
Supporting Highly-Decoupled Thread-Level Redundancy for Parallel Programs∗

M. Wasiur Rashid and Michael C. Huang
Dept. of Electrical & Computer Engineering

University of Rochester
{rashid,huang}@ece.rochester.edu

Abstract

The continued scaling of device dimensions and the operating
voltage reduces the critical charge and thus natural noise tolerance
level of transistors. As a result, circuits can produce transient up-
sets that corrupt program execution and data. Redundant execu-
tion can detect and correct circuit errors on the fly. The increasing
prevalence of multi-core architectures makes coarse-grain thread-
level redundancy (TLR) very attractive. While TLR has been exten-
sively studied in the context of single-threaded applications, much
less attention is paid to the design issues and tradeoffs of support-
ing parallel codes. In this paper, we propose a microarchitecture to
efficiently support TLR for parallel codes. One of the main design
goals is to support a large number of unverified instructions, so that
long latencies in verification can be easily tolerated. Another impor-
tant objective is to have a comprehensive coverage that includes not
only the computation logic but also the coherence and consistency
logic in the memory subsystem. Hence, the redundant copy of the
program needs to independently access the memory and the system
needs to efficiently manage the non-determinism in parallel execu-
tion. The proposed architectural support to achieve these goals is
entirely off the processor critical path and can be easily disabled
when redundancy is not requested. The design, with a few effective
optimizations, is also efficient in that during error-free execution, it
causes less than 3% additional performance degradation on top of
throughput loss due to redundancy.

1 Introduction

As the feature size of VLSI technology continues to shrink and the
operating voltage continues to decrease, the noise tolerance of in-
dividual circuit elements fundamentally decreases. Consequently,
the circuit is more vulnerable to unwanted energy such as that from
the impact of a particle. In some cases, the reduction in a tran-
sistor’s critical charge can dramatically increase the error rate of
certain noise mechanisms [18]. At the same time, higher levels of
integration increases the number of on-chip noise sources as well
as the total number of devices (potential victims) on a chip. All in
all, the frequency of transient (or even permanent) errors in future
generations of microprocessors, if unprotected, will increase.

Although for certain users, hardware errors represent a small,
perhaps unnoticed portion of causes for system failures, dwarfed by
more mundane errors such as software bugs and mis-configurations,
they are nonetheless real and significant concerns, especially for
server systems where the software is treated with much more rigor
and diligence, and the systems tend to work continuously with much

∗This work is supported in part by the NSF under grants No. 0509270 and 0719790.

less idling. Highly publicized incidents of soft-error-related failures
in commercial products [10, 24] underscore the importance of fault
tolerance. Therefore, it is crucial to develop effective mechanisms,
especially on-demand ones that offer users the choice of protection
(at the cost of throughput and energy). Most modern processors
already heavily rely on error-correction codes to protect storage el-
ements such as caches and pipeline registers [2, 40]. However, they
typically leave the logic unprotected. In the general-purpose do-
main, while a user can now select machines with a highly reliable
memory system [13], there is little choice to boost the reliability
of the logic. Studies have shown that protecting against errors in
the core logic is important and will be increasingly so in the fu-
ture [41, 42]. With the exception of ALUs where using a checksum
is possible [33,55], brute-force redundancy is perhaps indispensable
for random logic, even just to detect transient errors. As such, the
key practical issue really becomes how and at what level to apply
redundancy.

A very significant body of work explored redundancy at the cir-
cuit level (e.g., [19, 30]). While these solutions can mitigate the
problem, there are fundamental limitations (see Section 2). Fur-
thermore, redundancy is undoubtedly expensive and ideally is only
provided on-demand when the protection is necessary. At best, it
is cumbersome to disable fine-grain circuit-level redundancy once
it is in-place. In contrast, Thread-Level Redundancy (TLR) avoids
these disadvantages by using the increasingly abundant extra hard-
ware thread contexts to execute a semantic thread redundantly.
While TLR for single-thread applications has been extensively stud-
ied [3,17,27,31,36,37,39,45,53], design tradeoffs of TLR for par-
allel applications received much less attention, while parallel appli-
cations are bound to become more numerous. TLR support for par-
allel applications is not a trivial extension of that for single-threaded
applications and has a large design space to be explored.

In this paper, we present the architectural support for a chip mul-
tiprocessor (CMP) to enable on-demand redundant execution of par-
allel applications in a highly-decoupled fashion. The design is de-
coupled in two aspects. First, rather than (quasi) lock-stepping, the
two redundant copies of the same semantic thread are highly decou-
pled in time and can be thousands of instructions apart. Second, the
architectural support for managing redundancy (such as buffering
results from unverified instructions) is decoupled from the core mi-
croarchitecture and the core is virtually redundancy-oblivious. This
makes redundancy easy to turn on or off. When not engaged, the
support exerts no overhead in energy or performance. Even when
it is enabled, the additional performance overhead incurred is only
2.5% on top of throughput loss due to TLR.

The rest of this paper is organized as follows. Section 2 dis-
cusses high-level tradeoffs in redundancy and provides an overview
of the design. Section 3 details the design. Section 4 summarizes

1

the experimental setup. Section 5 provides the experimental analy-
sis. Section 6 discusses related work. Finally, Section 7 concludes.

2 High-Level Design Decisions

Redundancy as a means to tolerate random errors is a classic tech-
nique [29]. In an actual design, the decisions are driven by a mul-
titude of sometimes conflicting desires. We first discuss the high-
level tradeoffs made in our proposed design.

Granularity of hardware redundancy A very significant body
of work has explored redundancy at the circuit level (e.g., [8,15,19,
26, 32, 55], to name but a few). While these solutions can mitigate
the problem, there are fundamental limitations.

First of all, a pivotal assumption of redundant designs is that er-
rors occur independently. For this to work in a fine-grain spatial
redundancy such as duplicating critical transistors [19], the spatial
distance between redundant nodes has to be “sufficiently” large.
Otherwise the nodes can be upset simultaneously in a correlated
fashion and errors will thus be systematically undetected. The actual
“safe” distance depends on the noise mechanism and can be hard to
quantify. But studies suggest that it is non-trivial. For instance, the
spatial range of electron-hole pair generation after a particle impact
is about 0.1µm [62]. When diffusion is taken into account, a pair
of redundant transistors have to be physically far apart (several mi-
crons [25]) to ensure they are not impacted the same way. Such
physical layout constraints make the technique very hard to scale
in future generations. Furthermore, such spatial redundancy is not
without time overhead: significant amount of time (substantially
larger than 50ps [19]) is needed for the redundant node to “fight”
the upset node to set the output right.

Secondly, time redundancy at circuit level is also a limited solu-
tion. The fundamental property exploited here is that a static combi-
national circuit will naturally recover from transients since they last
only a limited amount of time. The output of the logic can there-
fore be strobed by the latch at different time points separated by a
fixed amount t. Any transient pulse with a width narrower than t

will at most affect one such latched result. A majority vote circuit
can find the correct value out of 3 different latched results [25, 30].
With such techniques, the cycle time needs to increase by at least
twice the maximum width of the transient pulse to be tolerated. Un-
fortunately, such transient pulses are generally wide. Experiments
have shown many of them caused by particle strikes to be more than
800ps wide [8] – several times the size of clock cycle of modern
processors. Clearly, the time overhead is unacceptable in high-end
microprocessors. Just as space-redundant designs also have time
overhead, these time-redundancy approaches add space (and power)
overhead in addition to the time overhead. Furthermore, such time
redundancy can not be directly applied to dynamic circuits.

To overcome these fundamental limitations, we choose a coarse-
grain redundancy – TLR. In TLR, redundant copies of the same
semantic thread execute on different hardware contexts and com-
pare the architectural results. In this paper, we use CMP as the
underlying base architecture. We execute two redundant copies of
every semantic thread. These threads are grouped into a computing
wavefront followed by a verification wavefront as illustrated in Fig-
ure 1. We compare the outcome from the two wavefronts to detect
transient errors and roll back to an earlier checkpoint for recovery.

This coarse-grain redundant system avoids these aforementioned
limitations and offers a much more comprehensive error detection

. . .

C
om

pu
tin

g
W

av
ef

ro
nt

V
er

ifi
ca

tio
n

W
av

ef
ro

nt

Verification Processor 1 Verification Processor 2 Verification Processor N

Computing Processor NComputing Processor 1 Computing Processor 2

O
ff

−c
ri

tic
al

−p
at

h
re

du
nd

an
cy

 s
up

po
rt

L1 Cache PCB

Checkpoint
Buffer

Execution
Info Queue

Core

L1 Cache PCB

Core Buffer
Checkpoint

Info Queue
Branch

L2 Cache & Interconnection Network

L1 Cache PCB

Core

L1 Cache PCB

Core

L1 Cache PCB

Core

L1 Cache PCB

Core

Buffer

Branch
Info Queue

Checkpoint

Checkpoint
Buffer

Branch
Info Queue

Branch
Info Queue

Buffer
Checkpoint

Buffer
Checkpoint

Branch
Info Queue

L1 Cache PCB

Buffer

Info Queue

Core
Branch

Checkpoint

Figure 1. Illustration of the proposed TLR design.

coverage. It also provides a range of additional benefits as flexi-
bility and intelligence can be more readily built into a coarse-grain
redundant design.

