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Abstract

In high-end processors, increasing the number of in-flight in-
structions can improve performance by overlapping useful process-
ing with long-latency accesses to the main memory. Buffering these
instructions requires a tremendous amount of microarchitectural re-
sources. Unfortunately, large structures negatively impact proces-
sor clock speed and energy efficiency. Thus, innovations in effective
and efficient utilization of these resources are needed. In this paper,
we target the load-store queue, a dynamic memory disambiguation
logic that is among the least scalable structures in a modern micro-
processor. We propose to use software assistance to identify load
instructions that are guaranteed not to overlap with earlier pend-
ing stores and prevent them from competing for the resources in the
load-store queue. We show that the design is practical, requiring
off-line analyses and minimum architectural support. It is also very
effective, allowing more than 40% of loads to bypass the load-store
queue for floating-point applications. This reduces resource pres-
sure and can lead to significant performance improvements.

1 Introduction

To continue exploiting device speed improvement to provide ever
higher performance is challenging but imperative. Simply trans-
lating device speed improvement to higher clock speed does not
guarantee better performance. We need to effectively bridge the
speed gap between the processor core and the main memory. For
an important type of applications that have never-ending demand
for higher performance (mostly numerical codes), an effective and
straightforward approach is to increase the number of in-flight in-
structions to overlap with long latencies. This requires a commen-
surate increase in the effective capacity of many microarchitectural
resources. Naive implementation of larger physical structures is
not a viable solution as it not only incurs high energy consumption
but also increases access latency which can negate improvement in
clock rate. Thus, we need to consider innovative approaches that
manages these resources in an efficient and effective manner.

We argue that a software-hardware cooperative approach to re-
source management is becoming an increasingly attractive alterna-
tive. A software component can analyze the static code in a more
global fashion and obtain information hardware alone can not ob-
tain efficiently. Furthermore, this analysis done in software does
not generate recurring energy overhead. With energy consumption
being of paramount importance, this advantage alone may justify
the effort needed to overcome certain inconvenience to support a
cooperative resource management paradigm.

In this paper, we explore a software-hardware cooperative ap-
proach to dynamic memory disambiguation. The conventional
hardware-only approach employs the load-store queue (LSQ) to
keep track of memory instructions to make sure that the out-of-

order execution of these instructions do not violate the program se-
mantics. Without the a priori knowledge of which load instructions
can execute out of program order and not violate program seman-
tics, conventional implementations simply buffer all in-flight load
and store instructions and perform cross-comparisons during their
execution to detect all violations. The hardware uses associative
arrays with priority encoding. Such a design makes the LSQ proba-
bly the least scalable of all microarchitectural structures in modern
out-of-order processors. In reality, we observe that in many appli-
cations, especially array-based floating-point applications, a signif-
icant portion of memory instructions can be statically determined
not to cause any possible violations. Based on these observations,
we propose to use software analysis to identify certain memory in-
structions to bypass hardware memory disambiguation. We show
a proof-of-concept design where with simple hardware support, the
cooperative mechanism can allow an average of 43% and up to 97%
of loads in floating-point applications to bypass the LSQ. The re-
duction in disambiguation demand results in energy savings and re-
duced resource pressure which can improve performance.

The rest of the paper is organized as follows: Section 2 provides a
high-level overview of our cooperative disambiguation model; Sec-
tions 3 and 4 describe the software and hardware support respec-
tively; Section 5 discusses our experimental setup; Section 6 shows
our quantitative analyses; Section 7 summarizes some related work;
and Section 8 concludes.

2 Resource-Effective Memory Disambiguation

2.1 Resource-Effective Computing

Modern high-end out-of-order cores typically use very aggressive
speculations to extract instruction-level parallelism. These specu-
lations require predictors, book-keeping structures, and buffers to
track dependences, detect violations, and undo any effect of mis-
speculation. High-end processors typically spend far more transis-
tors on orchestrating speculations than on the actual execution of
individual instructions. Unfortunately, as the number of in-flight in-
structions increases, the effective size of these structures has to be
scaled up accordingly to prevent frequent pipeline stalls. Increasing
the actual size of these resources presents many problems. First and
foremost, the energy consumption increases. The increase is espe-
cially significant if the structure is accessed in an associative manner
such as in the case of the issue queue and the LSQ. At a time when
energy consumption is perhaps the most important limiting factor
for high-end processors, any change in microarchitecture that re-
sults in energy increase will need substantial justifications. Second,
larger physical structures take longer to access, which may translate
into extra cycles in the pipeline and diminish the return of buffer-
ing more instructions. Therefore, we need to innovate in the man-
agement of these resources and create resource-effective designs.
Whether the speculative out-of-order execution model can continue



to exploit technology improvements to provide higher single-thread
performance is to a large extent determined by whether we can ef-
fectively utilize these resources.

Much research has been done in microarchitectural resource
management such as providing two-level implementations of reg-
ister files, issue queues, and the LSQ [2-4,11,16,23,27]. This prior
research focuses on hardware-only approach. A primary benefit of
hardware-only approaches is that they can be readily deployed into
existing architectures and maintain binary compatibility. However,
the introduction of software to gather information has many advan-
tages over a hardware-only approach. First, a software component
can analyze the static code in a more global fashion and obtain in-
formation hardware alone can not (efficiently) obtain. For instance,
a compiler can easily determine that a register is dead on all possible
subsequent paths, whereas in hardware, the same information would
be highly inefficient to obtain. Thus, a hardware-software cooper-
ative approach can achieve better optimization with lower overall
system complexity. Second, even if certain information is practi-
cal to obtain via hardware look-ahead, there is a recurring energy
overhead associated with it, possibly for every dynamic instance of
some event. With the increasing importance of energy efficiency,
we argue that a cooperative approach to resource management (or
optimization in general) is a promising area that deserves more at-
tention.

A cooperative approach does raise several new issues. One im-
portant issue is the support for a general-purpose interface to com-
municate information between the software and hardware compo-
nents without creating compatibility obligations. Although this is a
different topic altogether and an in-depth study is beyond the scope
of this paper, we note that this could be achieved through decoupling
the architected ISA (instruction set architecture) and the physical
ISA and rely on binary translation between the two. Such virtual-
ization of ISA is feasible, well understood, and tested in real-world
products [15]. In Figure 1, we illustrate one example system where
the hardware can directly execute un-translated “external” binaries
as well as translated internal ones. In such a system, different im-
plementations are compatible at the architected ISA level but do
not maintain compatibility at the physical ISA level. Thus, nec-
essary physical ISA changes to support certain optimization can
be easily removed when the optimization is no longer appropri-
ate such as when superseded by a better approach or when it pre-
vents/complicates a more important new optimization. In our study,
we assume such support to extend the physical ISA is available.
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Figure 1. Instruction set architecture support for low-level
software-hardware cooperative optimization.

