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Abstract

In high-end processors, increasing the number of in-flight
instructions can improve performance by overlapping useful
processing with long-latency accesses to the main memory.
Buffering these instructions requires a tremendous amount
of microarchitectural resources. Unfortunately, large struc-
tures negatively impact processor clock speed and energy ef-
ficiency. Thus, innovations in effective and efficient utiliza-
tion of these resources are needed. In this paper, we tar-
get the load-store queue, a dynamic memory disambiguation
logic that is among the least scalable structures in a modern
microprocessor. We propose to use software assistance to
identify load instructions that are guaranteed not to overlap
with earlier pending stores and prevent them from compet-
ing for the resources in the load-store queue. We show that
the design is practical, requiring off-line analyses and mini-
mum architectural support. It is also very effective, allowing
more than 40% of loads to bypass the load-store queue for
floating-point applications. This reduces resource pressure
and can lead to significant performance improvements.

1 Introduction
To continue exploiting device speed improvement to provide
ever higher performance is challenging but imperative. Sim-
ply translating device speed improvement to higher clock
speed does not guarantee better performance. We need to
effectively bridge the speed gap between the processor core
and the main memory. For an important type of applica-
tions that have never-ending demand for higher performance
(mostly numerical codes), an effective and straightforward
approach is to increase the number of in-flight instructions
to overlap with long latencies. This requires a commensu-
rate increase in the effective capacity of many microarchi-
tectural resources. Naive implementation of larger physical
structures is not a viable solution as it not only incurs high
energy consumption but also increases access latency which
can negate improvement in clock rate. Thus, we need to con-
sider innovative approaches that manages these resources in
an efficient and effective manner.

We argue that a software-hardware cooperative approach
to resource management is becoming an increasingly attrac-
tive alternative. A software component can analyze the static
code in a more global fashion and obtain information hard-
ware alone can not obtain efficiently. Furthermore, this anal-
ysis done in software does not generate recurring energy
overhead. With energy consumption being of paramount im-
portance, this advantage alone may justify the effort needed
to overcome certain inconvenience to support a cooperative
resource management paradigm.

In this paper, we explore a software-hardware cooperative
approach to dynamic memory disambiguation. The conven-
tional hardware-only approach employs the load-store queue
(LSQ) to keep track of memory instructions to make sure
that the out-of-order execution of these instructions do not
violate the program semantics. Without the a priori knowl-
edge of which load instructions can execute out of program
order and not violate program semantics, conventional imple-
mentations simply buffer all in-flight load and store instruc-
tions and perform cross-comparisons during their execution
to detect all violations. The hardware uses associative arrays
with priority encoding. Such a design makes the LSQ prob-
ably the least scalable of all microarchitectural structures in
modern out-of-order processors. In reality, we observe that
in many applications, especially array-based floating-point
applications, a significant portion of memory instructions
can be statically determined not to cause any possible vi-
olations. Based on these observations, we propose to use
software analysis to identify certain memory instructions to
bypass hardware memory disambiguation. We show a proof-
of-concept design where with simple hardware support, the
cooperative mechanism can allow an average of 43% and up
to 97% of loads in floating-point applications to bypass the
LSQ. The reduction in disambiguation demand results in en-
ergy savings and reduced resource pressure which can im-
prove performance.

The rest of the paper is organized as follows: Section 2
provides a high-level overview of our cooperative disam-
biguation model; Sections 3 and 4 describe the software and
hardware support respectively; Section 5 discusses our ex-
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perimental setup; Section 6 shows our quantitative analyses;
Section 7 summarizes some related work; and Section 8 con-
cludes.

2 Resource-Effective Memory
Disambiguation

2.1 Resource-Effective Computing
Modern high-end out-of-order cores typically use very ag-
gressive speculations to extract instruction-level parallelism.
These speculations require predictors, book-keeping struc-
tures, and buffers to track dependences, detect violations,
and undo any effect of mis-speculation. High-end proces-
sors typically spend far more transistors on orchestrating
speculations than on the actual execution of individual in-
structions. Unfortunately, as the number of in-flight instruc-
tions increases, the effective size of these structures has to
be scaled up accordingly to prevent frequent pipeline stalls.
Increasing the actual size of these resources presents many
problems. First and foremost, the energy consumption in-
creases. The increase is especially significant if the structure
is accessed in an associative manner such as in the case of the
issue queue and the LSQ. At a time when energy consump-
tion is perhaps the most important limiting factor for high-
end processors, any change in microarchitecture that results
in energy increase will need substantial justifications. Sec-
ond, larger physical structures take longer to access, which
may translate into extra cycles in the pipeline and diminish
the return of buffering more instructions. Therefore, we need
to innovate in the management of these resources and cre-
ate resource-effective designs. Whether the speculative out-
of-order execution model can continue to exploit technology
improvements to provide higher single-thread performance
is to a large extent determined by whether we can effectively
utilize these resources.

Much research has been done in microarchitectural re-
source management such as providing two-level implemen-
tations of register files, issue queues, and the LSQ [2–4, 12,
16,23,28]. This prior research focuses on hardware-only ap-
proach. A primary benefit of hardware-only approaches is
that they can be readily deployed into existing architectures
and maintain binary compatibility. However, the introduc-
tion of software to gather information has many advantages
over a hardware-only approach. First, a software component
can analyze the static code in a more global fashion and ob-
tain information hardware alone can not (efficiently) obtain.
For instance, a compiler can easily determine that a register
is dead on all possible subsequent paths, whereas in hard-
ware, the same information would be highly inefficient to
obtain. Thus, a hardware-software cooperative approach can
achieve better optimization with lower overall system com-
plexity. Second, even if certain information is practical to
obtain via hardware look-ahead, there is a recurring energy
overhead associated with it, possibly for every dynamic in-

stance of some event. With the increasing importance of en-
ergy efficiency, we argue that a cooperative approach to re-
source management (or optimization in general) is a promis-
ing area that deserves more attention.

A cooperative approach does raise several new issues. One
important issue is the support for a general-purpose interface
to communicate information between the software and hard-
ware components without creating compatibility obligations.
Although this is a different topic altogether and an in-depth
study is beyond the scope of this paper, we note that this
could be achieved through decoupling the architected ISA
(instruction set architecture) and the physical ISA and rely
on binary translation between the two. Such virtualization
of ISA is feasible, well understood, and tested in real-world
products [15]. In Figure 1, we illustrate one example system
where the hardware can directly execute un-translated “ex-
ternal” binaries as well as translated internal ones. In such
a system, different implementations are compatible at the ar-
chitected ISA level but do not maintain compatibility at the
physical ISA level. Thus, necessary physical ISA changes
to support certain optimization can be easily removed when
the optimization is no longer appropriate such as when super-
seded by a better approach or when it prevents/complicates a
more important new optimization. In our study, we assume
such support to extend the physical ISA is available.

Physical ISA
Hardware

Architected ISA

Source

Compilation & optimization

Direct execution

or instrumentation
Binary translation

External binary

Hardware−dependent
internal binary

Figure 1. Instruction set architecture support for low-level
software-hardware cooperative optimization.

