Efficient Data Streaming with On-chip Accelerators:
Opportunities and Challenges

Rui Hou!, Lixin Zhang3, Michael C. Huang2’4, Kun Wangl, Hubertus Franke?, Yi Ge!, and Xiaotao Chang1

'IBM China Research Laboratory,
Email:{hourui, wangkun, geyi, changxt} @cn.ibm.com
2IBM T.J. Watson Research Center,
Email: {mchuang, frankeh}@us.ibm.com
3National Research Center of High Performance Computers,
Institute of Computing Technology, Chinese Academy of Sciences
Email: zhanglixin@ict.ac.cn
4University of Rochester,
Email: michael.huang @rochester.edu

Abstract

The transistor density of microprocessors continues
to increase as technology scales. Microprocessors de-
signers have taken advantage of the increased transis-
tors by integrating a significant number of cores onto a
single die. However, a large number of cores are met
with diminishing returns due to software and hardware
scalability issues and hence designers have started inte-
grating on-chip special-purpose logic units (i.e., accel-
erators) that were previously available as PCl-attached
units. It is anticipated that more accelerators will be in-
tegrated on-chip due to the increasing abundance of tran-
sistors and the fact that not all logic can be powered at
all times due to power budget limits. Thus, on-chip ac-
celerator architectures deserve more attention from the
research community.

There is a wide spectrum of research opportunities for
design and optimization of accelerators. This paper at-
tempts to bring out some insights by studying the data ac-
cess streams of on-chip accelerators that hopefully foster
some future research in this area. Specifically, this paper
uses a few simple case studies to show some of the com-
mon characteristics of the data streams introduced by on-
chip accelerators, discusses challenges and opportunities
in exploiting these characteristics to optimize the power
and performance of accelerators, and then analyzes the
effectiveness of some simple optimizing extensions pro-
posed.

1 Introduction

Continued technology scaling has enabled modern chips
to integrate a very significant amount of transistors on a
single die. How to translate this vast amount of transis-
tors into end performance with good energy efficiency
is a central goal for modern microprocessor designers
and researchers in the architecture community. Chip-
multiprocessors (CMP) are the current main approach to
utilizing the increasing transistor budget. For instance,
many recently announced mainline processors, such as
Intel’s Nehalem, AMD’s Opteron 6100 series, and IBM’s
Power7, have put eight or more identical general-purpose
cores on a single chip. However, simply replicating the
same type of core on a processor chip has met with di-
minishing returns in both performance and efficiency.

As an alternative, processor designers have started
adopting heterogeneous designs that incorporate pro-
cessing units other than general-purpose cores into a
die. Such a processing unit can be a light-weight core
(e.g., the SPU in IBM’s Cell processor [6]) or a domain-
specific accelerator (e.g., the Crypto engine in Sun Ultra-
SPARC T2 [15]). Heterogeneous designs with multiple
types of general-purpose cores have been gaining wider
popularity in the literature. However, heterogeneous de-
signs with general-purpose cores and special-purpose ac-
celerators received less attention even though there are
already multiple commercially available products (Table
D).

By targeting specific, well-defined functionalities, an
accelerator uses hard-wired implementations that avoid
the overheads of general-purposes architectures. As a re-

sult, an accelerator can improve performance and energy
efficiency by orders-of-magnitude over a typical general-
purpose core. At the same time, their special-purpose na-
ture seems to defy generalization, and make research of
broadly applicable solutions difficult. In practice, how-
ever, there are ample opportunities for the general re-
search community. In particular, we have observed that
typical accelerator tasks demonstrate predictable, well-
behaved streaming memory access patterns. As design-
ers incorporate more accelerators into existing architec-
tures with general-purpose cores, and reuse the general-
purpose coherence and communication substrates, there
are clear opportunities to better match the access behav-
ior and the underlying hardware support. We also ob-
served that the streaming data account for a considerable
fraction of total on-chip data traffic in real-world deploy-
ments. Therefore, effective optimizations will have a sig-
nificant impact on performance and efficiency. Yet, to the
best of our knowledge, little is done in this area in both
commercial products and academic research work.