First, coarse-grain redundancy is much less intrusive than local-
ized fine-grain redundancy which often introduces logic to critical
paths; adds design complexities that can impact schedule; and is
not suited to full-custom design [44]. Second, it is much easier to
provide on-demand redundancy. A single core can provide redun-
dant execution or simply act as a normal computing engine. Finally,
upsets at fine granularity do not necessarily result in architecturally
visible errors due to all kinds of masking or dead state [54, 56].
These errors are naturally ignored in TLR, whereas in a fine-grain
redundancy approach, it is not straightforward for the circuit to
make the distinction.

Coverage A key design tradeoff in TLR is whether to cover the
logic in the memory subsystem, or, using the terminology in [37],
whether to include it in the sphere of replication. It is our belief
that this logic needs to be protected in an integrated way together
with the processor cores, especially when supporting parallel appli-
cations.

In current microprocessors, to correctly service load and store in-
structions, the memory subsystem incorporates non-trivial amount
of logic in the complex memory dependence, coherence, and con-
sistency handling logic in the cache and in the load-store queues
inside the processor core [11, 43, 52]. Error-correction codes can
only protect storage, not the logic in these circuits. Given that mem-
ory instructions are very frequent, leaving this logic unprotected is
perhaps unwise.

Simply replicating the core does not automatically protect every
logic block. We need to ensure cores independently (and redun-
dantly) exercise the replicated logic. For example, if we rely on
one core to load data and duplicate it for the redundant core, we es-
sentially bypass the redundancy for memory logic blocks and leave
them unprotected. As a result, even though the circuitry is appar-
ently replicated, a range of errors will be undetected. For exam-
ple, if in response to an invalidation request, the coherence logic
invalidated the wrong cache line; if the load-store queue incorrectly
forwarded data or failed to detect a load-store order violation; or
if a memory barrier is incorrectly enforced, the core may consume

2

incorrect data even though the integrity of the cache storage is not
compromised.

Based on these considerations, in our architecture, the two wave-
fronts independently access their own logical memory subsystem.
Cache coherence is maintained within each subsystem. In reality,
duplicating the entire memory subsystem is wasteful and the two
logical subsystems share some portions in the physical implemen-
tation (L2 and beyond, in this paper).

Lock-stepped or asynchronous redundancy Another de-
sign decision is whether to make the redundant threads progress
in a cycle-by-cycle lock-stepped fashion or allow them to proceed
asynchronously (even maintaining an intentional distance). While
lock-stepping offers conceptual simplicity, it is increasingly difficult
to ensure [4]. Any non-determinism (such as in cache replacement)
or harmless discrepancy (such as bit-flips in prediction tables) can
easily make a processor pair lose synchrony. Resynchronizing them
requires initializing even the microarchitectural state to be the same.
This process is not only slow, but demanding to implement.

Allowing the threads to be decoupled, on the other hand, tolerates
unimportant divergence of microarchitectural states. It can also tol-
erate latency to communicate and compare results and state between
the redundant threads. It is also possible to leverage the leading
thread’s essentially near-perfect program-based prefetch and branch
predictions for the trailing thread [37]. This, in turn, may allow
the trailing thread to execute on a low-power state (e.g., lower fre-
quency/voltage gear) or on a less power-hungry microarchitecture
(if heterogeneity [20] is supported) without slowing down the entire
program.

In our design, therefore, we choose the decoupled, asynchronous
redundancy where the leading wavefront is considered the comput-
ing wavefront and the trailing one, the verification wavefront. As
illustrated in Figure 2, we compare the state of the two wavefronts
periodically at epoch boundaries (typically thousands of instruc-
tions per thread). Certain conditions will trigger the termination
of an epoch for the entire computing wavefront. Each processor
then creates a checkpoint (or snapshot) of the architectural state
to allow rollbacks. Even though epoch termination is a globally
synchronous event, the performance overhead is not as high as one
might expect since only the commit stage temporarily freezes. For
the verification wavefront, the operation is largely the same except
two things. First, epoch boundaries are determined by the comput-
ing wavefront. Second, at the boundaries, the processor will need
to compare checkpoints from the two wavefronts.

As a result of this decoupling, at any time, the number of unveri-
fied instructions can be large, perhaps thousands or more per thread.
Therefore, we need a more scalable buffering mechanism than the
rather limited buffering from the out-of-order engine. Our solution
is to use a separate buffer to keep committed, but unverified, stores.

Putting it together In our TLR design, we execute the program
in two wavefronts (computing and verification) independently as if
they are executing two different programs (albeit with the same ex-
ecutable and input, and they only produce one output).

• Both wavefronts independently access their own memory sub-
system. (However, some portion of the memory is shared as
described in Section 3.1.) Coherence activities in one wave-
front do not affect the other wavefront.

• Periodically, the two wavefronts compare architectural state
to detect discrepancy caused by errors. Of course, inherent

Verify

Epoch E i−1

Epoch Ei+1

Compute

ldq r6, 352(r30)
and r1, r2, r3
sra r3, r4, r3

sra r16, r4, r16...

stl r18, 0(r16)

ldl r19, −16(r14)

stl r27, 0(r1)

ldl r21, 0(r20)

and r19, r2, r2...

addl r5, 1, r5
cmplt r12, r0, r16

stl r27, 0(r1)
ldl r21, 0(r20)

and r19, r2, r2...

addl r5, 1, r5

cmplt r12, r0, r16

...

...

ldq r6, 352(r30)
and r1, r2, r3
sra r3, r4, r3
sra r16, r4, r16...

stl r18, 0(r16)
ldl r19, −16(r14)

...

...

Verify Checkpoint E

Verify Checkpoint E

Verify Checkpoint E

Create Checkpoint E

Create Checkpoint E

i

i + 1

i − 1

i − 2

i

Verification WavefrontComputing Wavefront
T T1

iwaiting for E in comp wavefront to finish

T ’ T ’1n n

Figure 2. The operation of the TLR architecture: the computing
and verification wavefronts and the epochs. Due to branch pre-
dictions and prefetching provided by the computing wavefront,
threads in the verification wavefront have different timing and are
generally faster.

non-determinism in parallel execution has to be suppressed
for this to work. The verification wavefront will maintain the
same memory access order as the computing wavefront (Sec-
tion 3.2). As a result, the trailing verification wavefront will
even reproduce the same number of iterations in an idle loop.

In this paper, our discussion will focus on one design point:
a CMP baseline architecture with private L1 caches (with an
invalidation-based snoopy protocol); a shared L2 cache; and a
sequential consistency model. This represents perhaps the most
straightforward case to support TLR for parallel applications. Ex-
tending the support beyond this baseline is our future work. Finally,
we do not address the issues of supporting I/O in TLR.

3 Architectural Support

We first discuss the mechanisms to buffer and compare architectural
states (Section 3.1) and then discuss the coordination of memory
access ordering in the two wavefronts (Section 3.2), as the latter
depends on the former. Note that all the supports are off the critical
path; each processor can be easily configured to participate in either
wavefront or to operate non-redundantly as a regular processor.

3.1 State Buffering and Comparison

Versioning versus buffering Because the two wavefronts are
asynchronous, at any moment, their semantic view of the memory
is different from one another. The trailing verification wavefront
sees an image of the memory that the leading computing wavefront
saw some time in the past. Therefore, the TLR system needs to
provide data based on which wavefront the requester belongs to. In
a sense, a cache line has (at least) two versions. Furthermore, upon
a recovery, the memory system needs to restore to an earlier state,
essentially requiring additional versions to be kept.

We do not use the caches to explicitly deal with multiple versions
as such version management (forking and merging versions) will
certainly be intrusive and impact critical paths. On the other hand,
keeping two sets of completely separate memories is wasteful. In

3

our design, we avoid the need of explicit versioning by keeping only
validated data in the shared portion of the memory hierarchy (the
L2 cache and beyond, in our case) since there is only one version of
validated data for both wavefronts1. As such, unverified data need
to be buffered in the memory hierarchy private to the cores.

3.1.1 Post-commit buffer

To avoid intrusive designs, we decouple the redundancy-incurred
buffering from normal instruction processing. The core commits in-
structions as usual without waiting for verification. A post-commit
buffer (PCB) keeps committed stores until verification. Although
the concept of PCB was introduced in our earlier work [35], to sup-
port shared-memory parallel execution, the design discussed here is
very different in a number of aspects and works as follows.

When a store is committed, the data is written into both the L1
cache and the PCB. The PCB is partitioned into sections, corre-
sponding to epochs. In the computing wavefront, when one pro-
cessor’s current PCB section fills up, a new epoch is initiated and
all processors start to use the next section of their PCBs. When
an epoch is validated, the content will be committed to the L2
cache and that PCB section will be reused for a future epoch. The
PCB is cache line-based and each section is essentially a tiny fully-
associative cache (other associativity is also possible).