2.2 Cooperative Memory Disambiguation
In this paper, we look at a particular microarchitectural re-
source, the LSQ used in dynamic memory disambiguation.
For space constraint, we do not detail the general operation
of the LSQ [10, 27]. Because of the frequent associative
searching with wide operands (memory addresses) and the
complex priority encoding logic, the LSQ is probably the
least scalable structure in an out-of-order core. Yet, all re-
sources need to scale up in order to buffer more in-flight in-
structions. In Figure 2, we show the average performance im-
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provements of increasing the load queue (LQ) size from 48
entries in the otherwise scaled-up baseline configuration (see
Section 5). In contrast, we also show the improvement from
doubling the number of functional units and issue-width (16-
issue) and from doubling the width throughout the pipeline
(decode/rename/issue/commit). Predictably, simply increas-
ing issue width or even the entire pipeline’s width has a small
impact. In contrast, increasing LQ size has a larger impact
than doubling the width of the entire processor, which is far
more costly. In floating-point applications, this difference is
significant. Ironically, these applications tend to have a more
regular memory access pattern and in fact do not actually
have a high demand for dynamic memory disambiguation.
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Figure 2. Average performance improvement for SPEC
Int and SPEC FP applications as a result of increasing issue
width, entire processor pipeline width, or the LQ size.

We envision a cooperative memory disambiguation mech-
anism which uses software to analyze the program binary
and, given implementation details, annotate the binary to
indicate to hardware what set of memory operations need
dynamic memory disambiguation. The hardware can then
spend resources only on those operations. In this paper, we
focus on load instructions and identify what we call safe
loads. These instructions are guaranteed (sometimes condi-
tionally) not to overlap with older in-flight stores and hence
do not need to check the store queue (SQ) when they execute
and do not need an LQ entry. This saves energy needed to
search the SQ associatively and reduces the pressure on the
LQ.

Using a binary parser, we identify two types of safe loads.
First, read-only loads are safe by definition. We use the
parser to perform extended constant propagation in order to
identify addresses pointing to read-only data segments. Sec-
ond, in the steady state of loops, any pending stores come
from the loop body. In those loops with regular array-based
accesses, we can relatively easily determine the relationship
between the address of a load and those of all older pending
stores. We can thus identify loads that can not possibly over-
lap with any older pending stores, given architecture details,
which determine the number of in-flight instructions. Load
identified as safe will be encoded differently by the binary
parser and handled accordingly by the hardware.

In addition to identify safe loads statically, we also use
software and hardware to cooperate in identifying safe loads
dynamically. We use the same binary parser to identify safe
stores that are guaranteed not to overlap with future loads
(within a certain scope). Safe stores thus identified can in-
directly lead to the discovery of more safe loads at runtime:
at the dispatch time of a regular (unsafe) load, if all in-flight
stores are safe stores, the load can be treated as a safe load.
In the following, we will discuss the algorithms we use in the
parser and the hardware support needed.

3 Static Analysis with Binary Parsing
We use a parser based on alto [20] and work on the pro-
gram’s binary. If the source code or an information-rich in-
termediate representation (e.g., [1]) is available, more infor-
mation can be extracted to identify safe loads more effec-
tively. Without a sophisticated compiler infrastructure, our
analysis presented in this work is much less powerful than the
state-of-the-art compiler-based dependence analysis or alias
analysis. However, this lack of strength does not prevent our
proof-of-concept effort to show the benefit of a cooperative
approach to memory disambiguation: a more advanced anal-
ysis can only improve the effectiveness of this approach.

Our parser targets two types of memory accesses: load
from read-only data segments and regular array-based ac-
cesses. We emphasize that the goal of using static memory
disambiguation is to reduce the unnecessary waste of LSQ
resources: to remove those easily analyzable accesses from
competing for the resource with those that truly require dy-
namic disambiguation. Therefore, we do not expect to reduce
LSQ pressure for all applications. In fact, it is conceivable
that for many applications, the parser may not be able to an-
alyze a majority of the read accesses.

3.1 Identifying Read-Only Data Accesses
By definition, read-only data will not be written by stores
and therefore, a load of read-only data (referred to as a
read-only load hereafter) does not need to be disambiguated
from pending stores. To study the potential of identifying
read-only loads, we experiment with statically linked Alpha
COFF binary format. In this format, there are a few read-
only sections storing literals, constants, and other read-only
data such as addresses. These sections include .rconst,
.rdata, .lit4, .lit8, .lita, .pdata, and .xdata.
The global pointer (GP), which points to the starting point
of the global data section in memory, is a constant in these
binaries. The address ranges of read-only sections and the
initial value of GP are all encoded in the binary and are thus
known to the parser. Since our goal is to explore the potential
of cooperative resource management, our effort is not about
addressing all possible implementation issues given differ-
ent binary conventions, or non-conforming binaries. Indeed,
when cooperative models are shown to be promising and sub-
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sequently adopted in future products, new conventions may
be created to maximize their effectiveness.

Knowing the locations of the read-only sections, we can
identify static load instructions whose runtime effective ad-
dress is guaranteed to fall into one of the read-only sections.
If a load uses GP as the base address register, it is straight-
forward to determine whether it is a read-only load. How-
ever, to determine if a load using another register as the base
is read-only or not, we need to perform data-flow analysis.
Our analysis is very similar to constant propagation. The
difference is that a register may have different incoming con-
stant values but all point to the read-only sections. In nor-
mal constant propagation, the register is usually considered
unknown, whereas for our purpose, we know that if a load
instruction uses this register as the base with a zero offset it
is a safe load.

   ...

   ...

Input state vector
Basic block

lda  r1, 100(r1)
R1 = VU
     ....
R29 (GP) = gp

R31 (zero) = 0

Output state vector

    ....

    .... ld  r4, 0(r1)
   ...

     ....
R29 (GP) = gp
     ....
R31 (zero) = 0

R1 = gp−8192*65536+100
    ....

R4 = VU
     ....ldah r1, −8192(r29)

Figure 3. An example of register state propagation via sym-
bolic execution. lda and ldah are address manipulation in-
structions equivalent to add with a literal.

In our algorithm, a register can be in four different states:
no information (NI), value known (VK), value is an address
in read-only sections (RO), and value unknown (VU). Except
for the GP and ZERO registers, whose value we know at all
time, all other registers are initialized to NI. After initializa-
tion, we symbolically execute basic blocks on the work list,
which is set to contain all the basic blocks at the beginning.
During the symbolic execution, only when an instruction is
in the form of adding a literal (i.e., Ri = Rj + literal) and
the source register’s state is VK do we set the state of des-
tination register to VK and compute the actual value. In all
other cases, the destination register’s state is assigned VU
(see example in Figure 3).

When joining all predecessors’ output vectors to form a
basic block’s input state vector, a register is VK only if its
state in all incoming vectors is VK and the value is the same
(normal constant propagation rule). Additionally, a register
can be in state RO if in all predecessor blocks it either has
a state of RO or has a state of VK and the value points to a
read-only section. Otherwise, the register’s state is set to VU.
Any change in a basic block’s input state puts it in the work
list for another round of symbolic execution. Essentially, our
algorithm is a special constant propagation algorithm with a
slightly different lattice as shown in Figure 4. Thus, termi-
nation can be similarly proved. Once the data-flow process
converges, we perform another pass of symbolic execution

for each basic block to determine which load instruction is a
read-only load.

TOP (no information)

... −2 −1 0 ... LB ... UB

BOT (VU)

RO

...

Figure 4. Lattice used in the special constant propagation
algorithm. LB and UB indicate the lower and upper address
bound of a read-only section. Only one address pair is shown.

In this analysis, we assume the availability of a complete
control flow graph with help from the relocation table in the
binary [20]. When the table is not embedded in the binary,
we can adopt a number of different approaches with differ-
ent tradeoff between implementation complexity and cover-
age of read-only loads. On the conservative side, we can do
address propagation only within basic blocks or none at all
(i.e., identifying only read-only loads with GP as the base
register). In a more aggressive implementation, we can pro-
file the application to find out destinations of indirect jumps.
We can use the information to augment the control flow. In
such a profile-based implementation, as a runtime safety net,
a wrapper for all the indirect jumps is employed to detect
jumps to destinations not seen before [8]. When such a jump
is detected, the runtime system can disable the optimization
for the current execution and record the new destination so
that the parser can fix the binary for future runs.