2.2 Cooperative Memory Disambiguation

In this paper, we look at a particular microarchitectural resource,
the LSQ used in dynamic memory disambiguation. For space con-
straint, we do not detail the general operation of the LSQ [10, 26].
Because of the frequent associative searching with wide operands
(memory addresses) and the complex priority encoding logic, the
LSQ is probably the least scalable structure in an out-of-order core.
Yet, all resources need to scale up in order to buffer more in-flight
instructions. In Figure 2, we show the average performance im-
provements of increasing the load queue (LQ) size from 48 entries
in the otherwise scaled-up baseline configuration (see Section 5). In
contrast, we also show the improvement from doubling the number
of functional units and issue-width (16-issue) and from doubling the
width throughout the pipeline (decode/rename/issue/commit). Pre-
dictably, simply increasing issue width or even the entire pipeline’s
width has a small impact. In contrast, increasing LQ size has a
larger impact than doubling the width of the entire processor, which
is far more costly. In floating-point applications, this difference is
significant. Ironically, these applications tend to have a more reg-
ular memory access pattern and in fact do not actually have a high
demand for dynamic memory disambiguation.
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Figure 2. Average performance improvement for SPEC
Int and SPEC FP applications as a result of increasing issue
width, entire processor pipeline width, or the LQ size.

We envision a cooperative memory disambiguation mechanism
which uses software to analyze the program binary and, given im-
plementation details, annotate the binary to indicate to hardware
what set of memory operations need dynamic memory disambigua-
tion. The hardware can then spend resources only on those opera-
tions. In this paper, we focus on load instructions and identify what
we call safe loads. These instructions are guaranteed (sometimes
conditionally) not to overlap with older in-flight stores and hence
do not need to check the store queue (SQ) when they execute and
do not need an LQ entry. This saves energy needed to search the SQ
associatively and reduces the pressure on the LQ.

Using a binary parser, we identify two types of safe loads. First,
read-only loads are safe by definition. We use the parser to per-
form extended constant propagation in order to identify addresses
pointing to read-only data segments. Second, in the steady state of
loops, any pending stores come from the loop body. In those loops
with regular array-based accesses, we can relatively easily deter-
mine the relationship between the address of a load and those of
all older pending stores. We can thus identify loads that can not
possibly overlap with any older pending stores, given architecture
details, which determine the number of in-flight instructions. Load
identified as safe will be encoded differently by the binary parser
and handled accordingly by the hardware.

In addition to identify safe loads statically, we also use software
and hardware to cooperate in identifying safe loads dynamically.



We use the same binary parser to identify safe stores that are guar-
anteed not to overlap with future loads (within a certain scope). Safe
stores thus identified can indirectly lead to the discovery of more
safe loads at runtime: at the dispatch time of a regular (unsafe) load,
if all in-flight stores are safe stores, the load can be treated as a safe
load. In the following, we will discuss the algorithms we use in the
parser and the hardware support needed.

3 Static Analysis with Binary Parsing

We use a parser based on alto [20] and work on the program’s
binary. If the source code or an information-rich intermediate rep-
resentation (e.g., [1]) is available, more information can be extracted
to identify safe loads more effectively. Without a sophisticated com-
piler infrastructure, our analysis presented in this work is much less
powerful than the state-of-the-art compiler-based dependence anal-
ysis or alias analysis. However, this lack of strength does not pre-
vent our proof-of-concept effort to show the benefit of a cooperative
approach to memory disambiguation: a more advanced analysis can
only improve the effectiveness of this approach.

Our parser targets two types of memory accesses: load from read-
only data segments and regular array-based accesses. We emphasize
that the goal of using static memory disambiguation is to reduce
the unnecessary waste of LSQ resources: to remove those easily
analyzable accesses from competing for the resource with those that
truly require dynamic disambiguation. Therefore, we do not expect
to reduce LSQ pressure for all applications. In fact, it is conceivable
that for many applications, the parser may not be able to analyze a
majority of the read accesses.

3.1 Identifying Read-Only Data Accesses
By definition, read-only data will not be written by stores and
therefore, a load of read-only data (referred to as a read-only load
hereafter) does not need to be disambiguated from pending stores.
To study the potential of identifying read-only loads, we experi-
ment with statically linked Alpha COFF binary format. In this for-
mat, there are a few read-only sections storing literals, constants,
and other read-only data such as addresses. These sections in-
clude .rconst, .rdata, .1it4, .1it8, .lita, .pdata,
and .xdata. The global pointer (GP), which points to the start-
ing point of the global data section in memory, is a constant in these
binaries. The address ranges of read-only sections and the initial
value of GP are all encoded in the binary and are thus known to the
parser. Since our goal is to explore the potential of cooperative re-
source management, our effort is not about addressing all possible
implementation issues given different binary conventions, or non-
conforming binaries. Indeed, when cooperative models are shown
to be promising and subsequently adopted in future products, new
conventions may be created to maximize their effectiveness.

Knowing the locations of the read-only sections, we can identify
static load instructions whose runtime effective address is guaran-
teed to fall into one of the read-only sections. If a load uses GP as
the base address register, it is straightforward to determine whether
it is a read-only load. However, to determine if a load using another
register as the base is read-only or not, we need to perform data-flow
analysis. Our analysis is very similar to constant propagation. The
difference is that a register may have different incoming constant
values but all point to the read-only sections. In normal constant
propagation, the register is usually considered unknown, whereas
for our purpose, we know that if a load instruction uses this register
as the base with a zero offset it is a safe load.