The PCB keeps all the dirty lines and eventually writes them back
after validation. The L1 cache no longer does writeback. A dirty
cache line evicted by the L1 is simply discarded. Thus, the PCB
is effectively an extension of the L1 cache and needs to be treated
accordingly. For example, when an access misses the L1 cache and
the PCB, we need to search other processors’ L1 cache and PCB in
addition to accessing the L2 cache. Likewise, when one processor
sends an invalidation, it needs to be applied to the lines in the PCB
as well.

One important difference between the PCB and a normal cache
is that the PCB is divided into sections corresponding to epochs and
thus if a cache line is written to in two epochs, the same line will
appear in two PCB sections. This introduces a state management
issue illustrated in Figure 3.

V

datatag state

T2

datatag state

T1

datatag state

T3

X V I
X V

T1 T2

1

3

2

T3

st X

st X

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

st X

st X

SDX VV1

V2
V3 SD

PC
B

 s
ec

tio
ns

V4 X

Figure 3. Example of different versions and states of PCB lines.

In this example, cache line X is written to in epoch 4 by thread
T1, and later on in epoch 5, first by T2, then by T3, and again by T3
in epoch 6, creating 4 different versions in the PCBs with different
roles. V4 is clearly the most up-to-date version and will be supplied
to a requester if cache line X is evicted from the L1 cache of T3. The

1Note that this leaves the L2 and beyond to other means of protection as
they are not covered by our TLR.

older versions V1 to V3 no longer need to respond to such requests.
However, there is a difference between them. V1 is the most up-
to-date version in epoch 4. When epoch 4 is finally validated, V1
needs to be written back to L2 so that the system has the ability to
roll back to the beginning of epoch 5. V2, on the other hand, is no
longer needed and its PCB entry can be recycled.

Thus, the PCB cache line can be in three different states: Valid
(e.g., V4), where the data can be supplied to a requester and will
be written back to the L2 upon validation; Superseded (e.g., V1)
where the data will not be supplied to any read request, but will be
written back; and Invalid (e.g., V2), where the storage in the PCB
is no longer needed and can be used for another cache line.

The PCB responds to coherence messages as follows. When an
invalidation message is received, any valid matching line in the ear-
lier PCB sections will be marked as superseded (e.g., V1 as T2 ex-
ecutes the store ¬), whereas the matching cache line in the current
section will be marked as invalid (e.g., V2 as T3 executes the store
­). A line can also be superseded when the same processor writes
to it again in a new epoch (e.g., V3 as T3 writes again in epoch 6
®). When a read request is sent to a processor, if the L1 does not
contain the data, all the PCB sections are searched. If there exists a
matching line with valid state, the line is supplied to the requester.

Note that an important advantage of using these three states, es-
pecially in a snoopy coherence protocol, is that out of all the PCBs
and all the sections within one PCB, at most one copy of any partic-
ular cache line can be in valid state. This means there is no need to
arbitrate the right version among multiple responders and also that
the PCB does not need a priority encoder logic to arbitrate the right
version among the multiple sections – these supports are needed if
we do not have the superseded state. Furthermore, after validation,
when the content of the PCB is being committed to the L2 cache,
multiple PCBs can do so in parallel since within any epoch, there is
only one version of a cache line in either valid or superseded state.

Finally, during rollback, we can easily discard the writes done
in an epoch by treating its PCB section as invalid. For the L1
cache, however, it is not easy to identify lines that need to be in-
validated. Walking over the current PCB section and invalidate the
corresponding lines in the local cache is not enough. We need to
also send invalidations to remote caches in case they have a copy.
We avoid this complexity and the concentrated invalidations and
simply invalidate all cache lines.

3.1.2 PCB optimizations

When a PCB section is filled up and can not accommodate another
store, a new epoch needs to be initiated. Overly frequent epoch initi-
ation obviously adds overhead to the execution. Thus, PCB sections
are fully associative to efficiently utilize its capacity. To reduce the
frequency of associative tag-checking, we apply two optimizations:
the index pointer and the bloom filter.

Index pointer The index pointer points from a line in the L1 data
cache to its “shadow copy” in the PCB. After the pointer is estab-
lished (e.g., cache line X in Figure 4), subsequent writes to the same
cache line only need to follow the pointer. Without the pointer, ev-
ery write needs an associative search of the PCB to find the line
to write to2. The pointer is established upon the first write to a

2This observation may seem to suggest that updating the PCB for every
store is undesirable to start with. However, the alternative of only moving
entire cache lines from the L1 to the PCB is more complex. For instance, it
requires a walk logic to move multiple cache lines at epoch boundaries. In

4

cache line in each epoch and may be re-established after eviction
and refetch. If a write occurs to a dirty (modified) line pointing to
an older PCB section (e.g., the dashed pointer of cache line Y in
Figure 4), then the current write is the first write in this epoch and a
new entry in the PCB will be allocated to store a copy of the cache
line. Before we update the pointer, we follow the old pointer and
set the entry’s state to “superseded”.

tag data ptr tag data ptr

X

Current
section

Y

tag data state

Older
sections

PCB

...

L1 data cache

SDY

V
V

Y
X

Figure 4. Illustration of the index pointer from L1 cache to the
PCB. V and SD stand for valid and superseded, respectively.

If a cache line is evicted and later reaccessed, the pointer will
be re-established: as we serve the L1 miss, the PCB is searched,
and if a match (to a valid line, not a superseded line) is found, the
pointer will be set to link the L1 version to the PCB version. Thus,
if a cache line has a null pointer, we know that no such line exists
in the PCB in valid state. Then when a write occurs to that line,
we proceed directly to allocate a new entry in the PCB. Note that
updating the pointer of a cache line is done either when servicing a
cache miss or when servicing a write operation. Nothing is done on
the critical path of a cache read.

This pointer-setting algorithm guarantees that for every line in
the cache, either there is no valid copy of the line in the PCB (pointer
is null), or we have the exact location of the PCB copy. Therefore,
when an external invalidation message arrives and matches a line
in the L1 cache, we do not need to associatively search the PCB.
Instead, we only follow the pointer (unless it is null) to set the PCB
copy to invalid (if it is in the current section) or superseded (if it is
in an older section).

Similarly, the pointer also helps avoid searching the PCB asso-
ciatively when processing a read request from another processor.
Specifically, the saving occurs when an external read request finds
a matched line in the L1 cache and the line is in the shared state.
Clearly, if the line is in the modified state, the line will be supplied
to the requester and there is no need to further probe the PCB, even
without the pointer. However, if the line is in the shared state, the
situation is different from that in a conventional protocol where no
forwarding is needed. Consider the following case: a processor (pi)
writes to a line, and then a subsequent read request from another
processor downgrades the line to the shared state. Unlike in the con-
ventional system where during this downgrade, the data is written
back to the next level of the memory hierarchy, we can not write the
data until after the validation of the epoch. Therefore, in this case,
pi is still the “owner” of the data and its PCB may be the only place

contrast, simultaneously updating the PCB is a background action incurring
little interference to the timing-critical L1 cache.

where this data is kept. As such, the PCB needs to be consulted in
order to know whether pi is the owner or just a sharer. In the former
case, the line will be present in the PCB and in valid state. With the
indexing pointer optimization, we do not need to search the PCB
associatively. Instead, following the pointer is sufficient.

As PCB sections are being recycled, the indexing pointers can
become stale. Stale pointers can be proactively invalidated as a PCB
section is recycled. As each PCB entry has the entire address, we
can follow back to the L1 cache and change the pointer to null if
needed. Alternatively, the pointers are not proactively updated, but
a sanity check is performed whenever the pointer is dereferenced
and set to null if it points to an unrelated line.

Finally, we note that although conceptually the pointer is part
of the L1 cache, physically, the mechanism can be implemented
outside the cache to minimize intrusion, as following the pointer to
access the PCB is always independent to the L1 access.

Bloom filter Even with the support of the pointers, the PCB may
still need to be searched. In a broadcast-based coherence proto-
col, coherence messages will be quite frequent and so will PCB
searches. The often-used bloom filter can cut down on the number
of actual PCB searches. Because we recycle the PCB entries section
by section, we use one filter for each section so we can simply clean
up the corresponding filter when the section is recycled.

Thanks to the indexing pointer, we can now set the bloom filter
in a unique way that reduces the probability of false positives. As
we will see later, this optimization significantly reduces the num-
ber of bits set in the bloom filter and drastically improves filtering
efficiency.

For convenience of discussion, we will call a (valid) line in the
PCB that is also currently in the L1 data cache a mapped line. Re-
call that if a coherence message finds a match in the L1 cache, we
only need to follow the pointer. Also, a locally incurred PCB search
will be done only during a cache miss. In other words, we will never
search the PCB with the address of a mapped line. Conversely, the
mapped lines will never match any associative search. Thus, for the
purpose of associative searches, we can consider the mapped lines
as not even present in the PCB. As a result, we do not need to set
their corresponding bit in the bloom filter – we only do so when a
mapped line is evicted from L1 and the pointer still points to the
right copy. Additionally, the PCB lines have an explicit mapped
bit to track which lines are present in the L1. With these bits, the
mapped lines (as well as superseded lines) can avoid actual address
comparison even when the bloom filter fails to prevent an associa-
tive search.

