
Bootstrapping: Using SMT Hardware to Improve Single-Thread Performance

Sushant Kondguli and Michael Huang
Department of Electrical and Computer Engineering

University of Rochester
{sushant.kondguli, michael.huang}@rochester.edu

Abstract
Single-thread performance improvement remains a central

design goal for general purpose processors. Microarchitec-
tural designs for the core have reached a plateau over the past
years. However, we are still far from exhausting the implicit
parallelism available in today’s programs. One approach is
to use a separate thread context to improve data and instruc-
tion supply to the main pipeline. Such decoupled look-ahead
(DLA) architectures have been shown to be an effective way to
improve single-thread performance. However, a default imple-
mentation requires an additional core. While an SMT flavor is
possible, a naive implementation is inefficient and thus slow.
In this paper, we propose an optimized implementation called
Bootstrapping that makes DLA just as effective on a single
(SMT) core as using two cores. While fusing two cores can
improve single-thread performance by 1.22x, Bootstrapping
provides a speedup of 1.48 over a broad range of benchmark
suites, making it a compelling microarchitectural feature for
general-purpose microarchitectures.

Keywords: Decoupled Look-Ahead (DLA) architectures,
Simultaneous Multi-Threading (SMT), single thread perfor-
mance.

1. Introduction

Single-thread performance improvement remains a central
design goal for general-purpose processors. Over the years,
microarchitectural designs have reached a plateau for the core:
while there are more cores, features, and bigger structures
today [1], the basic out-of-order design is no different from
more than 20 years ago [2]. Correspondingly, performance
measured by IPC has also stagnated.

Yet, we are far from exhausting available implicit paral-
lelism: a simple modeling of some idealized systems shows
at least a 5x performance potential remaining [3]. While it is
unclear how much of this potential is easily extractable, we
believe there are still plenty low-hanging fruits. In particular,
the data and instruction supply chain remains a significant
bottleneck. Addressing this bottleneck will not only lead to
immediate performance gain but also amplify or enable other
mechanisms that exploit implicit parallelism.

While more powerful branch predictors [4] and prefetch-
ers [5, 6] are reasonable options moving forward, we focus
on decoupled look-ahead (DLA) architectures for two inter-
related reasons. First, DLA is more general-purpose as it does

not depend on a particular access pattern to issue prefetches.
Second, since the major resource needed is another thread
context, there is the flexibility to allocate the resource either
to improve a single thread or to execute a different thread.

DLA does carry an overhead both in terms of hardware
used (two cores) and the energy cost, but note two points:
first, optimizations are being made and will continue to be
in the future. Second, assuming energy doubles is a gross
exaggeration, as we will discuss in more detail later. Indeed,
DLA is already competitive against some current practices
that boost single-thread performance [7]. In particular, using
a wide-issue superscalar is one such practice. With the con-
cern of energy efficiency, such wide cores are often treated
as multiple narrower cores/clusters/slices by default, and only
amalgamated to function as a single wide core when the situa-
tion permits. In this paper, we explain that this clustered SMT
architecture offers a natural platform for a DLA system. We
make the following contributions:
• Earlier designs such as Slipstream explored this space [8]. It

is also easy to implement a more recent DLA model [9] onto
an SMT substrate. However, we show that both cases leave
significant performance potentials unexploited (Section 4).

• We propose Bootstrapping which takes a few simple tweaks
of a DLA design, but significantly improves resource uti-
lization. One such tweak on the cache control allows both
contexts to be efficiently contained by the cache. Another
tweak dynamically finds a resource allocation that maxi-
mizes the performance of the thread pair. The design makes
it all but unnecessary to use an additional core for look-
ahead. This design acts as a high-performance foundation
for continued innovation in the area of DLA.

• Over a wide-range of workloads, Bootstrapping achieves
significant performance benefits, with a speedup of 1.21 (ge-
ometric mean). This is on top of the single-thread speedup
of 1.22 by fusing two narrower cores into a single, wider
core. The result is an average 1.48 combined speedup over
a single (narrower) core.
The rest of the paper is organized as follows: we first dis-

cuss the variants of DLA design and other related concepts
like helper threads in Section 2. Then we provide an overview
of the DLA design in Section 3.1 and discuss the Bootstrap-
ping design in Section 3.2. Finally, experimental analysis is
performed in Section 4 and our finding are summarized in
Section 5.

1



2. Background and Related Works

On-demand caching system alone provides a limited degree
of anticipatory data fetching. A number of techniques com-
plement such a basic system by following expected access
patterns in a hard-wired finite state machine, launching mi-
cro helper threads, or executing a single, more self-sustained
look-ahead thread for targeted prefetches as well as branch pre-
diction. We call the last type a decoupled look-ahead (DLA)
approach.

Not all accesses can be described by simple address pat-
terns. Obtaining addresses through partial execution of the
program represents a broad class of prefetching approaches.
On one extreme of the design spectrum, many short threads
are launched as helpers to precompute information for data
or instruction supply [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].
Although these micro helper threads are an immensely useful
concept, marshaling a very large number of micro threads can
bring practical issues [38].

On the other extreme of the spectrum, an idle core in a
multicore system is used to execute a different copy of the
original program on a separate thread context [8, 39, 40, 41, 42,
43,44,9,45,46,7,47,3]. This copy is often a reduced version of
the program (which we referred to as the skeleton) so that it can
run faster to look ahead. This style of design can be traced back
to the Decoupled Access/Execute architecture [48]. Unlike
in DAE, however, the leading thread in this group of designs
does not affect the architectural state and only performs look-
ahead functionality. We therefore refer to these designs as
Decoupled Look-Ahead (DLA) architectures.

DLA designs sidestep some of the practical problems facing
micro helper threads. But the key challenge becomes how to
create a look-ahead thread that is sufficiently autonomous and
yet fast enough to permit deep look-ahead. Various ways are
devised to improve the look-ahead thread’s speed in order to
stay ahead of the main program thread. For instance, Slip-
stream [45] removes predicted dead instructions and biased
branches; Dual-core execution skips memory access instruc-
tions that miss in the L2 cache [42]; Tandem uses architectural
pruning to make the hardware faster [39]. Garg and Huang
experimented with a more purpose-built look-ahead thread
using a stripped-down version of the original program [9].

In this past work, only a small number of ideas are discussed
at a time. By themselves these ideas have a limited benefit –
no different from ideas for conventional microarchitectures.
The limited benefit coupled with the perceived disadvantage of
doubling the resources needed can hardly make DLA appear
as a promising solution that we believe it is. Keep in mind,
the extra thread context is an infrastructure whose cost is
amortized over future ideas. As we will show in this paper,
there are many conceivable optimizations that can lower the
overhead even more while improving performance.

Other than explicitly launching a helper thread, many pro-

posals have dealt with reducing the chance a conventional
microarchitecture is blocked [49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 27]. Many designs share a theme of checkpoint-
ing important state, clean up some structures to allow further
(speculative) execution. Sometimes the sole purpose of the ex-
ecution is warm-up [58]. In this latter case, the design is more
closely related to helper threading. Finally, there are recent
incarnations of the basic concept of DAE to separate the com-
putation part of the program from memory accesses [61, 62].

3. Bootstrapping Architecture

We first provide a brief discussion of the DLA execution model
and a basic implementation (Section 3.1); then discuss new
support to allow efficient DLA execution on an SMT (Section
3.2).

3.1. Overview of DLA Baseline

Note that numerous DLA designs have been proposed in the
past (e.g., [8, 42, 39, 9]). Most share the general working
principle, which by itself does not guarantee large performance
gains. The key challenge in DLA design is to keep the look-
ahead thread fast and yet accurate in order to achieve deep,
sustained look-ahead [63].

Our baseline DLA architecture is largely based on [9].
Specifically, a skeleton of the original program binary is gen-
erated offline through an automated binary analysis. The
skeleton includes all the control instructions and their back-
ward dependence chain. A subset of memory instructions are
also included in the skeleton as prefetch payloads along with
their backward dependence chain. Figure 1 shows a pseudo
code that generates a basic skeleton used by DLA. Note that
the process is almost identical to the one used in [9], which
includes more detailed discussions about the choice of design
parameters and additional optimizations.