In our algorithm, a register can be in four different states: no
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.. R1 = gp-8192#65536+100
Rl =VU ldah rl, -8192(r29)
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Figure 3. An example of register state propagation via sym-
bolic execution. 1da and 1dah are address manipulation in-
structions equivalent to add with a literal.

information (NI), value known (VK), value is an address in read-
only sections (RO), and value unknown (VU). Except for the GP
and ZERO registers, whose value we know at all time, all other
registers are initialized to NI. After initialization, we symbolically
execute basic blocks on the work list, which is set to contain all the
basic blocks at the beginning. During the symbolic execution, only
when an instruction is in the form of adding a literal (i.e., R, =
R; + literal) and the source register’s state is VK do we set the
state of destination register to VK and compute the actual value. In
all other cases, the destination register’s state is assigned VU (see
example in Figure 3).

When joining all predecessors’ output vectors to form a basic
block’s input state vector, a register is VK only if its state in all
incoming vectors is VK and the value is the same (normal constant
propagation rule). Additionally, a register can be in state RO if in
all predecessor blocks it either has a state of RO or has a state of VK
and the value points to a read-only section. Otherwise, the register’s
state is set to VU. Any change in a basic block’s input state puts it in
the work list for another round of symbolic execution. Essentially,
our algorithm is a special constant propagation algorithm with a
slightly different lattice as shown in Figure 4. Thus, termination
can be similarly proved. Once the data-flow process converges, we
perform another pass of symbolic execution for each basic block to
determine which load instruction is a read-only load.

TOP (no information)

2 -1 0 -~ LB - UB
—

RO

BOT (VU)

Figure 4. Lattice used in the special constant propagation
algorithm. LB and U B indicate the lower and upper address
bound of a read-only section. Only one address pair is shown.

In this analysis, we assume the availability of a complete control
flow graph with help from the relocation table in the binary [20].
When the table is not embedded in the binary, we can adopt a
number of different approaches with different tradeoff between im-
plementation complexity and coverage of read-only loads. On the
conservative side, we can do address propagation only within ba-
sic blocks or none at all (i.e., identifying only read-only loads with
GP as the base register). In a more aggressive implementation, we
can profile the application to find out destinations of indirect jumps.
We can use the information to augment the control flow. In such a
profile-based implementation, as a runtime safety net, a wrapper for
all the indirect jumps is employed to detect jumps to destinations



not seen before [8]. When such a jump is detected, the runtime
system can disable the optimization for the current execution and
record the new destination so that the parser can fix the binary for
future runs.

3.2 Identifying Other Safe Loads

During an out-of-order program execution, loads are executed ea-
gerly and may access memory before an older store to the same lo-
cation has been committed, thereby loading stale data from memory.
In theory, any load could load stale data and thus the LSQ disam-
biguates all memory instructions indiscriminately [10, 26]. In prac-
tice, however, out-of-order execution is only performed in a limited
scope. If the load instruction is sufficiently “far away” from the
producer stores, in a normal implementation, we can guarantee the
relative order. For example, if there are more dynamic store instruc-
tions between the producer store and a consumer load than the size
of the SQ, then by the time the load is executed, we can guarantee
that the producer store has been committed. Notice that the soft-
ware component in the cooperative optimization model is part of
the implementation and therefore can use implementation-specific
parameters such as the size of the re-order buffer (ROB) and the
SQ. With this knowledge of the processor, we can deduct which
stores can still be in-flight when a load executes. We can then an-
alyze the relationship between a load and only those stores. When
a load does not overlap with these stores, it is a safe load. To make
the job of analyzing all possible prior pending stores tractable, we
target loops.

Scope of analysis We only consider loops that do not have other
loops nested inside or any function calls/indirect jumps. Addition-
ally if a loop overlaps with a previously analyzed loop, we also
ignore it. When a loop has internal control flows, the number of
possible execution paths grows exponentially and the analysis be-
comes intractable. To avoid this problem, we can form traces [14]
within the loop body and treat any diversion from the trace as side
exits of the loop (which we did in an earlier implementation). This,
however, does not significantly increase the coverage of loads in the
applications we studied. For simplicity of discussion, we stick with
the more limited scope: inner loops without any internal control
flows. Note that the loop can still have branches inside, only that
these branches have to be side exits. In our study, this scope still
covers a significant fraction of dynamic loads (63% for floating-
point applications).

In the steady state of these loops, only different iterations of the
loop will be in-flight. For every load, the maximum number of older
in-flight instructions is finite due to various resource constraints and
can be determined as min(C(Srog), C(Ssq), -.), where C(S;)
is the maximum capacity of in-flight instructions when resource r’s
size is Sy. The set of store instances a load needs to disambiguate
against can be precisely determined given the loop body. For con-
venience, we refer to this set as the disambiguation store set (DSS)
hereafter. For example, if the ROB has n entries, the DSS of a load
is at most all the stores in the preceding n instructions from the
load. If the parser can statically determine that the load does not
conflict with any store instance in the DSS then the load is safe in
the steady state. Before reaching this steady state, however, a load
can be in-flight together with stores from code sections prior to the
loop, outside the scope of the analysis. For this initial transient state,
we revert to hardware disambiguation to guarantee memory-based
dependences. We place a marker instruction (mark_sqg in the ex-
ample shown later in Figure 7) before the loop and any identified
safe load will be treated by the hardware as a normal load until all
stores prior to the marker drain out of the processor. The design of

the hardware support is discussed in Section 4.

Symbolic execution Intuitively, strided array access is a fre-
quent pattern in many loops. With strided accesses, the address at
any particular iteration ¢ can be calculated before entering the loop
and therefore whether a load overlaps with the stores from the DSS
can also be known before entering the loop. Thus, we can gener-
ate condition testing code to put in the prologue of the loop. This
prologue computes conditions under which a load does not overlap
with any stores in its DSS for any iteration ¢. We can then allow
the load to become a conditional safe load based on the generated
condition. Conditional safe load can be implemented via condition
registers reminiscent of predicate registers (Section 4).

To identify these strided accesses and derive the expressions of
the address, we use an ad hoc analysis that symbolically executes
the loop and tracks the register content. When an address register’s
state converges to a strided pattern, we can derive its value expres-
sion, and hence the steady-state address expression.