3.2 Identifying Other Safe Loads
During an out-of-order program execution, loads are exe-
cuted eagerly and may access memory before an older store
to the same location has been committed, thereby loading
stale data from memory. In theory, any load could load stale
data and thus the LSQ disambiguates all memory instructions
indiscriminately [10, 27]. In practice, however, out-of-order
execution is only performed in a limited scope. If the load in-
struction is sufficiently “far away” from the producer stores,
in a normal implementation, we can guarantee the relative
order. For example, if there are more dynamic store instruc-
tions between the producer store and a consumer load than
the size of the SQ, then by the time the load is executed, we
can guarantee that the producer store has been committed.
Notice that the software component in the cooperative opti-
mization model is part of the implementation and therefore
can use implementation-specific parameters such as the size
of the re-order buffer (ROB) and the SQ. With this knowl-
edge of the processor, we can deduct which stores can still
be in-flight when a load executes. We can then analyze the
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relationship between a load and only those stores. When a
load does not overlap with these stores, it is a safe load. To
make the job of analyzing all possible prior pending stores
tractable, we target loops.
Scope of analysis We only consider loops that do not have
other loops nested inside or any function calls/indirect jumps.
Additionally if a loop overlaps with a previously analyzed
loop, we also ignore it. When a loop has internal control
flows, the number of possible execution paths grows expo-
nentially and the analysis becomes intractable. To avoid this
problem, we can form traces [14] within the loop body and
treat any diversion from the trace as side exits of the loop
(which we did in an earlier implementation). This, how-
ever, does not significantly increase the coverage of loads
in the applications we studied. For simplicity of discussion,
we stick with the more limited scope: inner loops without
any internal control flows. Note that the loop can still have
branches inside, only that these branches have to be side ex-
its. In our study, this scope still covers a significant fraction
of dynamic loads (63% for floating-point applications).

In the steady state of these loops, only different itera-
tions of the loop will be in-flight. For every load, the max-
imum number of older in-flight instructions is finite due
to various resource constraints and can be determined as
min(C(SROB), C(SSQ), ..), where C(Sr) is the maximum
capacity of in-flight instructions when resource r’s size is
Sr. The set of store instances a load needs to disambiguate
against can be precisely determined given the loop body. For
convenience, we refer to this set as the disambiguation store
set (DSS) hereafter. For example, if the ROB has n entries,
the DSS of a load is at most all the stores in the preced-
ing n instructions from the load. If the parser can statically
determine that the load does not conflict with any store in-
stance in the DSS then the load is safe in the steady state.
Before reaching this steady state, however, a load can be
in-flight together with stores from code sections prior to the
loop, outside the scope of the analysis. For this initial tran-
sient state, we revert to hardware disambiguation to guaran-
tee memory-based dependences. We place a marker instruc-
tion (mark sq in the example shown later in Figure 7) be-
fore the loop and any identified safe load will be treated by
the hardware as a normal load until all stores prior to the
marker drain out of the processor. The design of the hard-
ware support is discussed in Section 4.
Symbolic execution Intuitively, strided array access is a fre-
quent pattern in many loops. With strided accesses, the ad-
dress at any particular iteration i can be calculated before
entering the loop and therefore whether a load overlaps with
the stores from the DSS can also be known before entering
the loop. Thus, we can generate condition testing code to put
in the prologue of the loop. This prologue computes con-
ditions under which a load does not overlap with any stores
in its DSS for any iteration i. We can then allow the load to

become a conditional safe load based on the generated condi-
tion. Conditional safe load can be implemented via condition
registers reminiscent of predicate registers (Section 4).

To identify these strided accesses and derive the expres-
sions of the address, we use an ad hoc analysis that symboli-
cally executes the loop and tracks the register content. When
an address register’s state converges to a strided pattern, we
can derive its value expression, and hence the steady-state
address expression.

Each entry of the symbol table contains a Base and an
Offset component (ri = Base + Offset). We use sym-
bols R0, R1, ..., and R30 to represent the loop inputs: the
initial values of registers r0 through r30 upon entering the
loop (r31 is the hard-wired zero register in our environment).
Thus the table starts with (ri = Ri + 0) as shown in Fig-
ure 5. The symbolic execution then propagates these values
through address manipulation instructions. To keep the anal-
ysis simple and because we are interested in strided access
only, we only support one form of address manipulation in-
structions: add-constant instructions (or ACI for short). This
type includes instructions that perform addition/subtraction
of a register and a literal (e.g., in Alpha instruction set: lda,
ldah, some variations of add/sub with a literal operand,
etc.) and addition/subtraction of two registers but one is
loop-invariant. When such an instruction is encountered, the
source register’s Base and Offset component is propagated
to the destination register with the adjustment of the constant
(literal or the content of a loop-invariant register) to Offset.
Any other instructions (e.g., load) would cause the Base of
destination register to be set to UNKNOWN. Therefore, at
any moment, a register can be either UNKNOWN or of the
form ( Ri + const).

To further clarify the operations, we walk through an ex-
ample shown in Figure 5. The figure shows some snapshots
of the register symbolic value table before executing instruc-
tions ¬, , and ®. In iteration 0, r3’s value is initial value
R3 + 0. After instruction ¬, which loads into r3, its sym-

bolic value becomes UNKNOWN. However, after instruction
°, the value becomes known again, in the form of R2 + 8.
To detect strided accesses and compute stride, the symbolic
value of the address register (shaded entries in Figure 5) in
one iteration is recorded to compare to that of the next iter-
ation. In iteration 0 and 1, r3’s values at instruction ¬ do
not “converge” because of the two different reaching defini-
tions. However, in iteration 1 and 2, the values converge to
R2 + const (with different constants). Since every register

used in the loop can have up to two reaching definitions (one
from within the loop which is essentially straight-line code
and another from before the loop), it may take several itera-
tions for a register to converge. In certain cases, where there
is a chain of cyclic assignments, there may not be a conver-
gence. Therefore, our algorithm iterates until the Base com-
ponent of all registers converge or until we reach a certain
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+ 0
+ 0
+ 0
+ 0
+ 0
+ 0

1

2

2

1

+ 0
+ 0

...
r2
r3
...

_R2
_R3

3

5

4

Symbolic value table
r0
r1

r3
r4
r5

r2 _R2
_R3
_R4

_R0
_R1

_R5

Loop of trace Iteration 0 Iteration 1 Iteration 2

ld   0xC(r3) => r3
ld   0x0(r3) => r4
lda  0x10(r3)=> r3

Loop:
   ...

+ 0
+ 0

...
r2
r3
...

_R2

+ 0
+ 0

...
r2
r3
...

_R2
+ 0

...
r2
r3
...

_R2

+ 8
+ 8

...
r2
r3
...

_R2
_R2

...
r2
r3
...

_R2
_R2

UNKNOWN

UNKNOWN

UNKNOWN

bne  ..., Loop
   ...

+0x10
+0x10

   ...

   ...

of corresponding instruction in each iteration.
Shaded entry is used to determine the address 

Symbolic register value before the execution

+ 8
lda  0x0(r2) => r3
addq r2, 0x8 => r2

   ...