During execution, this skeleton forms the static code of the
look-ahead thread (LT) and runs on a different core. It passes
relevant information (e.g., branch outcomes) which speeds up
the execution of the main thread (MT). It may appear wasteful
to execute the same code twice, however, many actions are
not repeated at runtime e.g., off-chip accesses are only time
shifted and not repeated, wrong path instructions are limited
to LT and LT only executes a subset of the original program.

Such an architecture requires the following support on top
of a generic multi-core architecture, ordered from least to most
special-purpose:
1. Containment of speculation: LT cannot be allowed to up-

date architectural state since its execution often involves
speculative optimizations. For the most part, LT’s state is
naturally confined to its thread context. The only additional
support needed is about the dirty lines in the private caches.
In the look ahead mode, dirty lines are not used to supply
coherence requests from other cores and simply discarded
upon eviction. In other words, we only need to make the

2



Figure 1: Pseudo code for the skeleton generation process used by DLA.
Note that the runtime profile uses training inputs to identify memory in-
structions that are likely to experience cache misses. The binary is parsed
to identify control instructions. The skeleton includes these memory and
control instructions along with their backward dependencies.

private cache state of LT invisible to the rest of the system.
2. Communication of look-ahead results: LT already warms

up the caches it shares with MT without any additional
support. However, a mechanism to send over additional
results from LT to MT is valuable. We include two FIFO
queues (Fig. 2) Branch Outcome Queue (BOQ) and Foot-
note Queue (FQ). The BOQ serves a multitude of purposes.
• First, it passes LT’s branch outcomes as predictions to

MT. This ensures that in the steady state, the majority of
the branch mispredictions are experienced only in LT.

• Second, it is a simple and effective mechanism to detect
incorrect look-ahead control flow. When a branch pre-
diction fed by LT turns out wrong (which is relatively
rare at about 0.06 per kilo instructions), MT can reboot
it.

• Third, we can easily know and control the depth of look-
ahead: the number of unread entries in the BOQ equals
the number of dynamic basic blocks LT is ahead of MT.
To prevent run-away prefetching, we only need to limit
the size of the BOQ (512 entries in this paper).

• Fourth, it is a convenient way to allow delayed (just-in-
time) prefetching. When a prefetch hint is generated, it
can be associated with a branch entry and released only
upon the dequeuing of that BOQ entry. FQ is used for
other less frequent but wider data like prefetch addresses
and indirect branch targets.

3. Support for instruction masking: In our design, the skeleton
executed by LT only includes a subset of instructions from
the original program binary. This allows us to use only the
original program binary along with a set of bits to mask
off instructions not included in the skeleton. These bits are
immediately deleted upon fetch. While the mask bits can
be generated offline or online through dependence analysis
of the program binary, we model a system where mask
bits are generated offline and stored in the program binary.

During runtime, LT will separately fetch the mask bits
along with the instructions in the I-cache.1

Figure 2: Architectural support for baseline DLA. The mask bits are stored
with program binary and fetched separately by LT. Branch outcome queue
(BOQ) helps LT communicate the control flow data to MT. Footnote queue
(FQ) helps pass on additional runtime information from LT to MT.

Runtime Operations: With this architectural support, we
now briefly describe the overall operation of the baseline sys-
tem in DLA mode (Fig. 2). In this setup, the program binary is
profiled offline to generate the skeleton, which is expressed by
mask bits. The two threads (LT and MT) run on two separate
cores which are connected by the queues discussed above and
the system always runs in DLA mode. As we will see later,
these are not intrinsic requirements to implement DLA but
help describe its most basic incarnation. When a regular thread
(MT) is launched or context-switched in, its architectural state
is also used to initialize LT. Both threads proceed to execute
the code largely conventionally: fetching, dispatching, exe-
cuting, and committing instructions according to the content
of their architectural and microarchitectural states, with the
following exceptions:
1. Fetch: The fetch unit of the core executing the actual pro-

gram thread (MT) bypasses its branch predictor and draws
its branch predictions from BOQ. The fetch stage is stalled
when BOQ is empty. If the footnote bit of the BOQ entry is
set, one or more entries are dequeued from FQ and actions
are performed according to the content type. For example,
a branch target entry prompts MT to use the correspond-
ing entry for branch target prediction and a prefetch entry
prompts MT to launch prefetch for the corresponding ad-
dress. Finally, the highly accurate branch predictions from
BOQ makes decoupled fetch more practical and useful.
MT2 thus employs a fetch queue and stalled decode stage

1Instructions and the corresponding mask bits arrive asynchronously in the
I-cache. In the case the instructions arrive before the mask bits from the L2
cache, we simply set all bits to 1, effectively assuming that the all instructions
in that cache line are present in the skeleton. When the mask bits arrive, the
updated version will be used thereafter.

2A decoupled fetch unit can in principle improve performance for the
conventional microarchitecture. Its performance benefits depend on the exact
microarchitectural detail. In our setup, a decoupled fetch unit has negligible
impact on either LT or the underlying microarchitecture.

3



does not stall the fetch stage from populating the fetch
queue.
The fetch unit of the core executing LT issues I-cache
requests for skeleton mask bits along with instructions. In
case of an I-cache miss, the cache controller issues two
requests to the L2 cache: to the instructions at the address
Ai and their masks stored in address Am = f (Ai). The fetch
unit will skip the instruction if its mask bit is "off".3

2. Commit: LT writes hints for MT into the queues (BOQ and
FQ) during its commit stage. Specifically, outcomes of the
conditional branches (“taken" or “not taken") are stored
in the BOQ in FIFO order. In addition to the continuous
branch direction hints, occasionally LT has other hints.
Whenever it encounters a branch target miss or a data cache
miss, it will pass the relevant address through the FQ and
set the footnote bit in the most recent BOQ entry.
At commit, if MT realizes that the branch prediction it
received via BOQ was incorrect, it triggers a reboot. A
reboot signal is sent to LT asking it to flush its pipeline and
stop using FQ to send data. MT then sequentially copies
its architectural registers to FQ.

3. Finally, LT may occasionally receive a reboot signal from
MT. It means that LT has veered off the control flow of MT
and needs course correction. In such cases, LT squashes
all instructions from its pipeline and re-initializes its ar-
chitectural state by copying the values it receives from
MT.4

Note that it is possible that a fault occurs in LT execution.
In our experiments, we find this to be exceedingly rare
(with the median and maximum observed rate of 0.4 and
1.2 per million instructions respectively). Most of these
are page faults. In these cases, we simply halt the LT and
triggers a reboot when MT catches up.

3.2. Bootstrapping in SMT

3.2.1. Overview of Design Updates
Fundamentally, LT does not require an extra core. A thread
context in an SMT core works too in principle. In practice,
however, when sharing the same execution hardware, LT com-
petes with MT for resources and can thus reduce or even
negate the look-ahead benefits. But as we will see later with
quantitative analyses, judicious use of the shared resource can
allow a far more efficient mode of look-ahead. As a result,
having a dedicated thread for look-ahead becomes an effective
“bootstrap” to pull MT ahead, hence the name.

To support DLA on an SMT core, we first need to ensure
correctness. In a dual-core DLA, speculative data by LT are
naturally contained by its private cache. In an SMT core, this

3The use of masks bits slightly reduces the effective storage space of the
unified caches. We model this in our simulations but note that its effect on
performance is negligible.

4We model a 64-cycle delay for the copying, but the overall cycle impact
of handling a reboot is around 200 cycles. Adding another 200 cycles to the
delay would only slow the system down by about 2%.

is only slightly less straightforward as simple modifications
can achieve isolation of LT’s speculative data.

Most of Bootstrap’s architectural support is about resource
utilization. First, with two threads, there is an increase in data
footprint. We discuss our cache control approach in Sec. 3.2.2
that tries to minimize the negative impact.

Second, the execution engine needs to support the through-
put of both threads. In a DLA system, the speed is determined
by the slower of the thread pair. Careless execution resource
allocation can exacerbate the problem and make the bottle-
neck thread even more of a bottleneck. We found that a simple
adaptive resource allocation approach works quite well. We
discuss this in Sec. 3.2.3.

Finally, the SMT hardware provides opportunities to fur-
ther optimize the DLA execution. We briefly discuss some
examples in Sec. 3.2.4.