Each entry of the symbol table contains a Base and an O f fset
component (r; = Base + Of fset). We use symbols _R0, _R1,
..., and _R30 to represent the loop inputs: the initial values of
registers 10 through 130 upon entering the loop (131 is the hard-
wired zero register in our environment). Thus the table starts with
(ri = _R; 4+ 0) as shown in Figure 5. The symbolic execution
then propagates these values through address manipulation instruc-
tions. To keep the analysis simple and because we are interested
in strided access only, we only support one form of address manip-
ulation instructions: add-constant instructions (or ACI for short).
This type includes instructions that perform addition/subtraction of
a register and a literal (e.g., in Alpha instruction set: 1da, 1dah,
some variations of add/sub with a literal operand, etc.) and ad-
dition/subtraction of two registers but one is loop-invariant. When
such an instruction is encountered, the source register’s Base and
Of fset component is propagated to the destination register with
the adjustment of the constant (literal or the content of a loop-
invariant register) to O f fset. Any other instructions (e.g., load)
would cause the Base of destination register to be set to UN-
KNOWN. Therefore, at any moment, a register can be either UN-
KNOWN or of the form (_R; + const).

To further clarify the operations, we walk through an example
shown in Figure 5. The figure shows some snapshots of the regis-
ter symbolic value table before executing instructions @, @, and @.
In iteration 0, r3’s value is initial value _R3 4 0. After instruction
@, which loads into 73, its symbolic value becomes UNKNOWN.
However, after instruction ®, the value becomes known again, in the
form of _R2 + 8. To detect strided accesses and compute stride, the
symbolic value of the address register (shaded entries in Figure 5)
in one iteration is recorded to compare to that of the next iteration.
In iteration O and 1, r3’s values at instruction @ do not “converge”
because of the two different reaching definitions. However, in iter-
ation 1 and 2, the values converge to _R2 + const (with different
constants). Since every register used in the loop can have up to two
reaching definitions (one from within the loop which is essentially
straight-line code and another from before the loop), it may take
several iterations for a register to converge. In certain cases, where
there is a chain of cyclic assignments, there may not be a conver-
gence. Therefore, our algorithm iterates until the Base component
of all registers converge or until we reach a certain limit of iterations
(100 in this paper).

Once the Base component converges at each point of the loop
(i.e., after symbolic execution of every instruction, the destination
register’s Base is the same as in the prior iteration at the same pro-



Symbolic value table Loop of trace

Iteration 0 Iteration 1 Iteration 2

0 [ RO | +0 Loop: O [ [ [
rl | _R1 | +0 . S [ 2] R2 +0 2| _R2 +8 | [ 2] R2 +0x10
2 | _R2 | +0 1d  0xC(r3) => r3 ®f 3| _R3 +0 3| _R2 +8 3| _R2 +0x10
© || LB || +0 1d  0x0(r3) => x4 @ [ : | [
"5‘ —2‘; +g lda 0x10(3)=> 13 O " l
T T - ,
= addq r2, 0x§ => r2 @ [ 2] R2 [ +0 2| R2 | +8 |
lda 0x0(r2) => r3 ® r3 | UNKNOWN| +0 r3 | UNKNOWN| +0
bne , Loop B ‘ ‘
o[ -
2| _R2 +0 :
r3 | UNKNOWN| +0 Symbolic register value before the execution
of corresponding instruction in each iteration.

Shaded entry is used to determine the address

Figure 5. Example of symbolic execution. The register symbolic value is expressed as the sum of an initial register value (e.g., -R1)
and a constant (e.g., +0x10). In this example, we show that the first load renders register 73 to become UNKNOWN. This makes the
second load un-analyzable. However, register r3 is always known before the execution of the first load, which makes it analyzable.
1d is aload, addq is a 64-bit add, 1da is an address calculation equivalent to adding constant, and bne is a conditional branch.

gram point), no “new” propagation of Base is done and therefore
the Base component of all registers stays the same in subsequent
iterations. After convergence, the only change to the symbolic ta-
ble is that of the O f f set, and only an ACI (whose source register’s
Base is not UNKNOWN) changes that. The set of ACIs in the en-
tire loop are fixed and always add the same constants, and therefore
the change to the Of fset in the symbol table will be constant for
each entry.

Before the base address register of a load converges, the address
can have transient-state expressions. In the example shown in Fig-
ure 5, the first load’s effective address (r3+0xC) can be _R3+0xC
or _R2+0xC+8 i (+ = 1,2, ...). When generating conditions, we
make sure all possibilities are considered. We also note that for any
load to be safe, all stores in the loop have to be analyzable.

Condition generation After the address expressions are com-
puted, we analyze those of the loads against those of the stores and
determine under what conditions a load never accesses the same lo-
cation as any store in the DSS. Since each static store may have
multiple instances in a load’s DSS, we summarize all locations ac-
cessed by these store instances as an address range. Given a strided
load, we find out the condition that the load’s address falls outside
all address ranges for all static stores. Such a range test is a suf-
ficient but not necessary condition to guarantee the safety of the
load. The pseudo code of this algorithm is shown in Figure 6. We
use ¢ to indicate any iteration. The conditions generated have to be
loop-invariant (i.e., independent of 7) since they will be tested in
the prologue of the loop once for the entire loop. Therefore, when
the loads and stores have different strides, our algorithm would not
compare them. To remove this limitation, one could apply other
tests such as the GCD test or the Omega test [22].

We now show a typical code example based on a real application
in Figure 7-(a). In this loop, there are 17 instructions, two of them
stores. In our baseline configuration, DSS membership is limited by
the 32-entry SQ. Then, in the steady state, there can be at most 16
outstanding iterations. In this particular example, every load has the
same set of 32 dynamic store instances in its DSS. Also, none of the
loads or stores has transient-state address. In iteration ¢, the (quad-
word aligned) address range of these store instances is [-R11+ (i —
16)%16, ~R11+(i—1)*16+8] and the address of Ld1 is _R3+16xi.
(_R11 and _R3 are the initial values at loop entrance of register 11
and 73 respectively.) If the address of Ld1 falls outside the range,
Ld1 becomes a safe load. The condition for thatis (_R3 + 16 % i <
-R11+4(i—16)*16) OR (LR34 16%¢ > _R11+4 (i —1)*16+38).

foreach [ in {all static loads with stride}
esll={} // initial condition set empty
foreach s = {all static stores}
// find out range of static instances of s in {[z]’s DSS
j =minn, s[n] € DSS(I[i])
k = max n, s[n] € DSS ({[i])
[ri6, rub] = Address range of {s[j] ... s[k]}

// Load I’s current iteration address or its transient-
// state addresses can not overlap with the address
// range of outstanding instances of store s or its

// transient-state addresses

cs[l] = es[l] U (Addr(1]i)) > rus||Addr(lz]) < rp)
esl] = es[l) U (TrAddr(l) > rup||TrAddr(l) < i)
cs[l] = es[l) U (Addr(1[3]) # TrAddr(s))
cs[l] = es[l) U (TrAddr(l) # TrAddr(s))

end

Simplify conditions in ¢s]l]

end

Figure 6. Pseudo code of the algorithm that determines the
condition for a strided load to be safe. I[#] (s[j]) indicates the
dynamic instance of [ (s) in iteration ¢ (). DSS (I[¢]) is I[i]’s
disambiguation store set.