3

Figure 5. Example of symbolic execution. The register symbolic value is expressed as the sum of an initial register value (e.g., R1)
and a constant (e.g., +0x10). In this example, we show that the first load renders register r3 to become UNKNOWN. This makes the
second load un-analyzable. However, register r3 is always known before the execution of the first load, which makes it analyzable.
ld is a load, addq is a 64-bit add, lda is an address calculation equivalent to adding constant, and bne is a conditional branch.

limit of iterations (100 in this paper).
Once the Base component converges at each point of the

loop (i.e., after symbolic execution of every instruction, the
destination register’s Base is the same as in the prior iter-
ation at the same program point), no “new” propagation of
Base is done and therefore the Base component of all reg-
isters stays the same in subsequent iterations. After conver-
gence, the only change to the symbolic table is that of the
Offset, and only an ACI (whose source register’s Base is
not UNKNOWN) changes that. The set of ACIs in the entire
loop are fixed and always add the same constants, and there-
fore the change to the Offset in the symbol table will be
constant for each entry.

Before the base address register of a load converges, the
address can have transient-state expressions. In the example
shown in Figure 5, the first load’s effective address (r3+0xC)
can be R3+0xC or R2+0xC+8 ∗ i (i = 1, 2, ...). When
generating conditions, we make sure all possibilities are con-
sidered. We also note that for any load to be safe, all stores
in the loop have to be analyzable.
Condition generation After the address expressions are
computed, we analyze those of the loads against those of the
stores and determine under what conditions a load never ac-
cesses the same location as any store in the DSS. Since each
static store may have multiple instances in a load’s DSS, we
summarize all locations accessed by these store instances as
an address range. Given a strided load, we find out the con-
dition that the load’s address falls outside all address ranges
for all static stores. Such a range test is a sufficient but not
necessary condition to guarantee the safety of the load. The
pseudo code of this algorithm is shown in Figure 6. We use
i to indicate any iteration. The conditions generated have to
be loop-invariant (i.e., independent of i) since they will be
tested in the prologue of the loop once for the entire loop.
Therefore, when the loads and stores have different strides,

our algorithm would not compare them. To remove this lim-
itation, one could apply other tests such as the GCD test or
the Omega test [22].

foreach l in {all static loads with stride}
cs[l] = { } // initial condition set empty
foreach s = {all static stores}

// find out range of static instances of s in l[i]’s DSS
j = min n, s[n] ∈ DSS(l[i])
k = max n, s[n] ∈ DSS(l[i])
[rlb, rub] = Address range of {s[j] . . . s[k]}

// Load l’s current iteration address or its transient-
// state addresses can not overlap with the address
// range of outstanding instances of store s or its
// transient-state addresses
cs[l] = cs[l] ∪ (Addr(l[i]) > rub||Addr(l[i]) < rlb)
cs[l] = cs[l] ∪ (TrAddr(l) > rub||TrAddr(l) < rlb)
cs[l] = cs[l] ∪ (Addr(l[i]) 6= TrAddr(s))
cs[l] = cs[l] ∪ (TrAddr(l) 6= TrAddr(s))

end
Simplify conditions in cs[l]

end

Figure 6. Pseudo code of the algorithm that determines the
condition for a strided load to be safe. l[i] (s[j]) indicates the
dynamic instance of l (s) in iteration i (j). DSS(l[i]) is l[i]’s
disambiguation store set.

We now show a typical code example based on a real ap-
plication in Figure 7-(a). In this loop, there are 17 instruc-
tions, two of them stores. In our baseline configuration,
DSS membership is limited by the 32-entry SQ. Then, in
the steady state, there can be at most 16 outstanding itera-
tions. In this particular example, every load has the same
set of 32 dynamic store instances in its DSS. Also, none of
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the loads or stores has transient-state address. In iteration
i, the (quad-word aligned) address range of these store in-
stances is [ R11 + (i − 16) ∗ 16, R11 + (i − 1) ∗ 16 + 8]
and the address of Ld1 is R3 + 16 ∗ i. ( R11 and R3
are the initial values at loop entrance of register r11 and
r3 respectively.) If the address of Ld1 falls outside the
range, Ld1 becomes a safe load. The condition for that is
( R3 + 16 ∗ i < R11 + (i− 16) ∗ 16) OR ( R3 + 16 ∗ i >

R11 + (i − 1) ∗ 16 + 8). After solving the inequalities, we
get ( R3 − R11 + 8 > 0) OR ( R3 − R11 + 256 < 0).
Likewise, we can compute the condition for Ld2 to be safe:
( R3− R11+16 > 0) OR ( R3− R11+264 < 0). The two
conditions can be combined into one: ( R3− R11+8 > 0)
OR ( R3 − R11 + 264 < 0). The addresses of Ld3 and
Ld4 are R11 + 16 ∗ i and R11 + 8 + 16 ∗ i. They can be
statically determined to be safe, without the need for runtime
condition testing. So they are assigned a special condition
register CR TRUE (Section 4). Figure 7-(b) shows the re-
sulted code after binary parser’s analysis and transformation.
To be concise, we only show pseudo code of condition eval-
uation.

0x120033140: ldl r31, 256(r3) ; prefetch
0x120033144: ldt f21, 0(r3) ; Ld1
0x120033148: lda r27, -2(r27) ; r27 <- r27-2
0x12003314c: lda r3, 16(r3) ; r3 <- r3+16
0x120033150: ldt f22, -8(r3) ; Ld2
0x120033154: ldt f23, 0(r11) ; Ld3
0x120033158: cmple r27, 0x1, r1 ; compare
0x12003315c: lda r11, 16(r11) ; r11 <- r11+16
0x120033160: ldt f24, -8(r11) ; Ld4
0x120033164: lds f31, 240(r11) ; prefetch
0x120033168: mult f20, f21, f21 ;
0x12003316c: mult f20, f22, f22 ;
0x120033170: addt f23, f21, f21 ;
0x120033174: addt f24, f22, f22 ;
0x120033178: stt f21, -16(r11) ; St1
0x12003317c: stt f22, -8(r11) ; St2
0x120033180: beq r1, 0x120033140 ;

(a) Original code

New_loop_entry: mark_sq
if(r3-r11+8>0) or (r3-r11+264<0) then

cset CR0, 1

0x120033140: ldl r31, 256(r3)
0x120033144: sldt f21, 0(r3), [CR0]; safe load with

: ; cond. reg. CR0
0x120033150: sldt f22,-8(r3), [CR0]
0x120033154: sldt f23, 0(r11), [CR_TRUE]

:
0x120033160: sldt f24, -8(r11), [CR_TRUE]

:
:

0x120033178: stt f21, -16(r11)
0x12003317c: stt f22, -8(r11)
0x120033180: beq r1, 0x120033140

(b) Transformed code

Figure 7. Code example from application galgel.

Pruning and condition consolidation In the most straight-
forward implementation, every analyzable load has its own
set of conditions and allocates a condition register. Option-
ally, we can perform profile-driven pruning. Using a training

input, we can identify conditions that are likely to be true and
those that are not. This allows us to transform unlikely safe
loads back to normal loads and thus eliminate unnecessary
condition calculation. Perhaps a more important implication
of profiling is condition consolidation. Since the remaining
safe loads’ conditions tend to be true, we can “AND” them
together to use fewer condition registers. In the extreme, we
can use only one condition register and thus make it the im-
plied condition (even for the unconditional safe loads). Fur-
thermore, we can limit the types of safe load to a few com-
mon cases. These measures together will reduce the (physi-
cal) instruction code space needed to support our cooperative
memory disambiguation model. The tradeoff is that fewer
loads will be treated as safe at runtime. We study this trade-
off in Section 6.