This paper attempts to generalize a popular on-chip
accelerator design Section 2) and uses it as a platform
for case studies of the data traffic of on-chip accelerators.
In particular, we describe the common characteristics of
the data access patterns of the accelerators (Section 3);
point out both opportunities and practical challenges in
addressing deficiencies in existing designs (Section 4)
and hopefully attract more academic research in this im-
portant area. We also discuss our own proposals of opti-
mization (Sections 5); present some experimental results
(Sections 6); discuss related work (Sections 7); and con-
clude with a petition for more research work in this area
(Section 8).

2 Overview of On-Chip Accelerators
Architecture

Accelerators come in many different flavors. Table 1 lists
a few existing or upcoming processors with on-chip ac-
celerators [7, 13, 15, 17]. For example, Intel’s EP80579
(Tolapai) combines an IA Complex (i.e., x86) with an Ac-
celeration and Networking I/0O Complex. It targets net-
work security and IP telephony applications. Its acceler-
ators share the physical address space with the IA com-
plex for low overhead data transmission. Sun’s Ultra-
SPARC T2 and Rainbow Falls both integrate a cryptog-
raphy accelerator into each core.

We base our study on a generalized version of the
IBM PowerEN™ architecture (formerly known as wire-
speed processor) [3,9]. PowerEN™Trepresents a generic
processor architecture in which processing cores, hard-
ware accelerators, and I/O functions are closely coupled
in a system-on-chip. It is designed to work at the “edge

Accelerators
Crypto,

Network offloading engine
Bulk encryption,
Secure hash,
Elliptic Curve
Cryptography (ECC)
Kasumi bulk cipher,
Hash (SHA-512)
Network offloading engine,
Security Acceleration Engine
Compression engine
Crypto, Compression,
XML parsing,
Pattern matching,
Network offloading engine
Crypto, Compression

Vendor Processor Name

Intel EP80579

Sun UltraSPARC T2

Sun Rainbow Falls

RMI XLP

PowerEN™ (formerly
IBM known as Wire-Speed
Processor or WSP)

IBM Z-series Processor

Table 1. Accelerators in commercial processors.

of the network™ and operate at “wire speed” (i.e., speeds
in which data are transmitted over the network). Its first
implementation combines 16 multi-threaded IBM Pow-
erPC cores with special-purpose accelerators optimized
for packet processing, security, pattern matching, com-
pression, XML parsing, and high-speed networking. Its
applications include edge-of-network processing, intelli-
gent I/O devices in servers, network attached appliances,
and streaming applications.
To/from on-chip fabric

@ @ @ { Fabric interface |
{ Cache coherence controller
il
On-chip Fabric {

|

Fabric interface

Data engine

management[**| TLB

Buisieqgbuipeo
o0ig 1senbey

Fabric interface
Memory
Controller

Accelerator0

Accelerator |\

11
Tolfrom accelerator internal complex
Figure 1. On-chip accelerator architecture.

The right-hand half of Figure 1 contains the general-
ized accelerator architecture used in our study. It shows
a modular design where all cores and accelerators use
the same coherence module to interface with the on-chip
fabric. The central control unit of the accelerator is the
data engine, which includes a task queue, a data manage-
ment module, three data queues, and an address transla-
tion unit. It behaves in a way similar to the DMA en-
gines widely used in the memory and I/O devices. The
three data queues carry the input data, output data, and
meta/miscellaneous data respectively. The data manage-
ment module is responsible for issuing data access re-
quests and managing the data queues.