After solving the inequalities, we get (_LR3 — _R11 + 8 > 0) OR
(.R3— _R11+ 256 < 0). Likewise, we can compute the condition
for Ld2 to be safe: (_LR3 — _R11 + 16 > 0) OR (_R3 — _R11 +
264 < 0). The two conditions can be combined into one: (_R3 —
-R11 +8 > 0) OR (_R3 — _R11 + 264 < 0). The addresses
of Ld3 and Ld4 are _R11 + 16 = ¢ and _R11 + 8 4+ 16 * ¢. They
can be statically determined to be safe, without the need for runtime
condition testing. So they are assigned a special condition register
CR_TRUE (Section 4). Figure 7-(b) shows the resulted code after
binary parser’s analysis and transformation. To be concise, we only
show pseudo code of condition evaluation.

Pruning and condition consolidation In the most straightfor-
ward implementation, every analyzable load has its own set of con-
ditions and allocates a condition register. Optionally, we can per-
form profile-driven pruning. Using a training input, we can identify
conditions that are likely to be true and those that are not. This al-



0x120033140: 1dl r31, 256(r3)
0x120033144: 1dt £21, 0(r3)
0x120033148: lda r27, -2(r27)
0x12003314c: lda r3, 16(r3)

prefetch

Ld1l
r27 <- r27-2
r3 <- r3+16

i

i
0x120033150: 1dt f22, -8(r3) ; Ld2
0x120033154: 1dt £23, 0(rll) ; Ld3
0x120033158: cmple r27, 0x1, rl ; compare
0x12003315c: lda rll, 16(rll) ; rll <- rll+1l6
0x120033160: 1dt f24, -8(rll) ; Ld4
0x120033164: 1ds £31, 240(rll) ; prefetch
0x120033168: mult £20, £21, f21 ;
0x12003316c: mult £20, £22, £22 ;
0x120033170: addt £23, f£f21, f21 ;
0x120033174: addt f24, £f22, £22 ;
0x120033178: stt £21, -16(rll) ; stl
0x12003317c: stt £22, -8(rll) ; St2
0x120033180: beq rl, 0x120033140 ;

(a) Original code
New_loop_entry: mark_sg

1if(r3-rl11+8>0) or (r3-rll+264<0) then
cset CRO, 1

0x120033140: 1dl r31, 256(r3)

0x120033144: sldt f£f21, 0(r3), [CRO]; safe load with
: ; cond. reg. CRO

0x120033150: sldt £22,-8(r3), [CRO]

0x120033154: sldt £23, 0(rll), [CR_TRUE]

0x120033160: sldt f24, -8(rll), [CR_TRUE]

0x120033178: stt £21, -16(rll)

0x12003317c: stt £22, -8(rll)

0x120033180: beq rl, 0x120033140

(b) Transformed code

Figure 7. Code example from application galgel.

lows us to transform unlikely safe loads back to normal loads and
thus eliminate unnecessary condition calculation. Perhaps a more
important implication of profiling is condition consolidation. Since
the remaining safe loads’ conditions tend to be true, we can “AND”
them together to use fewer condition registers. In the extreme, we
can use only one condition register and thus make it the implied con-
dition (even for the unconditional safe loads). Furthermore, we can
limit the types of safe load to a few common cases. These measures
together will reduce the (physical) instruction code space needed to
support our cooperative memory disambiguation model. The trade-
off is that fewer loads will be treated as safe at runtime. We study
this tradeoff in Section 6.

Finally, we note that the address used in the parser is virtual ad-
dress and if a program deliberately maps different virtual pages to
the same physical page, the parser can inaccurately identify loads as
safe. In general, such address “pinning” is very uncommon: none
of the applications we studied does this. In practice, the parser can
search in the binary for the related system calls to pin virtual pages
and insert code to disable the entire mechanism should those calls
be invoked at runtime.

Bypassing load through identifying safe stores Like loads,
stores can also be “safe” if it is guaranteed not to overlap with any
future in-flight loads. In this paper, we identify safe stores in order
to indirectly discovery more safe loads. If there is an unanalyzable
store in a loop, usually none of the loads may be safe because the
DSS of any load is very likely to contain at least one instance of
the unanalyzable store. However, the DSS is defined very conser-
vatively and in practice, when a load is brought into the pipeline,
usually only a subset of these store instances in the DSS are still in-
flight. If this subset does not contain any instance of unanalyzable

stores, then the load may still be safe. If we can identify and mark
safe stores that do not overlap with future in-flight loads, then at
runtime when a normal load is dispatched while there are only safe
stores in-flight, we can guarantee that the load will not overlap with
any single store. Consequently, we do not need any further dynamic
disambiguation and therefore can re-encode the load as a safe load.

The algorithm to identify safe stores mirrors the above-
mentioned algorithm to identify safe loads: (1) Instead of finding a
load’s DSS, we find a store’s DLS (disambiguation load set), which
contains loads later than the store; (2) For a store to be safe, all
loads in the loop have to be analyzable; (3) Since a safe store is
only “safe” with respect to loads within the loop, we place a marker
(mark_sq) upon the exit of the loop. As before, an in-flight marker
indicates transient state, during which period all loads are handled
as normal loads.

4 Architectural Support

Encoding safe loads For those safe loads identified by software,
we need a mechanism to encode the information and communicate
it to the hardware. There are a number of options. One possibility
is to generate a mask for the text section. One or more bits are as-
sociated with each instruction differentiating safe loads from other
loads. The mask can be stored in the program binary separate from
the text. During an instruction cache fill, special predecoding logic
can fetch the instructions and the corresponding masks and store
the internal, predecoded instruction format in the I-cache. A more
straightforward approach is to extend the physical ISA to represent
safe loads and modify load instructions in situ, in the text section.
Since we use a binary parser, this extension of the physical ISA does
not affect the architected ISA (Section 2). Our study assumes this
latter approach.

