problem dimensions N,C, T are sufficiently large [20, 19, 1]. In the topology tracking
experiments of Section 4, a time-invariant value of λ is adopted and typically chosen via trial and
error to optimize the performance. This is justified since smaller values of β are selected for tracking
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