3.2.2. Cache Control
SMT already builds in support to isolate threads and natu-
rally supports the two-threaded execution in DLA. The only
remaining issue is that of speculative, LT-written data in the
cache. Just like in the baseline DLA, when LT writes to the
cache, the data is fundamentally speculative and can not be
used by the rest of the system. One way to support this is to
have a speculative bit to lines written by LT and differenti-
ate them from other lines. Again like in the baseline DLA,
when a speculative line is evicted from L1, it is discarded;
and upon a reboot, all speculative lines are gang-invalidated.
While this support is enough for correctness guarantee, there
are optimization opportunities.

The first opportunity is to realize that LT can use MT’s data
for the most part. So both threads can access the same set
of data. The only exception is dirty, speculative data from
LT, which can not be accessed by MT. So when LT writes to
a cache line for the first time, we make a copy of it and set
the speculative bit. Subsequent reads and writes from LT will
only use the speculative copy. On the other hand, only a non-
speculative copy can be used to service an MT request. Again,
the speculative line will be discarded upon eviction. When
managed thus, the only increase in cache footprint is due to
the lines LT writes to. For a very rough estimation: Due to
load and store instruction ratio in typical programs, on average
about 22% of data in cache are dirty; Since the skeleton is only
a portion of the original code and brings about 66% of stores,
LT will bring in about 14% extra footprint. In other words,
increasing the cache size by about 1/7 would compensate for
this footprint expansion. But even this resource pressure can
be reduced, making cache expansion unnecessary.

Consider a store instruction s that is on the skeleton (Fig. 3-
a). When s is committed by LT at time t1, a new, speculative
version of cache line x is created. At time t2, when the same
instruction is committed by MT, the speculative version is no
longer necessary and should be evicted to save space. Indeed,
the speculative data is possibly incorrect and thus ought to be

4



Figure 3: Example of a desired cache version control. x and x′ indicates
some address and its LT-produced speculative version, while P, A, and B
indicate values. (a) When the value of x goes from the previous value P to
A after time T2, x′ is no longer useful and we want to keep only the new
x. (b) A slightly more complex cases in which the two versions are only
supposed to merge back to one after time T4.

evicted as soon as possible.
Intuitively, a simple versioning system can provide a good

hint on the appropriate time to evict a speculative data. Every
time LT writes to a cache line, the speculative data becomes
a version newer.5 Similarly, when the same store instruction
writes in MT, the non-speculative version got newer and when
the two versions match (e.g., at time t4 in Fig. 3-b), the specu-
lative version becomes unnecessary.

In practice there is a complicating factor to maintaining
such version tracking: The addresses used in the two threads
are not guaranteed to be the same. In the example, if s1 and s′1
update different cache lines (x 6= x′), then we should not simply
allow s1 and s′1 to update the version of their corresponding
cache line (x and x′). This is not a mere theoretical possibility:
about 12% of the stores in LT mismatch the address of their
counterpart in MT. If we ignore the case, the mismatched lines
will linger in the cache longer than necessary and result in a
small but tangible performance penalty of about 2%.

There are two different ways of addressing the issue. The
first is more direct and conventional: make sure version ad-
justment is always about a pair of store instructions (s1 and
s′1), not their respective cache lines. We let s undo the version
increment due to s′. When a version drops to 0, it becomes
unnecessary and will be evicted. This can be implemented, for
example, by using a FIFO queue to communicate the cache
line identity from LT to the trailing MT. Clearly, the extra
hardware requirement is undesirable.

The second way is to use a best-effort, approximate ap-
proach discussed below which is also used in our evaluations.
The idea is to place a speculative line in a position in the LRU
stack that would likely result in its eviction at the right time: to
coincide with the commit of the non-speculative version of the
store in MT. Keep in mind: there is no correctness concerns

5In our experiments, the largest version difference observed is 6, suggest-
ing a 3- or 4-bit counter – together with some overflow prevention mechanism
– might be sufficient if indeed a version-based solution is pursued.

and this gives us flexibility of choice in a wider design space.6

This position can be estimated as follows. At the com-
mit time of store s′ in LT, we know how far behind the non-
speculative version of the same store (s) in MT is: the number
of entries in the BOQ (NBOQ) indicates how many basic blocks
MT is trailing behind. If we further measure the average num-
ber of misses per basic block (MPBB), we can know roughly
how many misses (and thus replacements) we expect to occur
to each set when MT catches up to store s: n = bNBOQ×MPBB

Nset
c.

We move the line to the nth least recently used position.

Figure 4: Distribution of insertion positions for speculative cachelines. 0
(white) and 7 indicate LRU and MRU positions respectively.

Again, the approach does not aim to eliminate any line the
moment it becomes unwanted but tries to reduce its unnec-
essary time in the cache in a very simple way. We find this
approach to provide a comparable performance to one that
employs exact tracking. As it turns out, for the vast majority
of applications, the decision is almost always to insert into the
LRU position. Fig. 4 shows the distribution of the inserted
position for the few outlier applications. Always inserting into
the LRU position is thus another approximate solution, though
at a cost of about 1% on average and up to 6% performance
degradation, making it hard to justify in our opinion.

Figure 5: Loop identifier decision logic. As a backward branch retires, the
loop branch register is updated to mark the beginning of a new loop or
new iteration of the same loop provided the retiring branch is not already
blacklisted or nested within the branch currently occupying the loop branch
register.

3.2.3. Adaptive Resource Allocation
Executing two (almost) identical threads in an SMT proces-
sor is a familiar concept, such as for redundancy (e.g., [40]).
More relevantly, an SMT-based Slipstream design has been

6This is yet another small benefit we gained in the DLA design style.
While the upfront cost of some redundancy is obvious, these (sometimes
small) benefits are just as real.

5



evaluated [8]. Similarly, our baseline DLA can be easily im-
plemented on an SMT substrate. Indeed, if we already have
the ability to fuse two cores into a wider one that supports
SMT [1], we can build a straightforward DLA-on-SMT sys-
tem, which simply fetches instructions from both threads in
a round-robin fashion and gives no priority to either thread.
This system is in general faster than running DLA on two
cores, largely because sharing resources improves utilization.
However, such a naive implementation is suboptimal to a sig-
nificant extent, as we will show in Section 4. This is due to
the opportunity costs: resources could be utilized much more
effectively by favoring the bottleneck thread. The question be-
comes that of the mechanism and policy of resource allocation.
In both cases, we find that simple approaches work reasonably
well.

Mechanism: We allocate execution resource by controlling
the number of re-order buffer (ROB) entries occupied by each
thread. We do so at increments of 1/16 of the capacity. Thus
MT and LT can divide up ROB at a ratio of 1:15, 2:14, and so
on. The fetch stage will fetch instructions from both threads
in a round robin fashion, skipping the thread that has reached
its designated capacity. Finally, it is possible to give LT no re-
sources at all. In that case DLA degenerates into conventional
execution.

Policy: Since the best allocation depends on the program
behavior, we divide the execution into recognizable code seg-
ments (e.g., a loop) and adapt for each segment independently.
The policy is based on the heuristic of repeating instances of
the same code segment are similar in behavior. Thus, we can
adopt a trial-and-error approach: testing out each different
configuration, and picking whichever seems to work the best
for all future instances. The implementation of the policy
includes architectural support for marking the code-segment
instance boundaries and an algorithm governing the search
through the configuration space.

Implementation: In our experience, a simple and effective
way to divide code is to identify certain backward branches
that we call eigen-branches. Take a simple loop for exam-
ple. The typical final backward branch marks the boundary
between repeating iterations of the loop body, which often
show repeating behavior. When we broaden the definition of
branch to include function calls and unconditional jumps, any
repetition of the same static code – including recursion – will
necessarily involve backward branches. They therefore serve
as a convenient way of demarcating the repeating instances.

Not all backward branches necessitate repetition. We only
focus on those that do repeat, which often manifest as back-
to-back ones, i.e., those without other backward branches in
between two consecutive instances. These are easy to detect:
a loop-branch register (LBR) keeping the PC of a detected
backward branch is all we need. But some genuine loop
branches do not occur back-to-back, for example, when there
is another backward branch within the loop body. To filter

these unwanted backward branches out, we augment the LBR
to also keep track of the target of the backward branch. If
we encounter a new backward branch, then there are a few
different possibilities: ¬ the new branch is the “real” loop
branch and the one in the LBR is part of the body, ­ the other
way around, ® both are loop branches with one of them being
the outer branch, and so on. While the detailed decision logic
is shown in Fig. 5, the general heuristic is that a backward
branch is considered to be nested within another one if its
address falls between the PC and the target of the other branch.
This heuristic does not cover all possibilities but works well
for normal code.