Conditional safe loads When the parser transforms a normal
load into a safe load, there is a condition register associated with it.
Only when the condition register is true will the safe load instruction
be treated as safe. The architectural support needed includes (a) a
few single-bit condition registers, similar to predicate registers, (b)
a special instruction (cset) that sets a condition register, and (c) a
safe load instruction (s1d) that encodes the condition register used.
At the dispatch time of an s1d instruction, if the value of the speci-
fied condition register is false, the safe load will be treated just like a
normal load and placed into the LQ. Since the s1d instructions af-
ter a cset instruction (in program order) can be dispatched before
the cset has set the condition (at the execution stage), the con-
dition register is conservatively reset (set to false) when the cset
instruction is dispatched. Alternatively, we can flash-reset all condi-
tion registers when dispatching the marker (mark_sq) instruction.
A special condition register CR_T'RU E is dedicated for uncondi-
tional safe loads. It can be set to true either explicitly by a cset or
implicitly when a mark_sq is dispatched.

SQ marker The analyzer places a mark_sqg instruction to indi-
cate the scope of the analysis: all the dynamic stores older than the
marker are outside the scope of the analysis and can overlap with
subsequent loads. Therefore, even though the condition register’s
value may be true, conditional safe loads still need to be treated as
normal loads until the stores older than the marker drain out of the
SQ. By that time, future safe loads can be dispatched as safe loads
(if the condition is satisfied).

While conceptually a marker can be a special occupant of an SQ
entry, in a real implementation, we use an extra (marker) bit associ-
ated with each entry to represent a scope marker: when amark_sq
instruction is dispatched, the marker bit of the youngest valid en-



try in the SQ (if any) is set. This bit is cleared when that entry is
recycled. This design allows two practical advantages. First, we
do not waste an SQ entry just to store a marker. Second, and more
importantly, the special processing of multiple markers in the SQ
is simpler. It is possible that more than one marker appears in the
SQ, and only when all markers drain out of the SQ can we let con-
ditional safe loads to bypass the LQ. With the marker bits, it is easy
to detect if all markers are drained: any bit that is set pulls down a
global signal line. A high voltage in the line indicates the lack of
in-flight marker.

Indirect Jumps Though exceedingly unlikely, it is possible that
the control flow transfers into a loop through an indirect jump with-
out going through the prologue where the analyzer places the SQ
marker and condition testing instructions. To ensure that we do not
incorrectly use an uninitialized condition register, we flash-clear all
condition registers (including C'R_T'RU E) when an indirect jump
instruction is dispatched.

Safe stores In terms of instruction encoding and the use of condi-
tion registers, safe stores are no different from safe loads. However,
the handling of safe stores is quite different: because our purpose
of identifying them is to further increase the number of safe loads,
we are only interested in when the SQ contains just safe stores. The
hardware implementation is simple: any entry with a valid, normal
(unsafe) store can pull down a global signal line. When this signal
is high, we can dynamically dispatch a regular load as a safe one.
Of course, software-identified safe stores are safe only within the
scope of the analysis (loop). When a loop terminates, the hardware
needs to be notified. This is handled by the same SQ marker mech-
anism described above: when a marker is in-flight, the hardware
treats all loads as normal loads. We note that a degenerate form of
this mechanism is to dispatch a load as a safe load when there is no
in-flight stores at all. This mechanism can be implemented purely
in hardware without any software support.

In contrast to the simple support needed in our design, safe stores
could be exploited to reduce the pressure of SQ but would require
more extensive hardware support. Very likely, we need to split the
functionalities of SQ and implement a FIFO queue for buffering and
in-order committing of stores and an associative queue for disam-
biguation and forwarding. Perhaps the more challenging aspect of
the design is that we need to ensure that when the scope of analysis
(in our case loops) is exited, the identified safe stores from the loop
have to participate in the disambiguation/forwarding process with
loads from after the exit.

Support for coherent /O Moving a load out of the LQ prevents
the normal monitoring by the coherence and consistency mainte-
nance mechanism. Therefore, the design requires additional sup-
port to function in a multiprocessor environment, which is the sub-
ject of our on-going work. We note that in a uni-processor envi-
ronment, if the system provides coherent I/O, there is also the need
to monitor load ordering to enforce write serialization, an implicit
requirement of coherence. Maintaining write serialization is often
done by monitoring the execution of load instructions to detect vi-
olations: two loads to the same location executed out of program
order and separated by an invalidation to the same location (caused
by a DMA transfer). However, invalidations due to DMA transfers
are exceedingly infrequent compared to stores issued by the proces-
sor. Consequently, we can use a separate, light-weight mechanism
such as hash tables to keep track of load ordering involving safe
loads, thereby avoiding undue increase of LQ pressure. We studied
ways to keep track of memory addresses of safe loads. For brevity,
we leave the details in [12].

5 Experimental Setup

To evaluate our proposal, we perform a set of experiments using
the SimpleScalar [6] 3.0b tool set with the Wattch extension [5] and
simulate 1 billion instructions from each of the 26 SPEC CPU2000
benchmarks. We use Alpha binaries.

We made a few simple but important modifications to the simula-
tor. First, we do not allocate an entry in the LQ for loads to the zero
register (R31). These essentially prefetch instructions are safe loads
that do not need to participate in the dynamic disambiguation pro-
cess as they do not change program semantics. We note that in our
baseline architecture, the LQ only performs disambiguation func-
tions. Buffering information related to outstanding misses is done
by the MSHRs (miss status holding registers). If we allocate LQ
entries for prefetches, we would exaggerate the result by increasing
the pressure on the LQ unnecessarily and quite significantly, since
the heavily optimized binaries (compiled using -O4 or -O5) include
many prefetches, around 20% of all loads. Second, to model high-
performance processors more closely, we simulate speculative load
issue (not blocked by prior unresolved stores) and store-load replay.
The simulated baseline configuration is listed in Table 1.

Processor core

8/8/8

64 INT, 64 FP

INT 8+2 mul/div, FP 8+2 mul/div
Bimodal and Gshare combined
8192 entries, 13 bit history
4096/8192/4096 (4 way)

Issue/Decode/Commit width
Issue queue size

Functional units

Branch predictor

- Gshare

- Bimodal/Meta table/BTB entries
Branch misprediction latency 10+ cycles
ROB/LSQ(LQ,SQ)/RegisterINT,FP) | 320/96(48,48)/(256,256)

Memory hierarchy

L1 instruction cache
L1 data cache

32KB, 64B line, 2-way, 2 cycle
32KB, 64B line, 2-way, 2 cycle
2 (read/write) ports

IMB, 64B line, 4-way, 15 cycles
250 cycles

L2 unified cache
Memory access latency

Table 1. Baseline system configuration.