To enable an accelerator to tap into the high-
bandwidth and low-latency on-chip cache-to-cache data
transfer fabric, a typical design handles data requests

from an accelerator just like data requests from a
(general-purpose) core. As a result, an accelerator can
directly access data from on-chip caches, but pays the
penalty of going through all the steps required by the co-
herence protocol. To better support accelerators’ traf-
fic, chip designers have added some specialized func-
tionalities like partial cache line accesses and cache in-
jections. For example, PowerEN™supports cache in-
jection, where data from accelerators can be directly in-
jected into the caches rather than being written to the lo-
cal memory and then being fetched to the caches upon
subsequent demand misses.

To use an accelerator, software needs to initialize the
source and destination buffers, build a request block that
contains relevant information, and activate the accelera-
tor by sending the request block or a pointer to the re-
quest block to the accelerator. Upon receiving the re-
quest, an accelerator inserts it into the accelerator task
queue. The task queue enables multiple outstanding
tasks. Once a task is selected for processing, the acceler-
ator parses the request block, performs various functions
on the specified input data, and posts results to the spec-
ified output buffer.

3 Data Access Patterns of Accelerators

Due to its special-purpose nature and the simplicity of
its hardware and software, an accelerator often exhibits
more predictable memory access patterns than a general-
purpose core. In this section, we first describe three dif-
ferent types of accelerators and their memory access pat-
terns, and then extract the common characteristics of the
memory access streams of those accelerators.

3.1 Case Studies

Case study 1: Crypto accelerator

A crypto accelerator performs compute-intensive en-
cryption/decryption operations. Its typical application
uses a very small amount of meta data (usually less than
200 bytes), easily captured in the meta data buffer. As a
result, almost all of its data requests issued to the on-chip
fabric are for the input/output data. Figure 2 shows the
memory address trace of one task that decrypts incoming
network data. The trace was taken from our full-system
simulator described in Section 6. The x-axis marks time
in an increasing order when memory requests were is-
sued by the accelerator. The figure clearly shows two
distinct un-interleaved streams, one for loading the input
data and one for storing the output data.

Case study 2: Decompression accelerator

The Decompression accelerator in our study adopts
the implementation proposed by Yu et al. [19], which

Memory access address distribution (Crypto)

—+Sequence of input data loads —= Sequence of output data stores

Figure 2. Address trace from a crypto task.

uses only 2KB hardware buffer essentially as a (very ef-
fective) cache of the 32KB history buffer needed by the
algorithm. Occasional access to history data not captured
in the hardware buffer results in extra requests disrupting
the otherwise perfectly sequential input stream as shown
in Figure 3.

Memory access address distribution (Decompression)
7000

6000 [a

5000 as

4000 A

Address

.
23000 | e
2000

1000

—+—Sequence of input data loads -=-Sequence of output data stores
Sequence of meta data memory access

Figure 3. Address trace from a decompression task.

A pattern matching accelerator exhibits similar access
patterns with those of a compression accelerator, as a pat-
tern matching algorithm requires a set of rules to be ap-
plied on the input data. When the rule set exceeds the
capacity of the data buffer in the accelerator, accesses to
the rule set will interleave with those to the input data.
On the other hand, we have seen application developers
tuning the rule set to make it fit into the buffer available
in the hardware.

Case study 3: Network offload accelerator

The integrated network offload engine, or the HEA
(Host Ethernet Adapter), provides the packet processing
framework optimized for the PowerEN™multicore envi-
ronment. A HEA application typically deals with a lim-
ited amount of meta data. Its primary data flow includes
reading the outgoing packets from the caches or memory

in the egress phase, and injecting the incoming packets
into the caches in the ingress phase. Because the size
of a typical network packet is smaller than 2KB and thus
can be contained within a 4KB page, a packet is typically
stored in contiguous physical addresses. Consequently,
data accesses coming out of the HEA are mostly con-
secutive. Additionally, each HEA supports four 10Gb/s
serial interfaces. When the four HEA serial interfaces all
operate at 10Gb/s, the HEA can consume a significant
fraction of the on-chip bus bandwidth.