Conserving writeback bandwidth Partitioning the execution
into epochs creates an undesirable side effect. A cache line is tem-
porally separated into multiple versions, each individually commit-
ted to the L2 cache when the epoch is validated. This can increase
the L2 traffic and contention. We use a simple mechanism to mit-
igate this increase. The key observation is that if a PCB line in
an earlier epoch i is superseded by another line in a later epoch j,
then we can avoid the writeback of i’s version if epoch j is vali-
dated. Therefore, we can simply delay committing PCB’s result to
the L2. The longer we wait, the more likely we find superseded
lines. However, the core in the computing wavefront can not reuse
a PCB section until the same section has been committed to the L2
cache. Thus, excessive delay in writeback can cause stalls in the
computing wavefront and result in performance degradation. Our
approach is to send a signal from the computing processors when

5

available PCB entries are below a certain threshold. Upon receiving
the signal, the verification processors start to release the oldest PCB
section.

3.1.3 Comparison of state

Our TLR support compares the outcome of threads at the granular-
ity of epochs (thousands of instructions per thread). At this granu-
larity, the register state is best compared in its entirety, whereas for
memory, we should compare the incremental changes made during
the epoch, i.e., the content of the PCBs. Our design can buffer thou-
sands of unverified instructions (see Section 5) and therefore can
easily tolerate the latency to transmit and compare large amounts of
data. The results an epoch produces include register content, con-
tent of the valid lines in PCB, and a small amount of meta data
(such as the number of valid lines in the PCB). This is on the or-
ders of 1KB per pair of threads per epoch in a typical configuration
(Section 5).

To cut down the communication bandwidth requirement, one can
use a checksum (e.g., CRC) to compress the state [46]. Once the
checksums for both wavefronts match, the epoch is successfully
validated. We can start to commit the writes buffered in the PCB
to the L2 cache. As mentioned earlier, within each epoch, no cache
line will be present in more than one PCB, so the write-back pro-
cess can be done in parallel. Because of the redundancy, only one
wavefront needs to write back. We choose the trailing verification
wavefront to minimize any bandwidth impact of the write-back on
the leading computing wavefront. Intuitively, by trailing behind, the
verification wavefront receives natural prefetch benefit and can ac-
cept branch outcome from the leading computation wavefront [37]
and is thus not the performance bottleneck.

Note that the comparison of outcomes (with compression or oth-
erwise) is entirely a background process. The latency only dictates
when PCB sections can be written back and thus released.

3.2 Memory Access Ordering Issues

Allowing asynchronous progress of the computing and verification
thread in sequential workloads is relatively straightforward. How-
ever, in the case of parallel shared-memory programs, the two wave-
fronts typically have very different execution timing. This is be-
cause both cache misses and mispredictions are significantly miti-
gated in the verification wavefront. The difference in execution tim-
ing means that memory access races (including synchronization and
data races) can play out differently and result in different execution
outcomes without any transient errors. The system will unnecessar-
ily roll back. Worse still, rollback itself does not address the prob-
lem of non-determinism, and can not guarantee forward progress.

Thus, a key aspect of any TLR architectural support for parallel
codes is to manage this non-determinism. There are two possible
approaches: to tolerate non-determinism in the races and handle the
fallout when it does lead to discrepancy; or to eliminate the non-
determinism in the first place and ensure all the races always play
out exactly the same way in both wavefronts. There are pros and
cons for each strategy. The latter is more direct and perhaps concep-
tually easier to implement, but there are potential disadvantages on
the system’s efficiency. First of all, strictly enforcing certain access
ordering can induce excessive waiting, especially in our TLR sys-
tem, where the “natural” execution timing from the two wavefronts
can be very different due to the execution assistance the trailing
wavefronts receives. Secondly, in an actual hardware implementa-

tion, due to artifacts in the coherence protocol, the caching mecha-
nism, etc, there will be apparent, but false, races. Also, depending
on the applications, some true races can play out differently with-
out affecting the state of execution. Faithfully enforcing the same
outcome for every one of those races may be unnecessary.

The actual implementation of a strategy depends on the co-
herence protocol and consistency model of the underlying multi-
processor. In this work, we focus on sequential consistency and
invalidation-based snoopy coherence protocol. However, the archi-
tectural support can be extended to handle other coherence and con-
sistency substrates.

3.2.1 Tracking the races

We track access orders in a broad-brushed manner to minimize the
complexity and performance impact on the computing wavefront.
Since a race involves at least one write operation, it will generate co-
herence actions: invalidation and/or downgrade of a dirty line. For
instance, if store S1 to cache line X from thread Ti happens before
store S2 to the same cache line from thread Tj , as S2 takes effect,
Tj will request X to be transferred and invalidated from Ti’s cache.
This shows that S1 comes earlier in time. Rather than recording
the specific relationship between S1 and S2 only, we draw a logical
time line to separate instructions finished up to now in the entire
wavefront from those that are yet to finish and broadly group them
into different subepochs.

More specifically, when a potential race is detected, a wavefront-
wide subepoch transition request is triggered (Figure 5). Upon re-
ceiving the request, the processor records the number of committed
instructions so far and transitions into the next subepoch. Note that
subepoch transition is merely a background accounting activity to
mark which instructions belong to which subepoch – such that no
races happen between two instructions in the same subepoch. There
is no stalling at all in the computing wavefront. Later in the verifi-
cation wavefront, by making sure that subepochs are properly seri-
alized, we guarantee that all races maintain their original outcome.
There is an economy of representation in that a single subepoch
takes very little to encode (using the number of committed instruc-
tions) and a single transition can represent multiple races. Also, it
avoids the need to track particulars such as which specific instruc-
tion brought a cache line in. This independently conceived design
shares the same philosophy with Strata [28].

subepoch transition requests

Su
be

po
ch

 i

trigger
boundary
subepoch
global

Su
be

po
ch

 i
+

1

stl r17, 0(r10)
stl r11, 0(r23)

ldq r9, 0(r9)
bis r31, r11, r16

ldq r6, 72(r3)
ldq_u r31, 0(r30)lda r5, 128(r5)

stq r3, 64(r30)
stq r6, 72(r30)
stq r5, 80(r30)

ldq r3, 0(r9)

lda r1, −20176(r1)

ldl r1, 0(r1)
ldl r22, 0(r22)

lda r22, −32(r22)
ldl r4, 0(r4)

stl r24, 0(r25)

lda r6, 4(r6)
lda r3, 4(r3)
addl r11, 1, r11
ldq r5, 80(r30)

xor r21, r22, r21
stl r21, 0(r15)

lda r9, −21208(r9)
ldq r5, 80(r30)

ldl r7, 0(r25)

ldah r1, 8192(r29)

T1 T2 T3

addq r3, r16, r16

. . . .

. . .

Figure 5. Races create wavefront-wide subepoch transition.

To find out if a race needs to trigger a subepoch transition, we
need to determine if the two accesses (from two different proces-
sors) involved already belong to different subepochs. Conceptually,

6

this is quite straightforward to infer: if we track the subepoch num-
ber (SEN) when a cache line is last accessed, we can directly com-
pare that to the requester’s current SEN. In a real implementation, a
single-bit tracking in the cache seems sufficient: whether the cache
line has been accessed in the current subepoch. However, there are
a few subtle points worth mentioning.

First, the concept of “current” is imprecise because events such
as memory accesses or subepoch transitions are not atomic. For
example, a memory request can be issued in one subepoch and the
instruction can be committed in a later subepoch. Also, due to the
delay in the propagation of the subepoch transition request, the cur-
rent subepoch of a different processor may not be the same. Thus,
we have to explicitly encode SEN in some structures. For instance,
when a load issues and brings data from a remote dirty line, the data
reply can not simply encode that the data has been touched in the
current subepoch. Rather, it needs to encode what is the current
SEN (say, 4). Upon receiving the reply, this SEN will be recorded
in the requester’s load queue. At the commit time of the load, we
need to ensure that the SEN is at least 5. If that is not the case, a
request to increment the SEN is broadcasted.

Second, to precisely track the necessity of subepoch transition,
we need two bits to independently track whether the cache line has
been written or read. For example, if a dirty line in processor Pi’s
cache is only read by Pi in the current subepoch, then a read re-
quest from a different processor does not need to trigger a subepoch
transition, even though the line is dirty. Using only one access bit,
we can not tell whether the access by Pi in the subepoch was read
or write and have to conservatively increase the subepoch number.
However, in our experiments, we found that using just one bit has
minimum negative impact.

Third, when we are evicting a cache line, we may lose the ac-
cess time information and may have to conservatively increase the
SEN. For instance, consider the case where a cache line is read in
the current subepoch and evicted and subsequently, a write request
is issued from a different processor to the same cache line. In this
case, since the cache line is not present anymore, the race can not
be detected. Note that if the cache line has not been accessed in the
current subepoch, then the eviction is not losing any information.
A simple but conservative approach would be to initiate a subepoch
transition when an eviction will lose information. To prevent unnec-
essary subepoch transitions, we add the following support that has
little extra overhead. When we are evicting a dirty cache line whose
PCB entry is still around, we can still maintain the timing informa-
tion by writing the current SEN into the PCB. If the line does not
have a PCB entry, we set an eviction bit for the cache set. Later on,
when we receive an invalidation issued from a different processor
and the address maps to the cache set with the eviction bit set, we
treat it just as if we have the cache line that is being invalidated.
That is, we trigger a subepoch transition. The eviction bits and the
access bits are reset upon a subepoch transition.