6 Evaluation

Percentage of safe loads identified The most important met-
ric measuring the effectiveness of our design is the percentage of
instructions that bypass the LQ. In Figure 8, we present a break-
down of these safe loads based on their category: (a) read-only loads
(ROL), (b) statically safe loads (SSL): loads (other than read-only
load) that are encoded as safe loads by the parser and dispatched
as safe loads, (c) dynamically safe loads (DSL): normal loads dis-
patched as safe because all pending stores in the SQ are safe, and
(d) degenerate dynamically safe loads (DDSL): normal loads dis-
patched as safe because the SQ is empty at that time. In Figure 9
we show the number of safe stores identified.

As we can see from Figure 8, in floating-point applications, a sig-
nificant portion of the loads are safe, suggesting the effectiveness of
the cooperative approach. As can be expected, the parser identifies
a larger portion of safe loads in floating-point applications than in
integer applications. In three applications, about 80% or more loads
are dispatched as safe. Even targeting just read-only loads, we can
still mark up to 20% of loads as safe.

We can also see that there is only a small portion of dynamically
safe loads although Figure 9 shows an average of 30% and up to
98% of stores in floating-point applications are safe. Apparently,
we need a very significant number of safe stores to get a sufficient
amount of DSL. In applications applu and mgrid, we do observe a
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Figure 8. The breakdown of dynamic load instructions dispatched as safe.
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Figure 10. The performance improvement of cooperative memory disambiguation.

notable fraction of DSL correlated with the high percentage of safe
stores. However, in galgel and swim, the memory access pattern is
very regular. So much so, that more than 90% of loads are statically
safe loads, subsuming most would-be dynamically safe loads.

In addition, we see that the percentage of degenerate dynamically
safe loads is quite small in floating-point applications, suggesting
that only targeting these loads is unlikely to be very effective.

Overall, these results show the effectiveness of cross-layer opti-
mizations, where information useful for optimization in one layer
can be hard to obtain in that layer (e.g., hardware), but is easy to ob-
tain in another layer (e.g., compiler, programming language). With
simple hardware support, our cooperative disambiguation scheme
filters out an average of 43% and up to 97% of loads from doing
the unnecessary dynamic disambiguation or competing for related
resources.

Not Safe Safe
A B C D E
INT | 92% | 10.2% | 129% | 4.0% | 40.0%
FP 7.7% 6.6% 13.5% | 3.7% | 25.6%

Table 2. Breakdown of loads not dispatched as safe.

Finally, in Table 2, we show the breakdown of the dynamic load
instructions not identified as safe, including: (A) those that actually
read from an in-flight store; (B) those that read from a commit-
ted store that is in the load’s disambiguation store set (this cate-
gory excludes those loads dynamically identified as safe — DSL or
DDSL); (C) those that are analyzed by the parser but not marked as
a safe load; (D) those that are dispatched in the transient state when
a marker is still in-flight; and (E) those that are outside the scope
of analysis. Loads in categories C, D, and E do not read from any
stores in their DSS. In categories A and B, the parser correctly keeps

the load instructions regular, whereas in categories C, D, and E, a
more powerful parser may be able to prove some of them safe. We
see that to further enhance the effectiveness, we can target category
E by broadening the scope of analysis. For example, with the ca-
pability to perform inter-procedural analysis, we can handle loops
with function calls inside.

Performance impact Reducing resource pressure ameliorates
bottleneck and allows a given architecture to exceed its original
buffering capability, which in turn increases exploitable ILP. How-
ever, quantifying such performance benefit is not entirely straight-
forward: reducing the pressure on one microarchitectural resource
may shift the bottleneck to another, especially if the system is well
balanced to start with. Thus, to get an understanding of how ef-
fective cooperative disambiguation can be, we experiment with a
baseline configuration where other resources are provisioned more
generously than the LQ. In Figure 10, we show the performance im-
provement obtained through LQ bypassing in this baseline config-
uration. For comparison, we also show the improvement obtained
when the LQ size is significantly increased to 80 entries.

For some applications, we can clearly observe the correlation
between the percentage of loads bypassing the LQ and the perfor-
mance improvement. For example, the three floating-point applica-
tions that have about 80% or more loads bypassing the LQ (galgel,
mgrid, and swim) obtain a significant performance improvement of
29-40%. In general, the effect of identifying safe loads to bypass
LQ brings the performance potential of a much larger LQ without
the circuit and logic design challenges of building a large LQ.

Clearly, increasing the LQ size only increases the potential of
performance improvement. Indeed, integer applications in general
do not show significant improvement when the LQ size is increased.
For a few applications, performance actually degrades. This is pos-
sible because, for example, the processor may forge ahead deeper
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Figure 11. The energy savings of cooperative memory disambiguation.

on the wrong path and creates more pollution in the cache. We can
also see this degradation in the configuration with an 80-entry LQ.
Through instrumentation, however, we can identify loops whose
overall performance was negatively affected after transforming reg-
ular loads to safe loads. We verified that changing these safe loads
back to regular ones eliminates all the performance degradation.
Predictably, such a feedback-based pruning has an insignificant im-
pact on other applications.

Energy impact In Figure 11, we show the energy impact of our
optimization. Specifically, we compute the energy savings in the
LSQ and throughout the processor. Energy savings in the LSQ
mainly come from the fact that safe loads do not search the SQ.
Note that our cooperative memory disambiguation does not reduce
energy spent by store instructions accessing the LSQ or the clock
power in the LSQ. Thus even with close to 100% loads bypass-
ing the LQ in some applications, the energy savings in the LSQ is
less than half. The processor-wide energy savings are mainly the
byproduct of expedited execution as according to our Wattch-based
simulator, the energy consumption of the LQ and SQ combined is
only about 3%. This is also reflected in the results of some ap-
plications. For example, in equake, eon and gzip, the total energy
savings are negated because of the slowdown. Again, after we ap-
ply the feedback-guided pruning mentioned above, the slowdown
is eliminated, the performance and energy consumption stay almost
unchanged as only a small number of loads still bypass the LQ.