Finally, we note that the address used in the parser is vir-
tual address and if a program deliberately maps different vir-
tual pages to the same physical page, the parser can inaccu-
rately identify loads as safe. In general, such address “pin-
ning” is very uncommon: none of the applications we studied
does this. In practice, the parser can search in the binary for
the related system calls to pin virtual pages and insert code to
disable the entire mechanism should those calls be invoked at
runtime.
Bypassing load through identifying safe stores Like
loads, stores can also be “safe” if it is guaranteed not to over-
lap with any future in-flight loads. In this paper, we identify
safe stores in order to indirectly discovery more safe loads.
If there is an unanalyzable store in a loop, usually none of
the loads may be safe because the DSS of any load is very
likely to contain at least one instance of the unanalyzable
store. However, the DSS is defined very conservatively and
in practice, when a load is brought into the pipeline, usu-
ally only a subset of these store instances in the DSS are still
in-flight. If this subset does not contain any instance of un-
analyzable stores, then the load may still be safe. If we can
identify and mark safe stores that do not overlap with fu-
ture in-flight loads, then at runtime when a normal load is
dispatched while there are only safe stores in-flight, we can
guarantee that the load will not overlap with any single store.
Consequently, we do not need any further dynamic disam-
biguation and therefore can re-encode the load as a safe load.

The algorithm to identify safe stores mirrors the above-
mentioned algorithm to identify safe loads: (1) Instead of
finding a load’s DSS, we find a store’s DLS (disambiguation
load set), which contains loads later than the store; (2) For a
store to be safe, all loads in the loop have to be analyzable;
(3) Since a safe store is only “safe” with respect to loads
within the loop, we place a marker (mark sq) upon the exit
of the loop. As before, an in-flight marker indicates transient
state, during which period all loads are handled as normal
loads.
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4 Architectural Support
Encoding safe loads For those safe loads identified by soft-
ware, we need a mechanism to encode the information and
communicate it to the hardware. There are a number of op-
tions. One possibility is to generate a mask for the text sec-
tion. One or more bits are associated with each instruction
differentiating safe loads from other loads. The mask can
be stored in the program binary separate from the text. Dur-
ing an instruction cache fill, special predecoding logic can
fetch the instructions and the corresponding masks and store
the internal, predecoded instruction format in the I-cache. A
more straightforward approach is to extend the physical ISA
to represent safe loads and modify load instructions in situ,
in the text section. Since we use a binary parser, this exten-
sion of the physical ISA does not affect the architected ISA
(Section 2). Our study assumes this latter approach.
Conditional safe loads When the parser transforms a nor-
mal load into a safe load, there is a condition register associ-
ated with it. Only when the condition register is true will the
safe load instruction be treated as safe. The architectural sup-
port needed includes (a) a few single-bit condition registers,
similar to predicate registers, (b) a special instruction (cset)
that sets a condition register, and (c) a safe load instruction
(sld) that encodes the condition register used. At the dis-
patch time of an sld instruction, if the value of the specified
condition register is false, the safe load will be treated just
like a normal load and placed into the LQ. Since the sld in-
structions after a cset instruction (in program order) can be
dispatched before the cset has set the condition (at the ex-
ecution stage), the condition register is conservatively reset
(set to false) when the cset instruction is dispatched. Alter-
natively, we can flash-reset all condition registers when dis-
patching the marker (mark sq) instruction. A special condi-
tion register CR TRUE is dedicated for unconditional safe
loads. It can be set to true either explicitly by a cset or
implicitly when a mark sq is dispatched.
SQ marker The analyzer places a mark sq instruction to
indicate the scope of the analysis: all the dynamic stores
older than the marker are outside the scope of the analy-
sis and can overlap with subsequent loads. Therefore, even
though the condition register’s value may be true, conditional
safe loads still need to be treated as normal loads until the
stores older than the marker drain out of the SQ. By that time,
future safe loads can be dispatched as safe loads (if the con-
dition is satisfied).

While conceptually a marker can be a special occupant
of an SQ entry, in a real implementation, we use an ex-
tra (marker) bit associated with each entry to represent a
scope marker: when a mark sq instruction is dispatched,
the marker bit of the youngest valid entry in the SQ (if any)
is set. This bit is cleared when that entry is recycled. This de-
sign allows two practical advantages. First, we do not waste
an SQ entry just to store a marker. Second, and more impor-

tantly, the special processing of multiple markers in the SQ
is simpler. It is possible that more than one marker appears
in the SQ, and only when all markers drain out of the SQ
can we let conditional safe loads to bypass the LQ. With the
marker bits, it is easy to detect if all markers are drained: any
bit that is set pulls down a global signal line. A high voltage
in the line indicates the lack of in-flight marker.
Indirect Jumps Though exceedingly unlikely, it is possible
that the control flow transfers into a loop through an indirect
jump without going through the prologue where the analyzer
places the SQ marker and condition testing instructions. To
ensure that we do not incorrectly use an uninitialized con-
dition register, we flash-clear all condition registers (includ-
ing CR TRUE) when an indirect jump instruction is dis-
patched.
Safe stores In terms of instruction encoding and the use
of condition registers, safe stores are no different from safe
loads. However, the handling of safe stores is quite different:
because our purpose of identifying them is to further increase
the number of safe loads, we are only interested in when the
SQ contains just safe stores. The hardware implementation is
simple: any entry with a valid, normal (unsafe) store can pull
down a global signal line. When this signal is high, we can
dynamically dispatch a regular load as a safe one. Of course,
software-identified safe stores are safe only within the scope
of the analysis (loop). When a loop terminates, the hardware
needs to be notified. This is handled by the same SQ marker
mechanism described above: when a marker is in-flight, the
hardware treats all loads as normal loads. We note that a de-
generate form of this mechanism is to dispatch a load as a
safe load when there is no in-flight stores at all. This mech-
anism can be implemented purely in hardware without any
software support.

In contrast to the simple support needed in our design, safe
stores could be exploited to reduce the pressure of SQ but
would require more extensive hardware support. Very likely,
we need to split the functionalities of SQ and implement a
FIFO queue for buffering and in-order committing of stores
and an associative queue for disambiguation and forwarding.
Perhaps the more challenging aspect of the design is that we
need to ensure that when the scope of analysis (in our case
loops) is exited, the identified safe stores from the loop have
to participate in the disambiguation/forwarding process with
loads from after the exit.
Support for coherent I/O Moving a load out of the LQ pre-
vents the normal monitoring by the coherence and consis-
tency maintenance mechanism. Therefore, the design re-
quires additional support to function in a multiprocessor en-
vironment. We note that in a uni-processor environment, if
the system provides coherent I/O, there is also the need to
monitor load ordering to enforce write serialization, an im-
plicit requirement of coherence. Maintaining write serializa-
tion is often done by monitoring the execution of load in-
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structions to detect violations: two loads to the same location
executed out of program order and separated by an invalida-
tion to the same location (caused by a DMA transfer). How-
ever, invalidations due to DMA transfers are exceedingly in-
frequent compared to stores issued by the processor. Con-
sequently, we use a separate, light-weight mechanism such
as hash tables to keep track of load ordering involving safe
loads, thereby avoiding undue increase of LQ pressure. We
discuss one such implementation here.

The key observation is that in uniprocessor environment,
a write serialization violation is exceedingly rare, primarily
because writes from I/O are far less frequent compared to
memory accesses from the processor. Thus, we can afford
to simplify the hardware and conservatively handle them. In
other word, we simplify the tracking of every load instruc-
tion, at the expense of having false write serialization detec-
tion. Recall that a write-serialization violation happens when
two loads to the same location execute out of program order
and there is an intervening external write in between. Con-
ventional LQ tracks this by doing two associative searches:
when an invalidation (indicating an external write) occurs, a
search using the address of the invalidation message to mark
an invalidation bit for all LQ entries to the same location
(cache line). During the execution of a load, a second search
on the LQ entries corresponding to the younger loads is con-
ducted. If there is a match and the invalidation bit is set, then
a younger load fetched the older value, and this current load
will get the updated value, violating write serialization. The
younger load (and typically all subsequent instructions) will
be replayed [10].