Finally, we note that the epoch boundary is just a special case of
subepoch boundary, where extra steps are taken. Any actions done
at subepoch transitions are also done at epoch transitions.

3.2.2 Enforcing the order

The order tracking mechanism mentioned above passes on the num-
ber of instructions committed in each subepoch to the trailing veri-
fication wavefront, which uses the information to influence the exe-
cution order. There are a range of options to enforce this ordering.

The only architectural support needed is that to freeze the commit
stage.

Strict enforcement The first and the most straightforward ap-
proach would be to strictly enforce the ordering. That is, after com-
mitting all the instructions of the current subepoch, a processor has
to wait for all other verification processors to finish the same sube-
poch before moving on. Note that with the hardware support for se-
quential consistency the processor can choose to fetch and execute
instructions in the next subepoch, as long as they are not committed.
The hardware guarantees the semantic effect follows the commit or-
der through re-execution if necessary [61].

T2 TnT1 T2 TnT1

...

bis r31, r31, r20
ldq r19, 40(r15)

lda r17, 8(r5)

stl r1, 80(r15)
stl r4, 84(r9)

...

...

...

S
ubepoch

i
i+1

...
...

...
...

...

stq r14, 48(r30)
lda r13, 4720(r13)

ldah r13, −1(r29)

extbl r3, 3, r12 stq r16, 72(r15)
and r1, 32, r1

bic r1, 32, r4

ldl r1, 84(r9)

lda r29, 1084(r29)
ldq r16, 96(r9)

addl r31, r20, r11

Figure 6. The creation of a subepoch boundary implies not only
the necessary ordering due to data race (solid line), but also false
order dependences between the last instructions of one epoch and
all the beginning instructions of the next (dashed lines).

However, strictly enforcing the ordering can lead to unneces-
sary waiting in the trailing wavefront which is inefficient. Recall
that a race between two memory instructions can trigger a global
subepoch transition which creates an array of extra false ordering
constraints as shown in Figure 6. And these constraints are almost
certain to cause some waiting in the trailing wavefront. Ironically,
incurring unnecessary waiting due to false ordering constraints may
be the only effect. This is because the race may be between two
instructions far apart in time and their original order may have been
naturally preserved in the verification wavefront, without the in-
duced waiting.

Blindly speculating A second, more optimistic order-
enforcement approach would be to initially disregard all subepoch
transitions and assume either this does not lead to any order
violation, or even if there is an order violation, the program
outcome will not be affected. Of course, the assumption can be
incorrect and we may find a difference in the program outcome.
In that case, since the difference is perhaps more likely the result
of not enforcing the correct memory order rather than the result
of external noise mechanisms, we only roll back the verification
wavefront and re-execute the epoch. This time, we strictly enforce
the subepoch ordering. If the discrepancy persists, it will be due to
errors and we then roll back both wavefronts.

Finally, we note that the discrepancy can be discovered early in
the epoch: The computing wavefront supplied a branch prediction
stream to the verification wavefront. In the error-free environment,
the prediction should be perfect. Thus, if a misprediction occurs,

7

it is very likely the result of actual control flow divergence due to
different race outcomes. Therefore we can abort the execution early
and roll back the verification threads to re-execute with strict en-
forcement.

Selective enforcement Finally, instead of the two extreme poli-
cies, we can employ a more middle-ground policy by selectively
enforcing some ordering. The intuition behind the policy is that if
the two memory operations in a race happened in close-by temporal
proximity, their redundant copies in the verification wavefront are
more likely to switch order than if they happened far apart in time
in the computing wavefront. Therefore, if we can track timing, we
can use this heuristic to proactively enforce ordering only for those
subepoch transitions caused by “tight” races and only for the pro-
cessors involved. Of course, we can still mis-speculate and find a
discrepancy in program outcome. We follow the same process of
first rolling back only the verification wavefront. If the discrepancy
persists, we then roll back both wavefronts.

To track timing, we can use an additional Recently-accessed (R)
bit per cache line, which is set on an access, and reset periodically
by a timer. When a race is detected involving a cache line with the
R bit set, it is regarded as a tight race. In a tight race, we want to
ensure the ordering of the two subepochs, but only for the threads
involved in the race. Specifically, if a race in the computing wave-
front incremented the subepoch from i to i + 1 and Tw and Tl are
the winner and loser thread of the race respectively, in the verifica-
tion wavefront, we make Tw issue a “release” signal only after the
completion of subepoch i and Tl wait until all other threads have
released subepoch i before starting i + 1. Threads not involved in
any tight race release as early as they can and do not wait to proceed
to a subsequent subepoch.

4 Experimental Setup

To evaluate the proposed architecture, we simulate a 16-processor
CMP. We use 8 as computing processors and 8 for verification. Our
simulator is based on SimpleScalar [7] 3.0 toolset simulating the
Alpha AXP ISA. Significant modifications are made including an
event-queue infrastructure to faithfully track memory access tim-
ing and contention and faithful modeling of speculative memory in-
struction scheduling and replays [11]. The simulator models a 16-
processor CMP with necessary structures of inter-processor com-
munication. To enable simulation of parallel programs, system call
support for thread creation, synchronization instructions ldl l and
stl c (load-linked and store-conditional), and sense reversing barri-
ers [12] have been implemented. Cache coherence is provided by a
snoop based MESI protocol [12].

All the structures required for our design have also been faith-
fully modeled into the simulator. We have added rollback capabil-
ity to our simulator so that we can faithfully model and evaluate the
effects of rollbacks during execution due to memory order viola-
tion: if memory order is violated for the verification processors, the
execution continues on with the (possibly) wrong value until it is
detected at the end of the epoch when checkpoints are compared or
through a branch misprediction. During this period of “faulty” ex-
ecution, the simulated processor continues on fetching, executing,
and committing instructions. After the violation is detected, verifi-
cation processors are rolled back and the epoch is re-simulated.

We perform our experiments using 12 applications including
those in the SPLASH-2 benchmark suit [57], a parallel genetic link-

Fetch Queue Size 16 instructions
Widths Fetch: 4 / Dispatch: 4 / Commit: 12
Branch Predictor 2048 entry BTB, bimodal, 2-level adaptive, 32 en-

tries RAS, min. misprediction penalty: 12 cycles
Functional Units 3 ALU + 1 Mult (INT); 3 ALU + 1 Mult (FP)
Reg. File 128 Int, 128 FP
Issue Queue 32 Int, 32 FP
LSQ / ROB 64 entries/256 entries
L1 I/D cache 8 KB, 16B line, 2 way, 2 cycles
L2 Cache (shared) 2 MB, 32 way, 128B line, 20 cycle
TLB (I/D each) 128 entries, fully associative
Memory latency 200 cycles
PCB 32 entries per epoch, 8 epochs, 1 port
Epoch size 2048 instructions, 8 sub-epochs, or 32 unique

PCB entries, whichever comes first
PCB bloom filter 257 entries, 8 bits per entry
Checkpoint logic 16 cycles (4 registers/cycle) for creation/loading

Table 1. Simulation parameters.

age analysis program ilink [14], and a parallel version of the trav-
eling salesman problem [1] without optimization (tspUO) and with
optimization to avoid false sharing (tspO). Though our system does
not yet support commercial workloads, we note that tspUO has arti-
ficially high coherence traffic due to false sharing and is specifically
introduced to stress-test the design. We follow the recommendation
in [57] to scale down the L1 cache to mimic realistic cache miss
rate. Table 1 provides the parameters for a single core of the CMP.

5 Experimental Analysis

PCB access optimizations The PCB is important to decouple
the commit of verified data from the normal execution of the cores.
However, associatively searching a PCB is costly both in terms of
time and energy consumption. We described two optimizations in
Section 3.1.2. Figure 7 shows their effectiveness in cutting down
the number of associative searches. A PCB access may be needed
due to a local or a remote request.

barne chole fft fmm ilink lu ocean radix raytr tspO tspUO wat−sp Avg
0

1

2

3

4

x 105

���
�

Benchmarks

P
C

B
 A

cc
es

se
s

P
er

 1
M

 In
st

.

Associative search
No search required indicated by Bloom Filter
Access using index pointer

����������������������������

A: Local requests

A

B: Remote requests

B

Figure 7. Breakdown of total PCB accesses per million instruc-
tions by search type. The first bar breaks down the PCB accesses
for local requests. The second bar breaks down the access pattern
for remote requests.

The first thing to note is that with the two techniques, only
one application (ocean) still has a noticeable number of associa-
tive searches remaining. On average, less than 1% of the accesses
need to perform an associative search. The remaining accesses ei-
ther are stopped by the bloom filter (53.7%) or access the PCB di-
rectly via the pointer (45.4%). Overall, at about only 466 times per
million committed instructions (geometric mean), actual associative
searches are rare in absolute terms too.