Consolidation of condition registers In the above analysis,
we assume we have a sufficient number of condition registers, there-
fore each conditional load instruction uses its own condition regis-
ter. In our application suite, at most 14 such registers are needed.
As explained before, for implementation simplicity, we may choose
to use fewer or even just one (implied) condition register. When we
limit the number of condition registers to two, we observe no notice-
able performance impact for any application we studied. With only
one condition register, a naive approach is to set it to the “AND” of
all conditions. This creates some “pollution” as one unsatisfied con-
dition prevents all loads in the same loop from becoming safe loads.
However, we found that even when we use the naive approach to
share the sole condition register, only 3 applications show perfor-
mance degradation compared to using unlimited number of condi-
tion registers: ammp (-2.5%), applu (-5.9%), and art (-15.3%). The
rest of the applications show no observable impact. Intuitively, a
feedback-based approach can help reduce the impact of condition
register deficiency. We found that even simple pruning can be very
effective: by filtering out the loads whose condition is never satis-
fied in a training run, we eliminated the performance degradation of
ammp and applu. However, with such a small set of applications to
study, we can not draw many general conclusions.

Overhead of condition testing code Finally, we also collect
statistics on the actual performance overhead incurred because of
executing condition-testing instructions for safe loads. The over-
head turns out to be very small. On average, it is about 0.2% of

the total dynamic instructions. The maximum overhead is only
1.6%. This overhead can be further reduced by applying profile-
based pruning. It is worth mentioning that the offline analysis in-
curs very little overhead too. On a mid-range PC, our parser takes
between 1 and 16 seconds analyzing the suite of applications used.
The average run time is 3 seconds.

7 Related Work

To increase the number of in-flight instructions, the effective capac-
ity of various microarchitectural resources need to be scaled accord-
ingly. The challenge is to do so without significantly increasing ac-
cess latency, energy consumption, and design complexity. There are
several techniques that address the issue by reducing the frequency
of accessing large structures or the performance impact of doing so.
Sethumadhavan et al. propose to use bloom filters to reduce the ac-
cess frequency of the LSQ [25]. When the address misses in the
bloom filter, it is guaranteed that the LQ (SQ) does not contain the
address, and therefore the checking can be skipped.

A large body of work adopts a two-level approach to disambigua-
tion and forwarding. The guiding principle is largely the same. That
is to make the first-level (L1) structure small (thus fast and energy
efficient) and still able to perform a large majority of the work. This
L1 structure is backed up by a much larger second-level (L2) struc-
ture to correct/complement the work of the L1 structure. The L1
structure can be allocated according to program order or execution
order (within a bank, if banked) for every store [2,11,27] or only al-
located to those stores predicted to be involved in forwarding [4,23].
The L2 structure is also used in varying ways due to different fo-
cuses. It can be banked to save energy per access [4,23]; it can be
filtered to reduce access frequency (and thus energy) [2, 25]; or it
can be simplified in functionality such as removing the forwarding
capability [27].

Most of these approaches are hardware-only techniques and fo-
cus on the provisioning side of the issue by reducing the negative
impact of using a large load queue. Every load still “rightfully” oc-
cupies some resource in these designs. Our approach, on the other
hand, addresses the consumption side of the issue: loads that can
be statically disambiguated do not need redundant dynamic disam-
biguation and therefore are barred from competing for the precious
resources. We have shown that in some applications, a significant
percentage of loads are positively identified as safe. With increased
sophistication in the analysis methods, we expect an even larger por-
tion to be proven safe. When only provisioning-side optimizations
are applied, these loads will still consume resources. Additionally,
our design is a very cost-effective alternative. It incurs minimal ar-
chitectural complexity and does not rely on prediction to carry out
the optimization, thereby avoids any recurring energy cost for train-
ing or table maintenance. Finally, because we are addressing a dif-
ferent part of the problem, our approach can be used in conjunction
with some of these hardware-only approaches.

Memory dependence prediction is a well-studied alternative to
address-based mechanisms to allow aggressive speculation and yet



avoid penalties associated with squashing [9,17-19]. A key insight
of prior studies is that memory-based dependences can be predicted
without depending on actual address of each instance of memory
instructions and this prediction allows for stream-lined communi-
cation between likely dependent pairs. Detailed studies between
schemes using dependence speculation and address-based memory
schedulers are presented in [19]. A predictor to predict commu-
nicating store-load pairs is used by Park et al. to filter out loads
that do not belong to any pair so that they do not access the store
queue [21]. To ensure correctness, stores check the LQ at commit
stage to ensure incorrectly speculated loads are replayed. They also
use a smaller buffer to keep out-of-order loads (with respect to other
loads) to reduce the impact of LQ checking for load-load order vio-
lations.

Value-based re-execution presents a new paradigm for memory
disambiguation. In [7], the LQ is eliminated altogether and loads
re-execute to validate the prior execution. Notice that the SQ and
associated disambiguation/forwarding logic still remain. Filters are
developed to reduce the re-execution frequency [7,24]. Otherwise,
the performance impact due to increased memory pressure can be
significant [24].

Finally, a software-hardware cooperative strategy has been ap-
plied in other optimizations [13,28]. In [13], a compile-time and
run-time cooperative strategy is used for memory disambiguation.
If instruction scheduling results in re-ordering of memory accesses
not proven safe by the static disambiguation, it is done speculatively
through a form of predicated execution. Code to perform runtime
alias check is inserted to generate the predicates. In [28], compiler
analysis helps significantly reduce cache tag accesses.

8 Conclusions

In this paper, we have proposed a software-hardware cooperative
optimization strategy to reduce resource waste of the LSQ. Specifi-
cally, a software-based parser analyzes the program binary to iden-
tify loads that can safely bypass the dynamic memory disambigua-
tion process. The hardware, on the other hand, only provides sup-
port for the software to specify the necessity of disambiguation.
Collectively, the mechanism is inexpensive since the complexity is
shifted to software and it is effective: on average, 43% of loads by-
pass the LQ in floating-point applications, and this translates into a
10% performance gain in our baseline architecture.

Our technique demonstrates the potential of a vertically inte-
grated optimization approach, where different system layers com-
municate with each other beyond standard functional interfaces, so
that the layer most efficient in handling an optimization can be used
and pass information on to other layers. We believe such a cooper-
ative approach will be increasingly resorted to as a way to manage
system complexity while continue to deliver system improvements.
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