This tracking process can be relaxed in several ways. First,
exact addresses can replaced by hashing: two addresses hash-
ing to the same entry can be treated as the same address. Sec-
ond, we can relax age tracking: if two loads to the same lo-
cation are separated by an invalidation (to that location), we
can conservatively replay. When we replay, we only need to
replay from the load younger in program order, but we can
conservatively replay from the older load. In order words, we
do not need to track age for replay purpose either. When we
detect a potential violation, we can simply replay from the
instruction following the load that triggered the replay. This
will guarantee that if the triggering load is indeed earlier in
program order, the younger load will be replayed.

With these relaxations in mind, let us start from a simple
hash table and progressively describe the entire mechanism.
Each entry has two bits, a load (L) bit and an invalidation bit
(Inv). Every load, upon execution, uses the address to index
the table and set the L bit. Every external invalidation sets the
Inv bit if the L bit of the same entry is set. If a load hashes
into an entry that has the Inv bit set, there is potentially a
violation, we replay from the next instruction following this
load.

Clearly, if we only set bits in this table and do not clear

any bits, the table will eventually become “clogged” and will
result in continuous replays. To properly clean up the table,
we can use a set of tables in rotation. We start from the simple
(but impractical) example of assigning one table for every
load in program order (T0 .. Tn−1 for a maximum of n in-
flight loads). For convenience, we name the in-flight loads l0
to ln−1 following program order (from oldest to youngest).
In this case, a load li sets the L bit in its hash entry of table Ti

at execution time and the table can be cleaned and recycled
when this load retires.

Setting of the Inv bit is as follows. Suppose the address
of invalidation hashes into row r. If no table has an L bit
set in the row r, the invalidation is ignored. Otherwise, let
j be the largest number such that the L bit of row r of ta-
ble Tj is set. Then, we set the Inv bit of row r for all tables
T0 to Tj . The idea is that we know the youngest load that
has already accessed the memory location being invalidated
is lj , then later, if any load older than lj accesses the same
location, write serialization is (potentially) violated and a re-
play is needed. This is detected when an older load (say, lk,
k < j) executes: the Inv bit of row r of table Tj is set. Such
a design is essentially the same as the conventional LQ, only
that the load address and the invalidation bit are stored in a
decoded format.

In a more practical design, multiple consecutive loads
share a single table. The total number of tables therefore
is smaller. In the extreme case, only two tables are needed.
With only two tables, the logic of searching the youngest en-
try becomes much simplified. In addition, we propose one
optimization: instead of clearing a table when all the loads
represented by the table retire, we do so when they are all
issued. When the group of the oldest loads are issued, the
table representing these loads is no longer needed and can be
recycled. When the issue queue is a compacting queue [11],
it is straightforward to perform this table rotation, especially
when rotating between two tables: We augment each issue
queue entry (only needed for the issue queue containing load
instructions) with 1 bit to indicate which table tracks the load.
This bit is assigned by the dispatch logic. When all loads in
the issue queue have the same bit, say 0, the dispatch will
then start to assign the opposite bit (i.e., 1) to future loads. At
this point, the table T0 will be cleared and become the logi-
cally “younger” table. With this design, the two tables rotate
efficiently and as a result, the bits set in each table remains
sparse. Finally, to reduce hash table conflict, we can either
use a large physical table or apply the skew principle [26]
and use two smaller tables. In this paper, we choose to use
skewed tables with the skew functions proposed in [26].

5 Experimental Setup
To evaluate our proposal, we perform a set of experiments
using the SimpleScalar [6] 3.0b tool set with the Wattch ex-
tension [5] and simulate 1 billion instructions from each of
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the 26 SPEC CPU2000 benchmarks. We use Alpha binaries.
We made a few simple but important modifications to the

simulator. First, we do not allocate an entry in the LQ for
loads to the zero register (R31). These essentially prefetch
instructions are safe loads that do not need to participate in
the dynamic disambiguation process as they do not change
program semantics. We note that in our baseline architecture,
the LQ only performs disambiguation functions. Buffer-
ing information related to outstanding misses is done by the
MSHRs (miss status holding registers). If we allocate LQ
entries for prefetches, we would exaggerate the result by in-
creasing the pressure on the LQ unnecessarily and quite sig-
nificantly, since the heavily optimized binaries (compiled us-
ing -O4 or -O5) include many prefetches, around 20% of all
loads. Second, to model high-performance processors more
closely, we simulate speculative load issue (not blocked by
prior unresolved stores) and store-load replay. The simulated
baseline configuration is listed in Table 1.

Processor core
Issue/Decode/Commit width 8 / 8 / 8
Issue queue size 64 INT, 64 FP
Functional units INT 8+2 mul/div, FP 8+2 mul/div
Branch predictor Bimodal and Gshare combined
- Gshare 8192 entries, 13 bit history
- Bimodal/Meta table/BTB entries 4096/8192/4096 (4 way)
Branch misprediction latency 10+ cycles
ROB/LSQ(LQ,SQ)/Register(INT,FP) 320/96(48,48)/(256,256)

Memory hierarchy
L1 instruction cache 32KB, 64B line, 2-way, 2 cycle
L1 data cache 32KB, 64B line, 2-way, 2 cycle

2 (read/write) ports
L2 unified cache 1MB, 64B line, 4-way, 15 cycles
Memory access latency 250 cycles

Hash tables
Table size 32B (128entry × 2bit)
Number of tables 2 × 2
Mapping function for table 0 A(10 : 4) ⊕ (A(11 : 17)

& 0x55)
Mapping function for table 1 A(10 : 4) ⊕ (A(11 : 17)

& 0xAA)

Table 1. Baseline system configuration.

6 Evaluation
Percentage of safe loads identified The most important
metric measuring the effectiveness of our design is the per-
centage of instructions that bypass the LQ. In Figure 8, we
present a breakdown of these safe loads based on their cat-
egory: (a) read-only loads (ROL), (b) statically safe loads
(SSL): loads (other than read-only load) that are encoded as
safe loads by the parser and dispatched as safe loads, (c) dy-
namically safe loads (DSL): normal loads dispatched as safe
because all pending stores in the SQ are safe, and (d) de-
generate dynamically safe loads (DDSL): normal loads dis-
patched as safe because the SQ is empty at that time. In
Figure 9 we show the number of safe stores identified.

As we can see from Figure 8, in floating-point applica-

tions, a significant portion of the loads are safe, suggesting
the effectiveness of the cooperative approach. As can be ex-
pected, the parser identifies a larger portion of safe loads in
floating-point applications than in integer applications. In
three applications, about 80% or more loads are dispatched
as safe. Even targeting just read-only loads, we can still mark
up to 20% of loads as safe.

We can also see that there is only a small portion of dy-
namically safe loads although Figure 9 shows an average of
30% and up to 98% of stores in floating-point applications
are safe. Apparently, we need a very significant number of
safe stores to get a sufficient amount of DSL. In applications
applu and mgrid, we do observe a notable fraction of DSL
correlated with the high percentage of safe stores. However,
in galgel and swim, the memory access pattern is very reg-
ular. So much so, that more than 90% of loads are stati-
cally safe loads, subsuming most would-be dynamically safe
loads.

In addition, we see that the percentage of degenerate dy-
namically safe loads is quite small in floating-point applica-
tions, suggesting that only targeting these loads is unlikely to
be very effective.