Secondly, the two optimizations complement each other very
well. Due to temporal and spatial locality, the index pointer is very
effective when a processor accesses its own PCB. Even if the pointer

8

is stale, it still indicates that there is no other version of the line in
the PCB, so no search is needed. Out of all the local requests that
would need to check the PCB, the pointer mechanism filters out
55.3% and the bloom filter filters out 43.7%. The index pointer is
not as useful in a direct manner when it comes to handling remote
requests (as evident from the second bar). Most coherence mes-
sages are to data not actually being shared and therefore will not
match any cache line in other cores. However, the index pointer still
helps in an indirect way: those lines being pointed to by a pointer
do not set their presence bit in the bloom filter while their in-cache
versions stay in the cache. This drastically reduces the number of
bits set in the bloom filter and therefore cuts down the number of
false hits. As a result, for the accesses that would otherwise search
the PCB (cache miss for local requests and coherence requests that
do not find a match in the cache), 98.8% are filtered. The remain-
ing 1.2% are mostly false positives. Without this optimization, the
filter becomes much more clogged and results in many more false
positives. Except for one application (ocean), the number of false
positives would increase by at least 21 times and as much as more
than 800 times.

Memory access bandwidth impact As discussed earlier, di-
viding execution into epochs increases the PCB-to-L2 writeback
traffic. Simply delaying the commit of PCB data to the L2 cache
significantly mitigates the increase in traffic. We show the effect
in Figure 8. The figure shows the traffic as a percentage of the
available bandwidth between the L1 and L2. The two right hand
bars for each application show the breakdown of bandwidth usage
without and with delayed writeback from PCB. For reference, the
leftmost bar shows the bandwidth consumption of running the com-
puting wavefront alone in a non-redundant manner. In this case,
writebacks happen when a dirty line is evicted.

barne chole fft fmm ilink lu ocean radix raytr tspO tspUO wat−spAvg
0

10%

20%

30%

���
�
������

		

���
�

�

�

�

������
���
������
���
��
�

���
�
���
� ���������������� ��

��

��
��

��

���
�
��
�

!�!!�!
!�!
""
"
##$
$

%& ''((
)�))�)*�**�* ++

,, -
-
.. /�/
/�/00
112
2 3�33�3

44 567�78�8

Benchmarks

B
an

dw
id

th
 C

on
su

m
ed Verification wavefront L2 read

PCB to L2 writeback
L1 to L2 writeback

9�9�99�9�9:�:�::�:�:

Computing wavefront L2 read

B: Immediate writeback from PCB
C: Delayed writeback from PCB

A B C

A: Non−redundant execution

Figure 8. Core-to-L2 communication bandwidth consumption.

We can see that in all cases, writeback traffic only consumes a
small portion of the available L2 bandwidth. Nevertheless, the rel-
ative increase due to epoch segmentation is dramatic in some ap-
plications. With a delayed committing, much of the unnecessary
writeback is absorbed. For instance, in lu the reduction is 93%.
On average, delaying writeback eliminates 37% of writeback traffic
which in turn reduces the overall L2 traffic by 15% compared to the
TLR scheme that writes back immediately after validation. Overall,
as Figure 8 shows, the on-chip traffic to support a 16-thread TLR
execution is about 96% higher than a non-redundant execution with
8 threads. Clearly, supporting TLR does not overtax the on-chip
communication bandwidth. The impact on the off-chip bandwidth
is even smaller. Because the two wavefronts share the same on-chip
L2 cache, the off-chip bandwidth demand is only 7.9% higher than
running a single wavefront.

Area and energy overhead Our TLR support requires some
extra storage to perform buffering and bookkeeping. All such stor-

age structures are off the critical path and do not require premium
silicon real-estate close to the core pipeline. Furthermore, the space
overhead is also modest. Table 2 lists the size of the structures.
Note that for this calculation, we assume a more likely 32KB L1
cache. The power overhead of accessing these structures amounts
to an insignificant 0.5% of the total power consumption.

Structure PCB Checkpoint
buffer

Index
pointer

Bloom
filter

Checksum
buffer

Branch
info Q

Total

Size (Byte) 4096 4608 2048 257 128 128 11.3K
Table 2. Storage overhead per core assuming a typical 32KB L1.

Performance impact Redundancy necessarily reduces the
amount of resources used for actual computation. In lock-stepped
redundancy (e.g., [44]) or TLR, half of the processors are not con-
tributing to the computation when redundancy is enabled. This loss
is even higher for products with triple-modular redundancy [23]. It
is up to the user to decide whether such tradeoff between through-
put and reliability is worth the while. As transient errors are likely
to be rare relative to other events inside a microprocessor, the per-
formance impact under fault-free situations is thus a very important
metric.

We first measure this performance impact under the three dif-
ferent policies of memory access order enforcement as discussed
earlier – blindly speculating, strict enforcement, and selective en-
forcement. For selective enforcement, we use a tightness window of
100 cycles, which catches a significant portion of the violating races
without enforcing too many strict boundaries. Also, at boundaries
that are enforced, threads stall at the commit stage, waiting for other
threads to catch up. Stalling at commit is more efficient compared
to stalling at dispatch as it utilizes the processor pipeline by contin-
uing execution. However, stalling at commit increases the number
of sequential consistency replays [61].

Figure 9 shows the execution speed of the three configurations
all normalized to the system where all 16 processors are used for
computation. The main source of the performance loss is redun-
dancy itself, not our particular design. To highlight design-specific
slowdowns, we also show an idealized TLR design approximated by
running only the compute wavefront on half of the processors. In
our suite of applications, the throughput loss in this idealized TLR
configuration ranges from 27% to 49% with an average of 39%.

barne chole fft fmm ilink lu ocean radix raytr tspO tspUO wat−sp Avg
0.4

0.6

0.8

1.0

Benchmarks

N
or

m
al

iz
ed

 E
xe

c.
 S

pe
ed Non−redundant (8 Cores)

Blind speculation
Strict enforcement
Selective enforcement

Figure 9. Performance impact of different configurations.

Compared to the idealized TLR, the additional performance im-
pact is rather small. In all three cases, the average degradation is less
than 3%. It is worth noting that in all cases, the direct overhead for
checkpoint creation for the leading wavefront is negligible as we are
only stalling the commit stage 16 cycles every epoch, which lasts on
the order of 1000 cycles. In some applications, blindly speculating
generates many rollbacks and slows down the execution noticeably.
Figure 10 shows the percentage of the verification epochs that need
to be rolled back due to incorrect race outcomes.

9

barne chole fft fmm ilink lu ocean radix raytr tspO tspUO wat−sp Avg
0

2%

4%

6%

8%

Benchmarks

E
po

ch
 R

ol
lb

ac
ks

Blind speculation
Selective enforcement

Figure 10. Percentage of epoch rollbacks due to relaxed order
enforcement.

As we can see, selective enforcement reduces the number of roll-
backs by 52% on average. Note that strict enforcement does not
generate any memory order violation-induced rollbacks at all. From
an overall performance perspective, strictly enforcing the order is a
good option. However, this approach has its disadvantages. In the
verification wavefront, we are waiting for the slowest thread within
every subepoch, effectively placing far more fine-grain barriers than
the other two options. As a result, the throughput of the verification
wavefront is lower, and there is less “slack” to trade off for energy
savings. Figure 11 shows this point quantitatively for the tested ap-
plications.

barne chole fft fmm ilink lu ocean radix raytr tspO tspUOwat−sp Avg
0.75

1.0

1.25

1.5

Benchmarks

E
ff

ec
tiv

e
Th

ro
ug

hp
ut Blind speculation

Strict enforcement
Selective enforcement

Figure 11. Effective IPC of verification processors for different
fault-tolerant configurations.

The figure shows the normalized effective throughput of the veri-
fication wavefront, which is calculated as the throughput of the ver-
ification wavefront excluding the idle periods when there is no ver-
ification workload, and then normalized to the throughput of the
computing wavefront.

We can see that with blind speculation, the verification wave-
front has a 11.8% higher effective throughput than the computing
wavefront, thanks to the execution assistance it receives from the
latter. For our applications, some of that higher throughput is off-
set by extra work needed because of the rollbacks. For strict or-
der enforcement, this advantage lowers somewhat to 9.7%. Clearly,
this difference is application-dependent and for applications with
more communications than those shown here, this gap will likely
increase. Thus, it is still desirable to develop an effective strategy to
minimize unnecessary stalls in the verification wavefront.

Controlling subepoch transitions We use the subepochs as
an economic, broad-brushed race-tracking mechanism. Unneces-
sary transitions should be limited as they not only hurt the efficiency
of the verification wavefront but also can induce frequent epoch
changes which increases the overhead of the computing wavefront.

As described in Section 3.2, when a cache line is evicted, races
involving the cache line can no longer be tracked by the baseline
cache coherence mechanism. We can conservatively increase the
subepoch number, but this will trigger too many unnecessary tran-
sitions as shown in Figure 12 by the right bar in each pair. Clearly,
with the exception of tspUO, the great majority of subepoch tran-

barne chole fft fmm ilink lu ocean radix raytr tspO tspUO wat−sp Avg
0

100

200

300

Benchmarks

S
ub

ep
oc

hs
 P

er
 1

M
 In

st
.