After blacklisting some inner branches (treating them as
if they are not backward branches), all other back-to-back
backward branches are identified as eigen-branches. Thus, the
entire execution is marked by a sequence of eigen-branches.
The segment between two neighboring instances of the same
eigen-branch is, for our purposes, an iteration.7 Depending
on the eigen-branch, a single iteration may be too short to
accurately measure its behavior. We thus use a period of an
integer number of iterations longer than a certain length, say,
10,000 dynamic instructions. For notational convenience, we
call such a period a shift.

To decide on the best allocation, we simply go through trial-
and-error testing all configurations: when we first encounter
an eigen-branch, we test the IPC of the first configuration on
the first shift, the second configuration on the next shift, and
so on. After 16 shifts, we would know what appears to be the
fastest configuration. From then on, when we encounter that
eigen-branch, we just select this fastest configuration. This
algorithm can be easily implemented in a finite-state machine
with insignificant storage need. In our empirical observations,
eigen-branches are limited in numbers (1-42 in 1B instruction
windows) and thus do not require significant storage for state.
Even in the occasional displacement of a state for an eigen-
branch, a median loop lasts over 5 million instructions, 30
times longer than the time needed for testing.

Alternatives: Note that there are other proposals to track
program phase behavior based on fixed lengths [64]. In our
experience, our approach provides noticeably superior results.
Specifically, we have experimented with using a design based
on [64]. Such a design generally leads to performance loss
regardless of the granularity used (including the default case of
10 million instructions). Indeed, the best we can achieve after
tuning the phase granularity is a mixed bag with a small (1%)
average performance gain. In contrast, our design improves
performance in all cases. A detailed analysis of the reason is
beyond the scope of this paper but has been dealt with to some
extent elsewhere [65].

7Segments between two neighboring but different eigen-branches are
ignored because they are statistically insignificant. (less than 0.001%)

6



3.2.4. Other Optimizations
There are a number of other possibilities to optimize DLA
execution on an SMT substrate. We briefly discuss some.
• Fast reboot: When LT veers off the right path, we need

to reboot it. On an SMT substrate, initializing the register
state can be as quick as a flash copy of the register alias
table (RAT), greatly expediting the reboot. The only change
to the renaming logic after the copying is to ensure correct
recycling. In the original design, a physical register (say,
P102) is guaranteed to be mapped to one logical register (say,
R12) when it is allocated and will be recycled when the next
instruction writing to R12 retires. With RAT copying, P102
will appear in both LT and MT’s RAT, and LT needs to
prevent releasing these initialized physical registers. This
can be achieved by having a single do-not-release bit set
for each entry of RAT upon copying. These bits will be
reset when a new version allocated in LT updates their
corresponding entries.

• Prioritization: We can assign a higher priority to the thread
allocated more resources. However, we found the perfor-
mance benefit to be small(< 1%).

• Register utilization: LT does not have correctness con-
straints and thus can recycle registers early for better utiliza-
tion. However, at our current configurations, the potential
is insufficient (< 1%) to justify any support.

4. Experimental Analysis

In this section, we perform the experimental analyses of the
proposed design. The simulation setup is detailed in Sec. 4.1.
We show the bottom-line results of a complete system in
Sec. 4.2 and provide more detailed analyses of the design
in Sec. 4.3.

4.1. Simulation Setup

The main question we want to answer is whether Bootstrap-
ping can be competitive with some of the practices of enhanc-
ing single-thread performance. Our main reference point will
be the dynamically-formed-wide-core approach. Take a lead-
ing example of IBM POWER9: two cores (a.k.a. superslices)
can form a wide (12-decode) SMT core [1]. We model a
wide-issue SMT system loosely after POWER9’s SMT-8 core
configuration and refer to this as a “full” core (FC) fused from
two “half” cores (HC).8

We use Gem5 [69] for simulation purposes. We modify
Gem5 to model DLA and Bootstrapping. Our baseline FC
is an aggressive out-of-order pipeline with state-of-the art
prefetchers and branch predictors. We model a 256kBits SC-L-
Tage branch predictor as described in [67] to predict branches.
A stride prefetcher that can identify 32 different strides and
prefetches them with a degree of 4 is modeled to prefetch data
into L1. Additionally, BOP [68] is modeled to prefetch data

8Note that in the original plan of the FC, it can devote all resources to just
a single thread. But the plan was not carried out in the implementation. [66].

Half Core (HC) Full Core (FC)

Cores
+ L1

8/6/8/8 (f/d/i/c), 256
ROB, 192 LSQ, 128-
int/128-fp PRF, 8-int,
4-mem, 8-fp FUs,
32kB/4way dcache

16/12/16/16 (f/d/i/c),
512 ROB, 384 LSQ,
256-int/256-fb PRF,
16-int, 8-mem, 16-fp
FUs, 64kB/8way dcache

12-16 stages, out-of-order, 3 GHz
branch predictor: SC-L-TAGE [67], 4k-entry
BTB, 32-entry RAS
dcache: 64B blocks, 3 ports, 1ns, 32 MSHRs,
LRU, stride prefetcher

L2 256KB, 8-way, 64B blocks, 2 ports, 3ns, 32
MSHRs, LRU, BOP [68]

L3 2MB, 16-way, 64B blocks, 12ns, LRU
RAM DDR3-1600MHz, 4GB, 2 channels, 2 ranks/ch, 8

banks/rank, tRCD=13.75ns, tRAS=35ns, tFAW =30ns,
tWT R=7.5ns, tRP=13.75ns

Table 1: System configuration.

into L2. This prefetcher configuration was chosen because it
was found to provide the best average baseline performance
out of various other state-of-the-art prefetcher designs we
evaluated [38]. The DRAM is modeled using DRAMCtrl
embedded in Gem5. More details about the parameters we
used to configure the system are shown in Table 1.

For comparison, we have also modeled a few similar ap-
proaches: Slipstream [8], B-Fetch [59] and CRE [60]. Slip-
stream and CRE can be easily ported on to an SMT substrate.
For Slipstream the on-chip resources are equally split between
the A-stream and R-stream. Similarly, for CRE the resource
are equally split between the runahead engine and main core.
This prompts CRE to prefetch data in L1, which, in our evalua-
tions, provides higher performance gains than just prefetching
data into LLC as suggested in [60]. B-Fetch requires a special
purpose pipeline. For fairness, we model the main core to use
only half of the on-chip resources on the SMT substrate and
model the B-Fetch pipeline as presented in [59] to speculate
the control flow and launch prefetches.

We use McPAT [70] to model CPU’s energy consumption
and assume a 22nm technology node. We modified McPAT
to more accurately model the baseline along with DLA and
Bootstrapping. DRAMPower [71] is used to compute the
energy expenditure of main memory.

We evaluate our proposal over a broad set of benchmark
suites. The SPEC2006 [72] benchmarks are evaluated us-
ing reference inputs. A graph application benchmark suite,
CRONO [73], is evaluated using graph input data structures
from google, amazon, twitter, mathoverflow and california
road-networks. This suite consists of the following applica-
tions: ap (all pairs shortest path), bc (betweeness centralities),
bf (breadth first search), co (community detection), cc (con-
nected components), df (depth first search), pr (pagerank) and
tr (triangle counting). We also use embedded applications
from STARBENCH [74] and use large inputs provided by
the benchmark suite to evaluate them. The applications be-

7



ap bc bf co cc df pr tc bt cg dc ep ft is lu mg sp ua km md rg st ti

0.8
1.0
1.2
1.4
1.6
1.8
2.0

th
ro

u
g
h
p
u
t

(n
o
rm

. 
to

 H
C

)

2.3

FC DLA (2xHC) DLA (2xFC) Bootstrapping SMT

bz mc go hm sj li h2 om as xa bw mi ze gr le na so po ge lb sp GM

0.8
1.0
1.2
1.4
1.6
1.8
2.0

th
ro

u
g
h
p
u
t

(n
o
rm

. 
to

 H
C

)

2.1
2.3

Figure 6: Comparison of throughput (normalized to HC) obtained by FC, by DLA using 2 half cores (DLA_2xHC) or 2 full cores (DLA_2xFC), by Bootstrapping,
and by using SMT to run two copies of the same application. The top half of the figure contains applications from crono, starbench, and npb and the bottom
half contains applications from spec2k6. Geometric mean across all applications is also included in the bottom half and is indicated by “GM”.

longing to STARBENCH are km (kmeans), md (md5), rg
(rgbyuv), st (streamcluster) and ti (tinyjpeg). Finally, we also
pick applications from NPB (NAS Parallel Benchmarks) to
represent scientific applications and evaluate them using C
class of workloads provided by the suite.