Overall, these results show the effectiveness of cross-layer
optimizations, where information useful for optimization in
one layer can be hard to obtain in that layer (e.g., hardware),
but is easy to obtain in another layer (e.g., compiler, program-
ming language). With simple hardware support, our cooper-
ative disambiguation scheme filters out an average of 43%
and up to 97% of loads from doing the unnecessary dynamic
disambiguation or competing for related resources.

Not Safe Safe
A B C D E

INT 9.2% 10.2% 12.9% 4.0% 40.0%
FP 7.7% 6.6% 13.5% 3.7% 25.6%

Table 2. Breakdown of loads not dispatched as safe.

Finally, in Table 2, we show the breakdown of the dy-
namic load instructions not identified as safe, including: (A)
those that actually read from an in-flight store; (B) those that
read from a committed store that is in the load’s disambigua-
tion store set (this category excludes those loads dynamically
identified as safe – DSL or DDSL); (C) those that are ana-
lyzed by the parser but not marked as a safe load; (D) those
that are dispatched in the transient state when a marker is still
in-flight; and (E) those that are outside the scope of analysis.
Loads in categories C, D, and E do not read from any stores in
their DSS. In categories A and B, the parser correctly keeps
the load instructions regular, whereas in categories C, D, and
E, a more powerful parser may be able to prove some of them
safe. We see that to further enhance the effectiveness, we
can target category E by broadening the scope of analysis.
For example, with the capability to perform inter-procedural
analysis, we can handle loops with function calls inside.
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Figure 8. The breakdown of dynamic load instructions dispatched as safe.
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Figure 9. The percentage of store instructions that are safe.
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Figure 10. The performance improvement of cooperative memory disambiguation.

Performance impact Reducing resource pressure amelio-
rates bottleneck and allows a given architecture to exceed
its original buffering capability, which in turn increases ex-
ploitable ILP. However, quantifying such performance ben-
efit is not entirely straightforward: reducing the pressure on
one microarchitectural resource may shift the bottleneck to
another, especially if the system is well balanced to start with.
Thus, to get an understanding of how effective cooperative
disambiguation can be, we experiment with a baseline con-
figuration where other resources are provisioned more gen-
erously than the LQ. In Figure 10, we show the performance
improvement obtained through LQ bypassing in this baseline
configuration. For comparison, we also show the improve-
ment obtained when the LQ size is significantly increased to
80 entries.

For some applications, we can clearly observe the cor-
relation between the percentage of loads bypassing the LQ
and the performance improvement. For example, the three
floating-point applications that have about 80% or more loads
bypassing the LQ (galgel, mgrid, and swim) obtain a signif-
icant performance improvement of 29-40%. In general, the
effect of identifying safe loads to bypass LQ brings the per-
formance potential of a much larger LQ without the circuit
and logic design challenges of building a large LQ.

Clearly, increasing the LQ size only increases the potential

of performance improvement. Indeed, integer applications in
general do not show significant improvement when the LQ
size is increased. For a few applications, performance actu-
ally degrades. This is possible because, for example, the pro-
cessor may forge ahead deeper on the wrong path and creates
more pollution in the cache. We can also see this degrada-
tion in the configuration with an 80-entry LQ. Through in-
strumentation, however, we can identify loops whose over-
all performance was negatively affected after transforming
regular loads to safe loads. We verified that changing these
safe loads back to regular ones eliminates all the performance
degradation. Predictably, such a feedback-based pruning has
an insignificant impact on other applications.
Energy impact In Figure 11, we show the energy impact of
our optimization. Specifically, we compute the energy sav-
ings in the LSQ and throughout the processor. Energy sav-
ings in the LSQ mainly come from the fact that safe loads
do not search the SQ. Note that our cooperative memory dis-
ambiguation does not reduce energy spent by store instruc-
tions accessing the LSQ or the clock power in the LSQ. Thus
even with close to 100% loads bypassing the LQ in some ap-
plications, the energy savings in the LSQ is less than half.
The processor-wide energy savings are mainly the byprod-
uct of expedited execution as according to our Wattch-based
simulator, the energy consumption of the LQ and SQ com-
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Figure 11. The energy savings of cooperative memory disambiguation.
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Figure 12. Load-load replays triggered per 10k invalidations generated.

bined is only about 3%. This is also reflected in the results of
some applications. For example, in equake, eon and gzip,
the total energy savings are negated because of the slow-
down. Again, after we apply the feedback-guided pruning
mentioned above, the slowdown is eliminated, the perfor-
mance and energy consumption stay almost unchanged as
only a small number of loads still bypass the LQ.
Consolidation of condition registers In the above analysis,
we assume we have a sufficient number of condition regis-
ters, therefore each conditional load instruction uses its own
condition register. In our application suite, at most 14 such
registers are needed. As explained before, for implemen-
tation simplicity, we may choose to use fewer or even just
one (implied) condition register. When we limit the num-
ber of condition registers to two, we observe no noticeable
performance impact for any application we studied. With
only one condition register, a naive approach is to set it to
the “AND” of all conditions. This creates some “pollution”
as one unsatisfied condition prevents all loads in the same
loop from becoming safe loads. However, we found that even
when we use the naive approach to share the sole condition
register, only 3 applications show performance degradation
compared to using unlimited number of condition registers:
ammp (-2.5%), applu (-5.9%), and art (-15.3%). The rest
of the applications show no observable impact. Intuitively, a
feedback-based approach can help reduce the impact of con-
dition register deficiency. We found that even simple pruning
can be very effective: by filtering out the loads whose con-
dition is never satisfied in a training run, we eliminated the
performance degradation of ammp and applu. However, with
such a small set of applications to study, we can not draw
many general conclusions.
Overhead of condition testing code We also collect statis-
tics on the actual performance overhead incurred because of

executing condition-testing instructions for safe loads. The
overhead turns out to be very small. On average, it is about
0.2% of the total dynamic instructions. The maximum over-
head is only 1.6%. This overhead can be further reduced by
applying profile-based pruning. It is worth mentioning that
the offline analysis incurs very little overhead too. On a mid-
range PC, our parser takes between 1 and 16 seconds analyz-
ing the suite of applications used. The average run time is 3
seconds.
Impact of alternative support for coherent I/O Finally, we
evaluate the support for coherent I/O. Recall that our focus in
this paper is still the uni-processor environment. Though the
design described in Section 4 handles any coherence activity,
and thus would allow correct execution of parallel programs
on a shared-memory multiprocessor, though we believe extra
optimizations are need to improve the efficiency. At the time
of this writing, our simulation infrastructure can not evaluate
the design’s efficiency in this environment. This is our future
work.

We analyzed a uni-processor environment with DMA sup-
port and our data suggest invalidations generated by DMA
are unlikely to create any noticeable amount of replays. We
thus performed a set of experiments that “stress-test” the sys-
tem by introducing another processor (the “aggressor”) to
generate memory accesses and hence invalidation messages
at higher rates and observe the amount of spurious replays
the “victim” processor suffers. These replays will not oc-
cur in a conventional LQ-based design as the two processors
access disjoint physical memory spaces. However, with the
hash table-based design described in Section 4, entry conflict
will trigger replays.

In Figure 12, we show the number of spurious replays ob-
served in these experiments. The numbers are reported as per
10,000 invalidations, which reflect how well the hash tables
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are filtering out “environmental noise”. We see that on av-
erage, 8.9 and 6.5 replays are triggered per 10,000 invalida-
tions for integer and floating-point applications respectively.
These frequencies are exceedingly low to cause any notice-
able slowdown. The number of invalidations observed ranges
from 0.37 to 161.2 per 10,000 instructions with an average of
47. This result suggests that even if the system is used in a
dual-core processor, the extra replays caused by the unrelated
activities of another processor is quite negligible.