Subepoch transition due to cache line eviction
Subepoch transition due to race

Figure 12. The number and breakdown of subepoch transitions
per million committed instructions in each application. The left
bar in each pair shows the number of subepochs with the per-
set eviction bit. The right bar shows the result when an eviction
simply triggers a subepoch transition.

sitions are due to cache evictions. The left bar shows the same
breakdown when we use a single bit per cache set to remember
eviction (and only trigger a transition when a coherence activity
happens to a line with the eviction bit set). As we can see, the
number of subepoch transitions drastically reduces: by 61% on av-
erage. With this simple mechanism, epoch transition due to running
out of subepochs is extremely rare, except in tspUO. This is visu-
ally shown in Figure 13, which shows the total number of epoch
transitions and the breakdown based on the reasons of the transi-
tions. We can see that running out of PCB entries is the major rea-
son whereas frequent subepoch transitions represent a much smaller
portion of epoch transitions. Intuitively, a more sophisticated mech-
anism to limit subepoch transition will have diminishing returns, at
least for these applications tested. In our experiments, on average,
each epoch contains 866 committed instructions per thread. This
means that with our design, one can easily buffer several thousands
of unverified instructions per thread.

barne chole fft fmm ilink lu ocean radix raytr tspO tspUO wat−sp
0

250

500

750

1000

;<;=<= ><>><>
><>><>
><>><>
><>><>

?<??<?
?<??<?
?<??<?
?<??<?

Benchmarks

E
po

ch
s

P
er

 1
M

 In
st

.

Subepoch limit reached
PCB full
Instruction limit reached

@<@<@@<@<@A<A<AA<A<A

Figure 13. The total number of epoch transitions per million
committed instructions and the breakdown of that number by the
causes that trigger the transitions.

6 Related Work

There is a significant body of work exploring various forms of re-
dundancy to enhance the system’s tolerance to errors. In addi-
tion to the vast amount of work on circuit-level fine-grain redun-
dancy discussed previously [8, 15, 19, 26, 32, 55], there are also
numerous proposals for architecture-level redundancy either using
dedicated, physically redundant hardware [3, 9, 44], or replicat-
ing instructions to use the same hardware or another thread con-
text [4,17,27,31,35–37,39,44,45,53]. Such instruction replication
can be done at the granularity of individual instructions [31, 36],
or at the thread level, duplicating the thread either entirely or par-
tially [4, 16, 17, 27, 37, 39, 44, 53]. Much of this prior work of
architecture-level redundancy focuses on a single thread and typi-
cally relies on replicating results of a load instruction, and thus does

10

not independently verify the correctness of the memory subsystem
logic. In shared-memory parallel workloads, this leaves the cache
coherence and memory consistency logic also outside the protection
of redundancy. We described a design that forces redundant uses of
the logic in the memory subsystem.

Without enforcing lock-stepping, redundantly performing the
same memory accesses can produce different results due to timing
non-determinism in parallel execution. Smolens et al. address this
eventuality by resorting to synchronized requests in Reunion [47].
When discrepancy is detected, the redundant processor pair roll
back to a known correct state, single-step until the first memory
operation, and issue a synchronized request. We use a different ap-
proach: rather than relying on single-stepping to ensure determin-
istic results, we only affect execution timing by stalling the commit
stage to avoid non-determinism.

Another body of work focuses on fault tolerance in the multi-
processor domain [5, 6, 22, 34, 38, 48–51, 58]. However, this work
is mostly concerned with creating efficient or globally-consistent
checkpoints. Error detection is typically not the concern. While er-
rors in storage elements may be relatively easy to detect with error-
correcting codes, errors in logic are much harder to detect and will
quickly become non-negligible [42]. The redundant execution we
used in this paper fills the gap of error detection. Another common
assumption in this work is that verification is immediate because of
using mechanisms like lock-step redundant execution [5, 49], er-
ror detection code, internal control check [38], execution validation
routines [22], and so forth. In these cases, the two redundant threads
are highly synchronized and will not experience different race out-
comes. Our design allows highly-decoupled redundant threads.

Another focus of this body of work is on fast and efficient re-
covery mechanisms. In [38], rollback points are defined by the
application program while others use more application-transparent
check-pointing and recovery techniques. [21] proposes using a re-
covery cache with the PDP-11 processor to facilitate rapid recov-
eries. [58] augments the copy-back update policy with a normal
cache, while [22, 51] use dedicated hardware buffers to store un-
verified memory updates similar to our PCB. By virtue of buffering
unverified results, our system naturally supports fast recovery. The
key goals of our design are efficiency and non-intrusiveness. The
simple and yet effective use of index pointers and the unique way of
applying the bloom filter are novel contributions compared to these
buffers proposed.

Finally, a body of work addresses the issue of tracking the relative
order of memory accesses for debugging [28,59,60]. The emphasis
of order tracking for debugging and redundant execution for fault
tolerance has subtle but important differences. While for debugging
purposes it is necessary to be able to comprehensively and exactly
reproduce an execution order, for our purpose, besides guaranteeing
forward progress, we only need to minimize the chance of divergent
execution due to different outcomes of memory access races. Also,
while debugging support can afford expensive offline inference to
reconstruct the exact execution order, we need a simple online en-
forcement support. As a result of the differences, our order track-
ing and enforcement mechanism uses a simple representation that
matches well with our epoch-based computing/verification flow.

7 Conclusions and Future Work

Aggressive device dimension scaling is widely expected to bring
significant challenges in maintaining system integrity in future tech-

nology generations. High-level compensation techniques are there-
fore becoming increasingly indispensable to offer end-users the
required level of dependability. Such support needs to be flexi-
ble, supporting on-demand enhancement of dependability, and non-
intrusive in terms of the impact to the design complexity, the circuit
critical paths, and the performance of the applications. Thread-level
redundancy (TLR) offers a very attractive paradigm as it can offer
comprehensive protection and, with the ever more prevalent multi-
core architecture, it can be implemented non-intrusively, without
affecting timing critical paths. Even though there is an extensive
literature exploring TLR issues in the realm of single-threaded ap-
plications, efficient architectural support for comprehensive redun-
dancy of multithreaded, shared memory workloads remains under-
explored.

Our design uses simple and effective solutions to buffer memory
state and to track and enforce memory races to deal with the non-
determinism in multithreaded execution. All hardware supports are
off the critical path, and can be disabled easily and cleanly. The core
microarchitecture is redundancy-agnostic. Experimental analysis
has shown that the novel design of PCB for memory state buffering
and the optimization techniques to cut down expensive associative
searches are very effective. The memory access order tracking and
enforcement logic uses simple architectural support and yet is effi-
cient in the common case, allowing the trailing verification threads
to execute without excessive waiting. Overall, compared to an ideal-
ized TLR implementation, our TLR support only introduces a small
2.5% performance degradation.

In the future, we plan to study the extension of our architectural
support and optimization techniques to other multiprocessor de-
sign points (such as hierarchical multiprocessor with multiple CMP
chips), different coherence mechanisms, and consistency models.

Acknowledgments

We would like to sincerely thank the anonymous reviewers for their
insightful comments and suggestions.

References
[1] C. Amza et al.. TreadMarks: Shared Memory Computing on Networks

of Workstations. IEEE Computer, Vol. 29(2):18–28, Feb. 1996.
[2] H. Ando et al.. A 1.3-GHz Fifth-Generation SPARC64 Microproces-

sor. IEEE J. Solid-State Circuits, Vol. 38(11):1896–1905, Nov. 2003.
[3] T. Austin. DIVA: A Reliable Substrate for Deep Submicron Microar-

chitecture Design. In Int. Symp. Microarchitecture. Nov. 1999.
[4] D. Bernick et al.. NonStop R©Advanced Architecture. In Int. Conf.

Dependable Systems and Networks. Jun.–Jul. 2005.
[5] P. Bernstein. Sequoia: A Fault-tolerant Tightly Coupled Multiproces-

sor for Transaction Processing. IEEE Computer, Vol. 21(2):37–45,
Feb. 1988.

[6] A. Bondavalli, S. Chiaradonna, and F. Giandomenico. Efficient Fault
Tolerance: An Approach to Deal with Transient Faults in Multiproces-
sor Architectures. In International Conference on Parallel and Dis-
tributed Systems. Dec. 1994.

[7] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0.
Technical report 1342, Computer Sciences Department, University of
Wisconsin-Madison, Jun. 1997.

[8] D. Chardonnereau et al.. Fault Tolerant 32-bit RISC Processor: Im-
plementation and Radiation test Results. In Single-Event Effects Sym-
posium. Apr. 2002.

[9] S. Chatterjee, C. Weaver, and T. Austin. Efficient Checker Processor
Design. In Int. Symp. Microarchitecture. Dec. 2000.