All of the benchmarks are compiled using gcc with -O3 flag.
To reduce simulation time we use SimPoint Tool [75] to gen-
erate five simpoints per benchmark with 10 million instruction
intervals. We warm up the caches for 100 million instructions
before beginning the simpoint interval. All the simulation
results we report are obtained from these simpoints.

4.2. Overall Benefits

Performance: We first compare single-thread performance
of the four main ways of using a FC plus a reference point
of using two FCs: ¬ FC: using the FC monolithically; ­
DLA (2xHC and 2xFC): using the two HCs (and for reference
two FCs) to run baseline DLA; ® Bootstrapping : using the
Bootstrapping design on the FC; and ¯ Throughput (SMT):
using the SMT of FC to run two copies of the same applica-
tion for better throughput. In Fig. 6 we plot their throughput
normalized to a half core (HC).

The figure shows performance of each of the individual
applications along with an overall geometric mean which is
included in the bottom half of the figure and indicated as
“GM”. The figure contains a lot of information that can be
summarized as follows:
1. A wider core (FC) and baseline DLA (2xHC) both provide

high performance compared to an aggressive underlying
microarchitecture sporting state-of-the-art branch predictor
and prefetchers. Neither FC nor DLA ever slows down the
system in our experiments and can achieve speedups as
high as 1.74x and 2.08x respectively. Overall, FC achieves
an overall geometric mean speedup of 1.22x and DLA
(2xHC) achieves an overall geometric mean speedup of
1.20x. However, their impact on performance can vary
significantly depending on the application. For instance,

choosing the right optimization (DLA or FC) depending
on the application raises the overall speedup over HC to
1.31x.
Note that this comparison is somewhat unfair as making
a monolithic FC is perhaps far more challenging beyond
a certain scale than linking together two largely indepen-
dent HCs. However, making such a wider core to enhance
single-thread performance has been one (if not the) chosen
route for industry [66]. A simple DLA system is not yet a
clear winner in performance. We need many optimizations.
Fortunately, there seem to be plenty of conceivable opti-
mizations, and they are often easier to implement thanks to
the lack of absolute correctness constraints on LT.

2. Bootstrapping significantly outperforms both FC and DLA
(2xHC). On overage Bootstrapping is 21% faster than FC
and 24% faster than DLA (2xHC). Effectively, it is able
to combine the benefits of a wider core and DLA. Overall,
Bootstrapping achieves a geometric mean speedup of 1.48x
over HC. Later (in Sec. 4.3.2) we will see that Bootstrap-
ping also outperforms a number of other related approaches
and the performance is rather insensitive to configuration
details.

3. With Bootstrapping, it is no longer necessary to employ
two cores for DLA. Using DLA on two full cores (2xFC)
provides a performance benefit of 1.18x over FC compared
to 1.21x obtained from Bootstrapping. This is because
with a reasonably wide pipeline, the benefit obtained from
efficiently utilizing and sharing on-chip resources is more
pronounced than having more resources that multiple cores
offer. We will show in Sec. 4.3.2 that Bootstrapping is com-
parable with dual-core DLA with much narrower pipelines.

4. Finally, we see that if absolute throughput is the goal, run-
ning multiple independent threads is still likely a better
choice than Bootstrapping with an average of 21% perfor-
mance advantage. However, note that running an additional
thread brings in extra pressure for shared resources and
sometime this can make the throughput less than using
Bootstrapping. In 6 out of 44 applications Bootstrapping is

8



already the better choice. We believe this gap will continue
to shrink as the design of DLA is further optimized and
new techniques are being invented.

Efficiency: One commonly expressed concern about DLA
architectures is the energy cost. While it may be tempting to
assume that executing the same program twice will double the
energy cost in DLA, it would be a gross exaggeration even
for baseline DLA. Table 2 shows the normalized instruction
throughput in different stages and average normalized energy
from four different configurations: HC, FC, DLA (2xHC), and
Bootstrapping (BTSP). All throughputs are normalized to the
commit stage of HC.

D X C Energy Speedup
HC 1.25 1.16 1.00 1.00 1.00

BTSP (1xHC) LT 0.32 0.31 0.27 1.12 1.19MT 1.03 1.02 1.00

FC 1.32 1.20 1.00 1.52 1.22

DLA (2xHC) LT 0.54 0.52 0.48 0.52 1.2MT 1.03 1.03 1.00 0.82

BTSP (1xFC) LT 0.36 0.35 0.30 1.62 1.48MT 1.02 1.01 1.00

Table 2: Average activities in Decode, eXecution, and Commit stages,
and energy for both threads in DLA and Bootstrapping. All activities are
normalized to commit stage activity of HC. All energies and speedups are
normalized to HC. ST indicates conventional single-threaded execution.

As we can see, LT executes only a subset of the instructions
committed by MT. It also significantly reduces wrong-path
instructions experienced by MT in all pipeline stages. The
relatively low activity overhead coupled with the reduction in
execution time and corresponding energies results in only 7%
energy overhead over FC for a significantly higher speedup.

4.3. Detailed Analyses

We now perform a number of experiments to help understand
the effects and utility of each element (Sec. 4.3.1); how well
the design performs across different configurations of the un-
derlying microarchitecture and how well it compares with
other designs (Sec. 4.3.2); and show underlying impacts of the
design choices (Sec. 4.3.3).

4.3.1. Performance Impact of Optimizations
We first compare performance of different design points in
Fig. 7, incrementally adding elements discussed in Sec. 3. For
brevity, we only show geometric mean speedup (over FC) with
the range of the suite as an I-bar (same for some subsequent
figures). For comparison, the dashed horizontal line shows the
average speedup of a basic DLA architecture using two FCs.

We start with the basic DLA (2xHC) configuration. We al-
ready discussed earlier that this basic design is slightly (2% on
average) slower than FC. Next, for the sake of understanding,
we look at a configuration that we call naive SMT (nSMT),
which adds basic DLA support to the SMT substrate on FC
and treats the threads as independent. Here LT and MT each

DLA
(2xHC)

nSMT cache
sharing

resource
alloc.

Boot-
strapping

0.5

1.0

1.5

sp
e
e
d
u
p

o
v
e
r 

FC

Figure 7: Speedup over FC. From left to right, the configurations correspond
to basic DLA, nSMT, adding cache control, then adding adaptive resource
allocation, and finally Bootstrapping. The box and the bar show, respectively,
the geometric mean and the range.

gets half of the ROB. Compared to DLA (2xHC), the only ben-
efit of nSMT is better use of shared execution resources of two
HCs fused together. As can be expected, nSMT is marginally
more effective and has about the same performance as FC. We
see that even though SMT is a natural platform to implement
DLA, a naive implementation is far from optimal.

Next, we progressively add the optimizations discussed
earlier: cache control (Sec. 3.2.2); resource allocation opti-
mization (Sec. 3.2.3); and fast reboot (Sec. 3.2.4). We see
that performance incrementally improve to 1.21x over FC.
Note that the exercise is to show that each bit of optimization
helps a little in improving speed. The apparent amount each
contributes depends on the order of adding these optimiza-
tions. Specifically, adding cache sharing first produces a 5%
performance boost while adding it last produces a gain of
11%. For resource allocation, these numbers are 6% and 14%
respectively.

4.3.2. Comparison and Sensitivity Analysis
While DLA can be a very effective paradigm for exploiting
implicit parallelism, Bootstrap’s performance is the result of
many techniques either built into the baseline DLA or the ones
discussed in this paper. Running two threads is not a new
concept nor is it the reason for performance gain. Indeed it is
mostly a compromise given the predominance of monolithic
microarchitecture substrates. What really determines the per-
formance is how effectively we can decouple the look-ahead
activities. We briefly compare the overall performance among
a set of related approaches (B-Fetch [59], Slipstream [8] and
CRE [60]) in Fig. 8. We can see that the advantage of Boot-
strap is clear and non-trivial.