In chips optimized for networking environments, such
as IBM PowerEN™and Intel’s EP80579, a network
offload engine is often integrated with a crypto en-
gine and/or a pattern matching engine, because encryp-
tion/decryption and pattern matching are some of the
most common operations performed on the incoming
network packets. For instance, the IPSec protocol stack
requires encryption and hash operations on the data pack-
ets in both egress and ingress phases [8].

3.2 Common Characteristics

We can conclude from the discussion above that most
streams to/from an accelerator are perfectly sequential
and smaller than a 4KB page, and load streams and store
streams are distinctive.

Another feature not shown in the discussion above is
that a stream often gets all lines within the stream from
the same data source (e.g., a particular L2 cache) and
puts them to the same destination. This feature is largely
due to the programming model used for accelerators. In
a typical use of an accelerator, the entire source buffer
is initialized by one software thread and the entire desti-
nation buffer is set up by one software thread. (In many
cases, it is the same thread that sets up the source and
destination buffers. However, it can also be two different
threads exchanging data through the accelerator.)

A typical accelerator is fully pipelined to handle each
incoming data block in a fixed number of cycles. Once
it passes the initial stage and reaches the steady state,
it issues requests at the speed it processes data, i.e., at
constant time intervals.

In summary, accelerator-related data streams have the
following characteristics: @ uninterrupted or slightly in-
terrupted sequential streams; @ distinctive load streams
and store streams; @ relatively constant timing intervals
between consecutive requests; and @ short streams rang-
ing from a few cache lines to no larger than a 4KB page.

4 Opportunities and Challenges

In current practice, accelerators are generally incorpo-
rated into processor chips as an add-on component with

minimum changes to the existing on-chip cache coher-
ence and communication substrates. These substrates are
not yet optimized to deal with accelerators, which can
prevent accelerators from reaching their full potentials.

Take coherent data transport of an accelerator data
stream in a snooping CMP for example.! While concep-
tually straightforward, transporting a single cache line
incurs a whole set of “handshake” actions. It first trig-
gers tag look-ups in all caches participating in the snoop-
ing (usually to all the last level caches) and the on-chip
memory controller (in order to search for conflicts with
outstanding memory requests). After all tag look-up re-
sponses are combined a decision is made as to which unit
provides the requested cache line of data. The decision is
then passed to the units that participated in the snooping
phase. The chosen unit then performs a cache or DRAM
access to get the cache line and initiates a data transfer
request to the on-chip fabric. The data transfer request
first goes through two arbitration processes: one for the
incoming data port of the destination and one for the data
bus from the source to the destination. Upon successful
arbitration, the data transfer starts after a fixed number of
cycles.

As Section 3 shows, an accelerator typically streams
many consecutive cache lines. These lines are commonly
located in the same unit. Conceivably, they can be trans-
ported under a single set of handshake actions, amortiz-
ing the cost and reducing resource occupancy all around.
Below, we discuss the opportunities and challenges in
more detail.

Coherence When a stream of n cache lines requested
by an accelerator indeed resides in the same cache, the
first snoop can reveal that and save the m participating
units from the rest of the n — 1 snoops. The savings in
energy and in the occupancy of the tag arrays are clear
and can be significant. However, this requires non-trivial
extension to the overall coherence protocol. First, a co-
herence action needs to specify the number of lines de-
sired. Second, each controller needs the capability to
walk through the cache and figure out the number of con-
secutive lines it can provide. Finally, the logic that com-
bines responses needs to detect corner cases in which the
action would revert to basic line-based transport.

Data transfer fabric A cache line transfer request must
go through one or more arbitration phases regardless of
whether the underlying on-chip fabric is a broadcast bus,
or a segmented ring, or a packet-switched network-on-
chip. To overcome the arbitration delay, an on-chip data

IWhile coherence is not always required — some DMA engine re-
quires software to flush all data out of the caches and then use back-
door or non-coherent requests to move data between the memory and
the target unit — in most CMPs, cache-to-cache coherent data transfer
is much more efficient.

fabric normally supports pipelined transfer and multiple
outstanding requests to maximize the utilization of the
data transfer channel.