[10] Cisco Systems. Cisco 12000 Single Event Upset Failures Overview
and Work Around Summary, 2003. http://www.cisco.com/

11

warp/public/770/fn25994.shtml.
[11] Compaq Computer Corporation. Alpha 21264/EV6 Microprocessor

Hardware Reference Manual, Sep. 2000.
[12] D. E. Culler and J. P. Singh. Parallel Computer Architecture: a Hard-

ware/Software Approach. Morgan Kaufmann, 1999.
[13] T. Dell. A While Paper on the Benefits of Chipkill-Correct ECC for PC

Server Main Memory. IBM Microelectronics Division, Nov. 1997.
[14] S. Dwarkadas et al.. Parallelization of General Linkage Analysis Prob-

lems. Human Heredity, Vol. 44:127–141, 1994.
[15] B. Gill et al.. An Efficient BICS Design for SEUs Detection and Cor-

rection in Semiconductor Memories. In Design, Automation and Test
in Europe. Mar. 2005.

[16] B. Gold et al.. TRUSS: A Reliable, Scalable Server Architecture. IEEE
Micro, Vol. 25(6):51–59, Nov./Dec. 2005.

[17] M. Gomaa et al.. Transient-Fault Recovery for Chip Multiprocessors.
In Int. Symp. Computer Architecture. Jun. 2003.

[18] S. Hareland et al.. Impact of CMOS Process Scaling and SOI on the
Soft Error Rates of Logic Processes. In IEEE Symp. VLSI Technology.
Jun. 2001.

[19] P. Hazucha et al.. Measurements and Analysis of SER-Tolerant Latch
in a 90-nm Dual-Vt CMOS Process. IEEE J. Solid-State Circuits,
Vol. 39(9):1536–1543, Sep. 2004.

[20] R. Kumar et al.. Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction. In Int. Symp. Microar-
chitecture. Dec. 2003.

[21] P. Lee, N. Ghani, and K. Heron. A Recovery Cache for the PDP-11.
IEEE Transactions on Computers, Vol. 29(6):546–549, Jun. 1980.

[22] Y. Lee and K. Shin. Design and Evaluation of a Fault-Tolerant Mul-
tiprocessor Using Hardware Recovery Blocks. IEEE Transactions on
Computers, Vol. 33(2):113–124, Feb. 1984.

[23] L. Longden et al.. Designing A Single Board Computer For Space
Using The Most Advanced Processor and Mitigation Technologies. In
European Space Components Conference, ESCCON 2002. Sep. 2002.

[24] D. Lyons. Sun Screen. Forbes, Nov. 2000. http://www.forbes.
com/global/2000/1113/0323026a.html.

[25] D. Mavis and P. Eaton. Soft Error Rate Mitigation Techniques for
Modern Microcircuits. In Int. Reliability Physics Symp.. Apr. 2002.

[26] S. Mitra et al.. Robust System Design with Build-in Soft-Error Re-
silience. IEEE Computer, Vol. 38(2):43–52, 2005.

[27] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed Design and Eval-
uation of Redundant Multithreading Alternatives. In Int. Symp. Com-
puter Architecture. May 2002.

[28] S. Narayanasamy, C. Pereira, and B. Calder. Recording Shared Mem-
ory Dependencies Using Strata. In Int. Conf. Architectural Support for
Programming Languages and Operating Systems. Oct. 2006.

[29] J. Neumann. Probabilistic Logics and the Synthesis of Reliable Or-
ganisms form Unreliable Components. In C. Shannon and J. Mc-
Carthy, editors, Automata Studies, pp. 43–98. Princeton University
Press, 1956.

[30] M. Nicolaidis. Time Redundancy Based Soft-Error Tolerance to Res-
cue Nanometer Technologies. In IEEE VLSI Test Symp.. Apr. 1999.

[31] A. Parashar et al.. A Complexity-Effective Approach to ALU Band-
width Enhancement for Instruction-Level Temporal Redundancy. In
Int. Symp. Computer Architecture. Jun. 2004.

[32] J. Patel and L. Fung. Concurrent Error Detection in Multiply and
Divide Arrays. IEEE Transactions on Computers, Vol. 32:417–422,
1983.

[33] W. Peterson. On Checking an Adder. IBM Journal of Research and
Development, Vol. 2(2):166–168, Apr. 1958.

[34] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-Effective Ar-
chitectural Support for Rollback Recovery in Shared-Memory Multi-
processors. In Int. Symp. Computer Architecture. May 2002.

[35] M. Rashid et al.. Exploiting Coarse-Grain Verification Parallelism for
Power-Efficient Fault Tolerance. In Int. Conf. Parallel Architectures
and Compilation Techniques. Sep. 2005.

[36] J. Ray et al.. Dual Use of Superscalar Datapath for Transient-Fault
Detection and Recovery. In Int. Symp. Microarchitecture. Dec. 2001.

[37] S. Reinhardt and S. Mukherjee. Transient Fault Detection via Simulta-
neous Multithreading. In Int. Symp. Computer Architecture. Jun. 2000.

[38] J. Rohr. STAREX Self-Repair Routines: Software Recovery in the
JPL-STAR Computer. In Int. Symp. Fault-Tolerant Computing. 1973.

[39] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tol-
erance in Microprocessors. In Int. Symp. Fault-Tolerant Computing.
Jun. 1999.

[40] S. Rusu et al.. A 1.5-Ghz 130-nm Itanium R© 2 Processor With 6-MB
On-die L3 Cache. IEEE J. Solid-State Circuits, Vol. 38(11):1887–
1895, Nov. 2003.

[41] N. Seifert et al.. Historical Trend in Alpha-Particle induced Soft Er-
ror Rates of the AlphaTMMicroprocessor. In Int. Reliability Physics
Symp.. Apr. 2001.

[42] P. Shivakuma et al.. Modeling the Effect of Technology Trends on
the Soft Error Rate of Combinational Logic. In Int. Conf. Dependable
Systems and Networks. Jun. 2002.

[43] B. Sinharoy et al.. POWER5 System Microarchitecture. IBM Journal
of Research and Development, Vol. 49(4/5):505–521, Sep. 2005.

[44] T. Slegel et al.. IBM’s S/390 G5 Microprocessor Design. IEEE Micro,
Vol. 19(2):12–23, Mar./Apr. 1999.

[45] J. Smolens et al.. Efficient Resource Sharing in Concurrent Error De-
tecting Superscalar Microarchitecture. In Int. Symp. Microarchitec-
ture. Nov. 2004.

[46] J. Smolens et al.. Fingerprinting: Bounding the Soft-Error Detection
Latency and Bandwidth. In Int. Conf. Architectural Support for Pro-
gramming Languages and Operating Systems. Oct. 2004.

[47] J. Smolens et al.. Reunion: Complexity-Effective Multicore Redun-
dancy. In Int. Symp. Microarchitecture. Dec. 2006.

[48] D. Sorin et al.. SafetyNet: Improving the Availability of Shared Mem-
ory Multiprocessors with Global Checkpoint/Recovery. In Int. Symp.
Computer Architecture. May 2002.

[49] L. Spainhower et al.. IBM’s ES/9000 Model 982’s fault-tolerant design
for consolidation. IEEE Micro, Vol. 14(3):48–59, Feb. 1994.

[50] Y. Tamir and T. Frazier. Application-transparent Process-level Error
Recovery for Multicomputers. In Hawaii Int. Conf. System Sciences.
Jan. 1989.

[51] Y. Tamir, M. Tremblay, and D. Rennels. The Implementation and Ap-
plication of Micro Rollback in Fault-Tolerant VLSI Systems. In Int.
Symp. Fault-Tolerant Computing. Jun. 1988.

[52] J. Tendler et al.. POWER4 System Microarchitecture. IBM Journal of
Research and Development, Vol. 46(1):5–25, Jan. 2002.

[53] T. Vijaykumar et al.. Transient-Fault Recovery via Simultaneous Mul-
tithreading. In Int. Symp. Computer Architecture. May 2002.

[54] N. Wang et al.. Characterizing the Effects of Transient Faults on a
High-Performance Processor Pipeline. In Int. Conf. Dependable Sys-
tems and Networks. Jun. 2004.

[55] J. Watterson and J. Hallenbeck. Modulo 3 Residue Checker: New
Results on Performance and Cost. IEEE Transactions on Computers,
Vol. 37(5):608–612, 1988.

[56] C. Weaver et al.. Techniques to Reduce the Soft Error Rate of a High-
Performance Microprocessor. In Int. Symp. Computer Architecture.
Jun. 2004.

[57] S. Woo et al.. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Int. Symp. Computer Architecture.
Jun. 1995.

[58] K. Wu, W. Fuchs, and J. Patel. Error Recovery in Shared Memory
Multiprocessors Using Private Caches. IEEE Trans. Parallel and Dis-
tributed Systems, Vol. 1(2):231–240, Apr. 1990.

[59] M. Xu, R. Bodik, and M. Hill. A ”Flight Data Recorder” for Enabling
Full-system Multiprocessor Deterministic Replay. In Int. Symp. Com-
puter Architecture. Jun. 2003.

[60] M. Xu, R. Bodik, and M. Hill. A Regulated Transitive Reduction
(RTR) for Longer Memory Race Recording. In Int. Conf. Architec-
tural Support for Programming Languages and Operating Systems.
Oct. 2006.

[61] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE
Micro, Vol. 16(2):28–40, Apr. 1996.

[62] J. Ziegler and W. Lanford. Effect of Cosmic Rays on Computer Mem-
ories. Science, Vol. 206(16):776–788, Nov. 1979.

12