Slipstream B-Fetch CRE DLA (2xHC) FC Bootstrapping

1.0

1.5

2.0

2.5

sp
e
e
d
u
p
 o

v
e
r 

H
C

Figure 8: Comparison of speedup (normalized to HC) obtained by B-Fetch,
Slipstream, CRE, DLA (2xHC), FC, and Bootstrapping.

The utility of Bootstrapping can be viewed in a different
way: DLA reduces pipeline bubbles at a price of extra ex-

9



ecution bandwidth. In nSMT (a naive configuration which
only adds basic DLA support to the SMT baseline), this price
directly cuts into the benefit. Fig. 9 compares the speedup of
DLA (on two cores), nSMT, and Bootstrapping as pipeline
(decode) width changes over a baseline configuration of corre-
sponding width. We see that below 8-wide, nSMT does not
provide a net benefit. In other words, in these configurations,
execution resources are better devoted to the semantic thread
than to any (inefficient) look-ahead thread. Bootstrapping
makes more efficient use of the available resources and is con-
sistently and significantly faster than nSMT. With the improve-
ment, on average, it always pays to do decoupled look-ahead.
At about 8-wide, there are enough resources that a single-core
Bootstrapping is just as effective as a dual-core DLA. In fact,
beyond that point, the advantages of Bootstrapping, like cache
sharing and fast reboot overpower the advantages of increas-
ing on-chip resources. Hence, beyond 8-wide, Bootstrapping,
which uses a single core, is even more effective than DLA on
two cores.

Figure 9: The speedups as a function of pipeline decode width (other
resources scaled proportionally).

Finally, we note that the performance impact of Bootstrap-
ping relatively to the underlying microarchitecture (FC) is
rather insensitive to the configuration details. For instance, if
we change the number of ROB entries in FC from 512 to 256
and 128, the speedup (over FC) changes from 1.21 to 1.19
and 1.16, respectively. If we reduce the L1 associativity from
8 to 4, the speedup changes from 1.21 to 1.20. If we reduce
the L1 size of FC from 64KB to 32KB, the speedup remains
unchanged.

4.3.3. Underlying Impacts of Design Choices
Cache control: In Bootstrapping, the cache is used in a
different way than in the dual-core version of DLA. This
impacts the cache miss rates for both LT and MT. Fig. 10
summarizes this information.

As we can see, Bootstrapping is noticeably better than DLA
including the two-FC version which has twice the L1 capac-
ity. For LT, the benefit is straightforward as it is expected to
source data produced from MT. In the dual-core DLA, this
can cause LT an L1 miss serviced (ultimately) by the MT. In
Bootstrapping, some of these cases become a simple cache
hit. For MT, the benefit comes from timing of LT prefetch.

DLA
(2xHC)

BTSP
(1xFC)

DLA
(2xFC)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LT
 L

1
 M

P
K

I
n
o
rm

. 
to

 F
C

(a)

DLA
(2xHC)

BTSP
(1xFC)

DLA
(2xFC)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
T
 L

1
 M

P
K

I
n
o
rm

. 
to

 F
C

(b)

Figure 10: L1 cache’s misses per kilo instructions (MPKI) experienced by
LT and MT in three different configurations: DLA versions with 2 HC and 2
FC respectively and Bootstrapping. The box and the bar show the overall
average and the range.

In dual-core DLA, the cache line address from an L1 miss in
LT will be entered into the footnote queue and dequeued by
MT later for prefetching. When LT is not sufficiently ahead
of MT, the prefetch may not arrive in time. In Bootstrapping,
LT directly fetches into the shared L1 and is thus generally
faster. In dual-core DLA (2xFC), on average, MT enjoys 106
L1 hits (per kilo instructions) thank to LT’s prefetching hints.
In Bootstrapping, this number improves to 112.

The downside of sharing a cache, of course, is the reduc-
tion in effective capacity. However, with the cache control
discussed in Sec. 3.2.2, the capacity impact is small. Table 3
shows the percentage of capacity occupied by LT-specific data
with and without the cache control. We see that with our cache
control, LT’s capacity impact is about 16% on average (broadly
in line with the first-order approximation in Sec. 3.2.2). Keep
in mind that even this small portion tends to occupy the least
recently used ways so their impact on hit rate due to capacity
is even less. In our observations, in DLA (2xFC), MT sees
122.4 hits per kilo instructions on data brought in by MT. With
Bootstrapping, this reduces only slightly to 122.2 hits.

split shared smartShared
mean 50% 18% 12%

median 50% 12% 7%

Table 3: Percentage of L1 cache space occupied by LT specific data.

Adaptive resource allocation: In this paper, we adopt a
trial-and-error approach for allocating resources to LT and MT.
Fig. 11 shows the result of this control in percentage of time
each configuration is adopted. In the figure, the fraction indi-
cates that of the ROB entries allocated to LT. Thus 0/16 refers
to the configuration where LT is disabled. A few applications
(e.g., hm and lb) have only a small number of configurations
used. The remaining applications all used a large number of
options based on the behavior of the code.

To see whether this adaptation is really necessary, we com-
pare to two other levels of adaptivity. The first one selects a
constant allocation for the system. It turns out the optimum
configuration is 10/16. In the second level, we allow the allo-

10



bz

0.00.51.0

0/16

1/16

2/16

3/16

4/16

5/16

6/16

7/16

8/16

9/16

10/16

11/16

12/16

13/16

14/16

ap bc bf co cc df pr tc bt cg dc ep ft is lu mgsp uakmmdrg st ti
0.0

0.5

1.0

0/16

1/16

2/16

3/16

4/16

5/16

6/16

7/16

8/16

9/16

10/16

11/16

12/16

13/16

14/16

bz mcgohm sj li h2om as xa bw mi ze gr le na so po ge lb sp AM
0.0

0.5

1.0

0/16

1/16

2/16

3/16

4/16

5/16

6/16

7/16

8/16

9/16

10/16

11/16

12/16

13/16

14/16

Figure 11: Runtime distribution of the configuration made by the resource
allocation algorithm. Y-axis represents the portion of time a configuration is
used. The legend shows all chosen choices. 1/16 mean that 1/16th of the
ROB entries were allocated to LT. The rest were allocated to MT.

cation for each application to differ, but keeping it constant
throughout the application. We pick the result of the best-
performing configuration for each application. The result is
shown in Fig. 12.

fixed
alloc.

(system)

fixed
alloc.

(bench)

adaptive
alloc.

1.0

1.2

sp
e
e
d
u
p

o
v
e
r 

n
S
M

T
+ 1.7

Figure 12: Performance benefit of adaptive resource allocation scheme
compared against fixed resource allocation schemes that use one optimum
configuration for the entire system and one one optimum configuration
per benchmark. The speedup is normalized to nSMT+, a relatively naive
configuration which adds basic DLA support to the SMT baseline and
enables support for fast reboot and cache control.

As we increase the level of adaptivity, the performance gain
goes from 4% for fixed system-wide configuration, to 7% for
fixed application-specific configuration, to 14% in our design.
This suggests that there is still significant intra-application
behavior variation that warrants a more fine-grained adapta-
tion. Of course, our design is just one possible approach to
exploiting this variation.

Impact on reboots: In DLA, reboots are a cause of poor
look-ahead. When LT is on the wrong path, its execution is
less useful and potentially pollutive. On the other hand, al-
lowing optimizations that is conventionally unsafe is a key
advantage of DLA. The frequency of reboot is thus an impor-
tant diagnostic metric in analyzing design tradeoffs. In our
setup, depending on the application, the frequency of reboots
ranges widely from 0.04 to 975 per million instructions, with
a mean of 61.7 and median of 4.8. In general, Bootstrapping
helps reducing the frequency of reboot (Table 4).

min max median mean
DLA (2xHC) 0.04 974.6 4.8 61.7
DLA (2xFC) 0.06 943.9 4.2 62.5
BTSP (1xFC) 0.04 472.2 3.6 48.7

Table 4: The number of reboots per million instructions in different configu-
rations.

There are two contributing factors to this reduction. First,
we use an adaptive mechanism to allocate resources between
the two threads. The side effect of this adaptation is that at
certain program points, not engaging LT turns out to be the
best choice. As a result, no reboots will occur during these
periods. Second, LT executes using a skeleton and thus can not
produce complete memory states on its own. When residing
on different cores, memory updates from MT do not propagate
to LT via coherence actions. When they share the same cache,
these updates naturally occur and help reduce the chance LT
uses a stale value. The reduction in wrong-path execution for
LT helps reduce the activity and energy overhead as shown
earlier in Table 2.