As with the case of snooping, combining multiple
consecutive lines into one transport action amortizes the
overhead of arbitration and other setup operations and
potentially allows much higher data channel utilization.
There are a number of options to support bulk data trans-
fer.

First, the same underlying fabric can be designed to
accept more granule sizes of data transfer. In the case of a
network-on-chip design for example, this means accom-
modating longer packets that contains more flits. This re-
duces the overhead related to routing and virtual channel
allocation, but increases buffering complexities. For fab-
rics such as (segmented) buses, we can allocate a longer
period of time for transfer, but need to carefully consider
the issues of fairness and response time.

Another option is to build a separate, dedicated link
for bulk data transfer. Given the predictability of the ac-
celerator data streams, there are ample opportunities for
latency tolerance. Therefore this data link can be simpler
in architecture (e.g., a basic bus) and made more energy-
efficient by sacrificing transport latency.

Streaming access in memory hierarchy Conventional
memory hierarchy is designed to work at the granularity
of cache lines. For every cache line in a stream, it checks
the tag, reads the data, and then updates the tag and LRU
bits. Additional support is necessary to allow efficient
bulk data handling. On the other hand, there are oppor-
tunities such as that the tag and LRU bits of the lines in
a stream have a high probability of being identical. How
to effectively exploit properties likes this remains to be
seen.

Even though at the DRAM macro level, it is natural to
support streaming from an open DRAM page, the com-
mon practice of the memory controllers in commercial
systems is to use a close-page policy. Furthermore, some
systems like Power7 intentionally interleave consecu-
tive lines across different memory channels/ranks/banks
or caches for better load balancing. Such interleaving
makes it easier to achieve better load balance in the mem-
ory system, without affecting long data streams often
seen in the commercial and scientific workloads. But for
a short stream such as the one used by an accelerator, it is
often not long enough to have two lines from the stream
mapped to the same DRAM bank. How to design a mem-
ory system that can balance the needs of traditional ap-
plications and the need of accelerator applications is part
of future research.

Combined
response Data transfer phase
phase

Command
phase

Snooping
phase

Handshake phase Data transfer phase

(1) Typical phases in coherence transactions

Handshake phase | Data transfer phase Handshake phase | Data transfer phase

Handshake phase | Data transfer phase Data transfer phase

Handshake phase | Data transfer phase Data transfer phase

Handshake phase | Data transfer phase Data transfer phase

(2) Data transfer in traditional cache
coherence protocol

() Stream Data transfer in handshake
sharing cache coherence protocol

Figure 4. Coherence snooping action comparison.
5 Support for More Efficient Data Streaming

This section presents our initial exploration of improving
data streaming within the CMP chip. In particular, we
propose two extensions to the existing chip architecture:
(1) optimistic handshake sharing, in which we use as few
handshake actions as possible to set up the transfer of a
stream; and (2) data location speculation, in which the
location of an input data stream is predicted to further
minimize handshake cost.

5.1 Optimistic Handshake Sharing

Optimistic handshake sharing attempts to eliminate un-
necessary coherence snoop operations by exploiting the
fact that an accelerator-requested data stream can be typ-
ically supplied from a single data source as discussed
before. Figure 4-(1) recapitulates the actions described
in Section 4 for a coherent data transfer. The transac-
tion starts with a command phase, in which the request is
sent to all snooping units. During the subsequent snoop-
ing phase, all snooping units perform tag lookup and re-
spond to the snoop request. After that, in the combined
response phase, the responses are combined to deter-
mine the data source/destination and the corresponding
units are notified. These first three phases are collec-
tively called the handshake phase. After the handshake,
the actual data transfer takes place.