We also did a worst-case scenario experiment where the
aggressor runs the same application with the same input in
lock-step with the victim processor. The intention is to gen-
erate artificially high overlap between the addresses of the
invalidation messages and those of the loads in the victim
processor. When we use the virtual address in the experi-
ments, we indeed see the replays increase significantly (Ta-
ble 3. The average number of replays per 10,000 invalida-
tions becomes 247 and 127 for integer and floating-point ap-
plications respectively, a 20- to 30-fold increase. Even these
many replays are unlikely to cause significant slowdown. We
note that this is just an artificial experiment. In reality, even
if two processors manage to run two applications in lock
step, these two application instances will get different physi-
cal addresses for the same virtual address and map to differ-
ent hash table entries: Our index functions [26] use several
bits from the page number portion of the address. In fact,
when only a few bits of the addresses are different, they are
much more likely to map to different entries than two un-
related addresses. We did an experiment where we mimic
the TLB function by changing the few page number bits that
are used in the hash table indexing functions. Assuming a
4KB page size, four bits from the page number are used in
these functions. We reversed these four bits for the aggressor
so sometimes the virtual and the physical versions of these
bits are the same but more often they are different. With this
change, the average number of replay reduces drastically and
becomes negligible. Table 3 shows the detailed statistics of
these experiments.

7 Related Work
To increase the number of in-flight instructions, the effective
capacity of various microarchitectural resources need to be
scaled accordingly. The challenge is to do so without signif-
icantly increasing access latency, energy consumption, and
design complexity. There are several techniques that address
the issue by reducing the frequency of accessing large struc-
tures or the performance impact of doing so. Sethumadhavan
et al. propose to use bloom filters to reduce the access fre-
quency of the LSQ [25]. When the address misses in the
bloom filter, it is guaranteed that the LQ (SQ) does not con-
tain the address, and therefore the checking can be skipped.

A large body of work adopts a two-level approach to dis-
ambiguation and forwarding. The guiding principle is largely

A B C D E
bzip2 395691 425 211120 14367 88
crafty 1239434 251 427925 8369 3
eon 625446 314 160556 1534 54
gap 659509 199 306651 3716 84
gcc 672752 367 7017806 11948 0
gzip 715013 328 934156 1198 253
mcf 370780 777 77717 1 1
parser 1328789 508 565677 5696 73
perlbmk 1688068 294 861125 20841 54
twolf 2374032 12920 2374032 12920 2589
vortex 1359904 277 524777 1643 112
vpr 1059054 471 583181 8726 125
ammp 3681944 874 1680886 9 2
applu 3700638 1641 3067759 3726 803
apsi 3280337 450 1991126 102 87
art 8055962 36096 8055962 36096 2802
equake 1100934 576 18529 92 0
facerec 1860321 284 2095629 296 5
fma3d 1340238 351 16726 0 0
galgel 7521284 253 241463 173 0
lucas 2800487 20 1045858 597 0
mesa 1520263 2288 523727 21924 105
mgrid 4380754 726 1142578 12630 12
swim 5000857 37 3104139 11 53
wupwise 2686654 2279 910787 261252 0

Table 3. Total number of invalidations and load-load replays
triggered using the hash tables for SPEC applications (each
simulated for 0.5 billion instructions). A - Total number of
invalidations generated from the aggressor running a different
application, B - Total number of replays, C - Total number of
invalidations generated from the aggressor running the same
application in lock step with the victim, D - Total number of
replays if virtual address is used, E - Total number of replays
if the 4 bits used in the hash table indexing functions are re-
versed to mimic virtual to physical address translation.

the same. That is to make the first-level (L1) structure small
(thus fast and energy efficient) and still able to perform a
large majority of the work. This L1 structure is backed
up by a much larger second-level (L2) structure to cor-
rect/complement the work of the L1 structure. The L1 struc-
ture can be allocated according to program order or execution
order (within a bank, if banked) for every store [2, 12, 28] or
only allocated to those stores predicted to be involved in for-
warding [4,23]. The L2 structure is also used in varying ways
due to different focuses. It can be banked to save energy per
access [4, 23]; it can be filtered to reduce access frequency
(and thus energy) [2, 25]; or it can be simplified in function-
ality such as removing the forwarding capability [28].

Most of these approaches are hardware-only techniques
and focus on the provisioning side of the issue by reducing
the negative impact of using a large load queue. Every load
still “rightfully” occupies some resource in these designs.
Our approach, on the other hand, addresses the consumption
side of the issue: loads that can be statically disambiguated
do not need redundant dynamic disambiguation and therefore
are barred from competing for the precious resources. We
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have shown that in some applications, a significant percent-
age of loads are positively identified as safe. With increased
sophistication in the analysis methods, we expect an even
larger portion to be proven safe. When only provisioning-
side optimizations are applied, these loads will still consume
resources. Additionally, our design is a very cost-effective
alternative. It incurs minimal architectural complexity and
does not rely on prediction to carry out the optimization,
thereby avoids any recurring energy cost for training or table
maintenance. Finally, because we are addressing a different
part of the problem, our approach can be used in conjunction
with some of these hardware-only approaches.

Memory dependence prediction is a well-studied alterna-
tive to address-based mechanisms to allow aggressive spec-
ulation and yet avoid penalties associated with squashing [9,
17–19]. A key insight of prior studies is that memory-based
dependences can be predicted without depending on actual
address of each instance of memory instructions and this
prediction allows for stream-lined communication between
likely dependent pairs. Detailed studies between schemes
using dependence speculation and address-based memory
schedulers are presented in [19]. A predictor to predict com-
municating store-load pairs is used by Park et al. to filter out
loads that do not belong to any pair so that they do not access
the store queue [21]. To ensure correctness, stores check the
LQ at commit stage to ensure incorrectly speculated loads
are replayed. They also use a smaller buffer to keep out-of-
order loads (with respect to other loads) to reduce the impact
of LQ checking for load-load order violations.

Value-based re-execution presents a new paradigm for
memory disambiguation. In [7], the LQ is eliminated al-
together and loads re-execute to validate the prior exe-
cution. Notice that the SQ and associated disambigua-
tion/forwarding logic still remain. Filters are developed to
reduce the re-execution frequency [7, 24]. Otherwise, the
performance impact due to increased memory pressure can
be significant [24].

Finally, a software-hardware cooperative strategy has been
applied in other optimizations [13, 29]. In [13], a compile-
time and run-time cooperative strategy is used for mem-
ory disambiguation. If instruction scheduling results in re-
ordering of memory accesses not proven safe by the static
disambiguation, it is done speculatively through a form of
predicated execution. Code to perform runtime alias check is
inserted to generate the predicates. In [29], compiler analysis
helps significantly reduce cache tag accesses.

8 Conclusions
In this paper, we have proposed a software-hardware coop-
erative optimization strategy to reduce resource waste of the
LSQ. Specifically, a software-based parser analyzes the pro-
gram binary to identify loads that can safely bypass the dy-
namic memory disambiguation process. The hardware, on

the other hand, only provides support for the software to
specify the necessity of disambiguation. Collectively, the
mechanism is inexpensive since the complexity is shifted to
software and it is effective: on average, 43% of loads bypass
the LQ in floating-point applications, and this translates into
a 10% performance gain in our baseline architecture.

Our technique demonstrates the potential of a vertically in-
tegrated optimization approach, where different system lay-
ers communicate with each other beyond standard functional
interfaces, so that the layer most efficient in handling an opti-
mization can be used and pass information on to other layers.
We believe such a cooperative approach will be increasingly
resorted to as a way to manage system complexity while con-
tinue to deliver system improvements.
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