5. Conclusions

In this paper we propose Bootstrapping, an optimized DLA
architecture on an SMT substrate. It achieves the benefit of
DLA without using an additional core as before. While this is
conceptually straightforward, a study of design details reveals
a few lessons:
• Naive porting of the DLA model on to an SMT platform is

insufficient;
• State of the art in DLA already exposes quite significant

parallelism that careful resource allocation is a necessity;
• Only a few tweaks of the basic DLA design are needed to

make SMT a good platform for continued innovation of the
DLA paradigm.
Overall, Bootstrapping can be made into an on-demand fea-

ture just like dynamically forming wider cores being attempted
in commercial products. It is significantly more effective than
the latter, achieving an average of 1.21 speedup over the un-
derlying FC and 1.48 over HC. Bootstrapping also makes it
more practical to support DLA on narrower SMT microarchi-
tectures. Overall, it is a compelling architectural feature for
general-purpose microprocessors.

References
[1] S. Sadasivam, B. Thompto, R. Kalla, and W. Starke. IBM POWER9

Processor Architecture. IEEE Micro, 37(2):40–51, 2017.
[2] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro,

16(2):28–40, April 1996.
[3] S. Kondguli and M. Huang. R3-DLA (Reduce, Reuse, Recycle): A

More Efficient Approach to Decoupled Look-Ahead Architectures. In
Proceedings of the International Symposium on High-Performance Com-
puter Architecture, February 2019.

[4] A. Seznec. A 256 kbits l-tage branch predictor. In Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship
Branch Prediction Competition (CBP-2), volume 9, pages 1–6, 2007.

[5] S. Kondguli and M. Huang. T2: A Highly Accurate and Energy Efficient
Stride Prefetcher. In Proceedings of the International Conference on
Computer Design, November 2017.

11



[6] S. Kondguli and M. Huang. Division of Labor: A More Effective
Approach to Prefetching. In Proceedings of the International Symposium
on Computer Architecture, June 2018.

[7] S. Kondguli and M. Huang. A Case for a More Effective, Power-
Efficient Turbo Boosting. ACM Transactions on Architecture and Code
Optimization, 15(1):5–22, March 2018.

[8] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A Study of Slip-
stream Processors. In Proceedings of the International Symposium on
Microarchitecture, pages 269–280, December 2000.

[9] A. Garg and M. Huang. A Performance-Correctness Explicitly Decou-
pled Architecture. In Proceedings of the International Symposium on
Microarchitecture, pages 306–317, November 2008.

[10] M. Dubois and Y. Song. Assisted execution. Technical Report, De-
partment of Electrical Engineering, University of Southern California,
1998.

[11] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Analysis
of Branch Mispredictions and Its Application to Early Resolution of
Branch Outcomes. In Proceedings of the International Symposium on
Microarchitecture, pages 59–68, November–December 1998.

[12] A. Roth, A. Moshovos, and G. Sohi. Dependence Based Prefetching for
Linked Data Structures. In Proceedings of the International Conference
on Arch. Support for Prog. Lang. and Operating Systems, pages 115–
126, October 1998.

[13] A. Roth, A. Moshovos, and G. Sohi. Improving Virtual Function Call
Target Prediction via Dependence-Based Pre-Computation. In Pro-
ceedings of the International Conference on Supercomputing, pages
356–364, June 1999.

[14] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simultaneous
Subordinate Microthreading (SSMT). In Proceedings of the Interna-
tional Symposium on Computer Architecture, pages 186–195, May
1999.

[15] A. Roth and G. Sohi. Speculative Data-Driven Multithreading. In Pro-
ceedings of the International Symposium on High-Performance Com-
puter Architecture, pages 37–48, January 2001.

[16] C. Zilles and G. Sohi. Execution-Based Prediction Using Speculative
Slices. In Proceedings of the International Symposium on Computer
Architecture, pages 2–13, June 2001.

[17] M. Annavaram, J. Patel, and E. Davidson. Data Prefetching by De-
pendence Graph Precomputation. In Proceedings of the International
Symposium on Computer Architecture, pages 52–61, June 2001.

[18] C. Luk. Tolerating Memory Latency Through Software-Controlled Pre-
execution in Simultaneous Multithreading Processors. In Proceedings
of the International Symposium on Computer Architecture, pages 40–51,
June 2001.

[19] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and
J. Shen. Speculative Precomputation: Long-range Prefetching of Delin-
quent Loads. In Proceedings of the International Symposium on Com-
puter Architecture, pages 14–25, June 2001.

[20] A. Moshovos, D. Pnevmatikatos, and A. Baniasadi. Slice-processors:
an Implementation of Operation-Based Prediction. In Proceedings of
the International Conference on Supercomputing, pages 321–334, June
2001.

[21] J. Collins, D. Tullsen, H. Wang, and J. Shen. Dynamic Speculative
Precomputation. In Proceedings of the International Symposium on
Microarchitecture, pages 306–317, December 2001.

[22] P. Wang, H. Wang, J. Collins, E. Grochowski, R. Kling, and J. Shen.
Memory Latency-Tolerance Approaches for Itanium Processors: Out-of-
Order Execution vs. Speculative Precomputation. In Proceedings of the
International Symposium on High-Performance Computer Architecture,
pages 167–176, February 2002.

[23] D. Kim and D. Yeung. Design and Evaluation of Compiler Algorithms
for Pre-Execution. In Proceedings of the International Conference on
Arch. Support for Prog. Lang. and Operating Systems, October 2002.

[24] R. Chappell, F. Tseng, A. Yoaz, and Y. Patt. Difficult-Path Branch
Prediction Using Subordinate Microthreads. In Proceedings of the
International Symposium on Computer Architecture, pages 307–317,
May 2002.

[25] S. Liao, P. Wang, H. Wang, G. Hoflehnerg, D. Laveryg, and J. Shen. Post-
Pass Binary Adaptation for Software-Based Speculative Precomputation.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 117–128, June 2002.

[26] R. Chappell, F. Tseng, A. Yoaz, and Y. Patt. Microarchitectural Support
for Precomputation Microthreads. In Proceedings of the International
Symposium on Microarchitecture, pages 74–84, November 2002.

[27] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High-Performance
Throughput Computing. IEEE Micro, 25(3):32–45, May/June 2005.

[28] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay. Simultaneous Speculative Threading: A
Novel Pipeline Architecture Implemented in Sun’s Rock Processor. In
Proceedings of the International Symposium on Computer Architecture,
pages 484–295, June 2009.

[29] J. Collins, S. Sair, B. Calder, and D. Tullsen. Pointer cache assisted
prefetching. In Proceedings of the International Symposium on Microar-
chitecture, pages 62–73, November 2002.

[30] I. Atta, X. Tong, V. Srinivasan, I. Baldini, and A. Moshovos. Self-
contained, accurate precomputation prefetching. In Proceedings of the
International Symposium on Microarchitecture, pages 153–165, 2015.

[31] D. Kim, S. Liao, P. Wang, J. del Cuvillo, X. Tian, X. Zou, H. Wang,
M. Gikar, J. Shen, and D. Yeung. Physical Experimentation with
Prefetching Helper Threads on Intel’s Hyper-Threaded Processors. In
Proceedings of the International Symposium on Code Generation and
Optimization, pages 27–38, March 2004.

[32] D. Kim and D. Yeung. A study of source-level compiler algorithms for
automatic construction of pre-execution code. ACM Transactions on
Computer Systems (TOCS), 22(3):326–379, 2004.

[33] P. Wang, J. Collins, H. Wang, D. Kim, B. Greene, K. Chan, A. Yunus,
T. Sych, S. Moore, and J. Shen. Helper Threads via Virtual Multithread-
ing. IEEE Micro, 24(6):74–82, November 2004.

[34] Y. Song, S. Kalogeropulos, and P. Tirumalai. Design and Implemen-
tation of a Compiler Framework for Helper Threading on Multi-core
Processors. In Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques, pages 99–109, September
2005.

[35] J. Lu, A. Das, W. Hsu, K. Nguyen, and S. Abraham. Dynamic Helper
Threaded Prefetching on the Sun UltraSPARC CMP Processor. In Pro-
ceedings of the International Symposium on Microarchitecture, pages
93–104, December 2005.