Based on this protocol, the transfer of a consecutive
stream of data involves multiple (overlapping) handshake
phases (as Figure 4-(2) shows) even when all the lines
are in the same cache. The basic idea of optimistic hand-
shake sharing is to allow subsequent requests in a stream
to “share” the handshake effort of the first request and by-
pass the actual handshake actions and avoid unnecessary
resource consumption. Let us consider reading a stream
first and discuss the difference of writing a stream later.

When the accelerator starts a task by parsing the re-
quest block, it obtains the starting address and the length

of input data. With optimistic handshake sharing, the
data engine issues a special stream request using the
starting address and the length of the stream. Note that
length information does not necessarily involve extra bits
in the hardware interface. In our test systems, the ac-
celerator driver always starts an accelerator stream at a
cache line boundary. Thus, several least significant bits
of the request address are always zero and can thus be
re-purposed to indicate whether the request is a stream
request and if so, the number of cache lines in the stream.
With 128B cache lines, we have 7 extra bits for encoding,
enough to describe streams of 4KB page size or smaller.
Longer streams will be broken down at the page bound-
aries.

For implementation simplicity, the snooping logic
handles the stream request just like a normal request. In
other words, only the starting address of the stream is be-
ing considered in the snooping phase. At the end of the
handshake phase, one cache is selected to provide data
for the first cache line. In our empirical observation, the
cache providing the first cache line typically has many, if
not all, cache lines in the stream. By ignoring the rest of
the stream in the snooping phase, we are optimistically
relying on the cache to supply the entire stream.

Once the selected cache sends out the requested line,
it activates the state machine to continue with the next
line and repeats the process until the entire stream is sup-
plied or the next line is not present in the cache. In the
latter case, a special message is used to notify the accel-
erator. The accelerator can then start a new stream access
request, picking up from where the last stream stops.

After issuing a stream request, the accelerator no
longer needs to continuously issue individual line re-
quests. However, it continues to reserve slots in its in-
put buffers for the data replies. When the input buffers
are exhausted, the data supplying cache’s request to send
more cache lines will be rejected (at the time of bus arbi-
tration) and retried later.

Handling an output data stream injected directly into
a cache has three differences from handling an input
stream. First, the destination of the output data stream
may be contained in the request block. In this case, the
accelerator directly sends output data to the destination
without going through a handshake phase even for the
first line in the stream. Second, for some applications
like compression/decompression, the length of the out-
put stream is unknown at the beginning. In this case, we
use a special flag attached to the last store request of the
stream to inform the receiving cache of the completion
of the current stream. Third, the receiving cache must
make sure it already owns the line before it can accept a
store that has not gone through the handshaking phase.
In a MOESI protocol, it means the line must already be

inan “M” or “E” state. This is mostly true in systems like
PowerEN™where the software uses special instructions
to zero out entire cache lines to obtain exclusive owner-
ship of a line without actually moving data. In systems
where the output stream does not reside in the cache, the
effect of optimistic handshaking sharing will be limited.

5.2 Data Location Speculation

Data location speculation attempts to further reduce the
setup overhead of stream transfer by predicting which
unit can supply the data and thus avoid unnecessary
snooping of unrelated units. Since the snooping over-
head is already reduced because of optimistic handshake
sharing, speculating the data location has measurable
benefits only for shorter streams, which are common in
some networking processing applications.

We use a simple mechanism that predicts the core
sending the task request to be where the data is lo-
cated. To understand why such a simple prediction works
well in the common case, recall that an application goes
through three phases to launch a task on an accelerator:
(1) initializing the input data and building the request
block; (2) sending the request block to the accelerator
via special instruction or memory-mapped I/O request;
and (3) waiting for the completion signal. It is thus not a
coincidence that the core sending the task to the acceler-
ator still has the input data in its caches. The accelerator
can simply predict the core that initiates the accelerator
task as the source location for the input data. The ID of
that core is readily available as it is part of the tag in the
coherence transaction mentioned above (step 2).