[36] W. Zhang, D. Tullsen, and B. Calder. Accelerating and Adapting Pre-
computation Threads for Efficient Prefetching. In Proceedings of the
International Symposium on High-Performance Computer Architecture,
February 2007.

[37] C. Madriles, P. López, J. Codina, E. Gibert, F. Latorre, A. Martinez,
R. Martinez, and A. Gonzalez. Boosting Single-thread Performance in
Multi-core Systems Through Fine-grain Multi-threading. In Interna-
tional Symposium on Computer Architecture, pages 474–483, 2009.

[38] S. Kondguli and M. Huang. "R3-DLA (Reduce, Reuse, Recycle): A
More Efficient Approach to Decoupled Look-Ahead Architectures".
arXiv preprint arXiv:1812.04514, December 2018.

[39] F. Mesa-Martinez and J. Renau. Effective Optimistic-Checker Tandem
Core Design Through Architectural Pruning. In Proceedings of the Inter-
national Symposium on Microarchitecture, pages 236–248, December
2007.

[40] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Toler-
ance in Microprocessors. In Proceedings of the International Symposium
on Fault-Tolerant Computing, pages 84–91, June 1999.

[41] R. Barnes, E. Nystrom, J. Sias, S. Patel, N. Navarro, and W. Hwu. Beat-
ing In-Order Stalls with “Flea-Flicker" Two-Pass Pipelining. In Pro-
ceedings of the International Symposium on Microarchitecture, pages
387–399, December 2003.

[42] H. Zhou. Dual-Core Execution: Building a Highly Scalable Single-
Thread Instruction Window. In Proceedings of the International Con-
ference on Parallel Architecture and Compilation Techniques, pages
231–242, September 2005.

[43] B. Greskamp and J. Torrellas. Paceline: Improving Single-Thread
Performance in Nanoscale CMPs through Core Overclocking. In Pro-
ceedings of the International Conference on Parallel Architecture and
Compilation Techniques, pages 213–224, September 2007.

[44] A. Ansari, S. Feng, S. Gupta, J. Torrellas, and S. Mahlke. Illusion-
ist: Transforming lightweight cores into aggressive cores on demand.
In Proceedings of the International Symposium on High-Performance
Computer Architecture, February 2013.

12



[45] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors:
Improving both Performance and Fault Tolerance. In Proceedings of
the International Conference on Arch. Support for Prog. Lang. and
Operating Systems, pages 257–268, November 2000.

[46] A. Garg, R. Parihar, and M. Huang. Speculative Parallelization in
Decoupled Look-ahead. In Proceedings of the International Conference
on Parallel Architecture and Compilation Techniques, pages 412–422,
October 2011.

[47] S. Kondguli and M. Huang. Bootstrapping: Using SMT Hardware to Im-
prove Single-Thread Performance. IEEE TCCA Computer Architecture
Letters, 17(2):205–208, July 2018.

[48] J. Smith. Decoupled Access/Execute Computer Architectures. ACM
Transactions on Computer Systems, 2(4):289–308, November 1984.

[49] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint Processing and
Recovery: Towards Scalable Large Instruction Window Processors.
In Proceedings of the International Symposium on Microarchitecture,
pages 423–434, December 2003.

[50] L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas. CAVA: Hiding
L2 Misses with Checkpoint-Assisted Value Prediction. IEEE TCCA
Computer Architecture Letters, 3, December 2004.

[51] J. Dundas and T. Mudge. Improving Data Cache Performance by Pre-
Executing Instructions Under a Cache Miss. In Proceedings of the
International Conference on Supercomputing, pages 68–75, July 1997.

[52] A. Hilton, N. Eswaran, and A. Roth. CPROB: Checkpoint processing
with opportunistic minimal recovery. In 18th International Conference
on Parallel Architectures and Compilation Techniques, 2009, pages
159–168, 2009.

[53] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez. Checkpointed
Early Load Retirement. In Proceedings of the International Symposium
on High-Performance Computer Architecture, pages 16–27, February
2005.

[54] T. E. Carlson, W. Heirman, O Allam, S. Kaxiras, and L. Eeckhout. The
Load Slice Core Microarchitecture. In International Symposium on
Computer Architecture, pages 272–284, 2015.

[55] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas. Cherry:
Checkpointed Early Resource Recycling in Out-of-order Microproces-
sors. In Proceedings of the International Symposium on Microarchitec-
ture, pages 3–14, November 2002.

[56] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, , and M. Upton. Con-
tinual Flow Pipelines. In Proceedings of the International Conference
on Arch. Support for Prog. Lang. and Operating Systems, October 2004.

[57] M. Hashemi and Y. Patt. Filtered runahead execution with a runa-
head buffer. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), pages 358–369, 2015.

[58] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead Execution:
An Alternative to Very Large Instruction Windows for Out-of-order
Processors. In Proceedings of the International Symposium on High-
Performance Computer Architecture, pages 129–140, February 2003.

[59] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and D. Jimenez. B-
Fetch: Branch prediction directed prefetching for Chip-Multiprocessors.
In Proceedings of the International Symposium on Microarchitecture,
December 2014.

[60] M. Hashemi, O. Mutlu, and Y. Patt. Continuous runahead: Transparent
hardware acceleration for memory intensive workloads. In 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–12, 2016.

[61] T. Ham, J. Aragón, and M. Martonosi. DeSC: Decoupled supply-
compute communication management for heterogeneous architectures.
In Proceedings of the 48th International Symposium on Microarchitec-
ture, pages 191–203, 2015.

[62] C. Ho, S. Kim, and K. Sankaralingam. Efficient execution of memory
access phases using dataflow specialization. In Proceedings of the
42nd Annual International Symposium on Computer Architecture, pages
118–130, 2015.

[63] R. Parihar and M. Huang. Accelerating Decoupled Look-ahead via Weak
Dependence Removal: A Metaheuristic Approach. In Proceedings of the
International Symposium on High-Performance Computer Architecture,
February 2014.

[64] T. Sherwoood, S. Sair, and B. Calder. Phase Tracking and Prediction. In
Proceedings of the International Symposium on Computer Architecture,
pages 336–347, June 2003.

[65] W. Liu and M. Huang. EXPERT: Expedited Simulation Exploiting
Program Behavior Repetition. In Proceedings of the International
Conference on Supercomputing, pages 126–135, June–July 2004.

[66] H. Le, J. Van Norstrand, B. Thompto, J. Moreira, D. Nguyen,
D. Hrusecky, M. Genden, and M. Kroener. IBM POWER9 proces-
sor core. IBM Journal of Research and Development, 62(4), 2018.

[67] A. Seznec. Tage-scl branch predictors again. In 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5), 2016.

[68] P. Michaud. Best-Offset Hardware Prefetching. In International Sym-
posium on High Performance Computer Architecture, pages 469–480,
2016.

[69] N. Binkert et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[70] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An Integrated Power, Area and Timing Modeling
Framework for Multicore and Manycore Architectures. In Proceedings
of the International Symposium on Microarchitecture, December 2009.

[71] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens.
DRAMPower: Open-source DRAM power and energy estimation tool,
2012. http://www.drampower.info.

[72] J. L. Henning. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, September 2006.

[73] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. Crono: A benchmark suite
for multithreaded graph algorithms executing on futuristic multicores.
In IEEE International Symposium on Workload Characterization, pages
44–55, 2015.

[74] M. Andersch, B. Juurlink, and C. Chi. A benchmark suite for evaluating
parallel programming models. In Proceedings of Workshop on Parallel
Systems and Algorithms (PARS), volume 28, pages 1–6, 2013.

[75] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In Proceedings of the In-
ternational Conference on Arch. Support for Prog. Lang. and Operating
Systems, pages 45–57, October 2002.

13


	Introduction
	Background and Related Works
	Bootstrapping Architecture
	Overview of DLA Baseline
	Bootstrapping in SMT
	Overview of Design Updates
	Cache Control
	Adaptive Resource Allocation
	Other Optimizations


	Experimental Analysis
	Simulation Setup
	Overall Benefits
	Detailed Analyses
	Performance Impact of Optimizations
	Comparison and Sensitivity Analysis
	Underlying Impacts of Design Choices


	Conclusions