To implement data location speculation, we extend the
on-chip fabric to support snoop-less load requests that di-
rectly go from the requester (the accelerator) to the des-
tination (the cache predicted to have the input data). If
the predicted cache does not contain the requested data,
a special NACK is sent back to the requesting accelera-
tor. The accelerator will then resort to normal (snooping)
requests. Such a miss occurs due to normal eviction of
the data or thread migration (after initializing the data
structure but before sending the task request to the accel-
erator). Our experience shows that this kind of migration
is rare.

It is worth noting that the actual implementation is
non-trivial. It first requires a filtering mask in the unit
that broadcasts requests to all snooping units on the chip.
The filtering mask indicates which units should pay at-
tention to and which units should ignore the request. Ad-
ditionally, each unit needs a piece of logic that processes
the filtering mask for each incoming request and another
piece of logic to generate the filtering mask for an out-
going request. The generation of the filtering mask is
directly on the critical path and could add one fabric cy-

cle (in our case equivalent to two processor cycles) to the
snooping path.

This extension is similar to many proposals found in
literature where a minor benefit requires a minor, but
non-trivial hardware change to achieve. From a practical
standpoint, ideas such as this may not be adopted despite
their advertised benefits.

6 Experimental Analysis
6.1 Methodology

We have built a full-system simulator for the develop-
ment, analysis, and optimization of commercial applica-
tions to be run on PowerEN™., Tt is based on Mambo
[2], and it includes function-accurate and cycle-accurate
models for the crypto, compression, and pattern match-
ing. Table 2 lists the major parameters of the simu-
lated system. The analysis presented in this section is
mostly based on the crypto accelerator. We have de-
signed micro-benchmarks, where their input data sets
mimic the behavior of real applications, and developed
them using the PowerEN™SDK.

Parameter Configuration

Coherence caches (L2 cache) 4*2M Bytes
Cache line size 128 Bytes
Snooping queue in L2 cache 8 entries

load queue : 16 entries

Store queue : 12 entries
Meta/Misc data queue: 16 entries
Peak performance : 1/8X, 1/4X,
172X, 1X, 2X, 4X bus bandwidth

Crypto accelerator

Cache to accelerator

data access latency 100 cycles

Off-chip memory latency 300 cycles

Table 2. Simulation parameter configurations.

6.2 Cache Tag lookups

Figure 5 shows the numbers of L2 cache tag lookups per-
formed by snoop operations. All numbers are normal-
ized to the baseline architecture (conventional MOESI
snooping protocol). Optimistic handshaking sharing re-
duces the number of cache tag lookups by up to 96.8%
(31X reduction) over the conventional protocol. Each in-
put stream used in the test contains 23 cache lines. The
reduction in the number of tag lookups can be even more
significant if the stream becomes longer or the chip in-
tegrates more on-chip snooping caches. The addition of
location speculation can further reduce the number of tag
lookups by up to 99.2% (125X reduction).

6.3 Bus Traffic

Figure 6 shows the normalized snooping traffic for var-
ious protocols, further broken down to different types
(data transfer, normal requests, and retries etc). For sim-

r
©
3
3

- —.

0% -

S =3 %
5 3 3
S S S

w
3
S

S
2

Normalized cache tag lookup numbe
S e o
2
2

2

3. 2% 0.8%
0% L L
Conventional protocol OHS OHS_DLS

ENormal snooping M Snooping due to retry]
OHS: Optimistic Handshake Sharing
OHS DLS: Optimistic Handshake Sharing + Data Location Speculation

Figure 5. Cache tag lookup comparison.

plicity, we count one snoop request as 6 transactions (1
command transaction, 4 partial response transactions due
to 4 L2 caches, and 1 combined response transaction),
and one cache line needs 4 data transactions. Note that
one request results in many transactions depending on
the real hardware implementation. Once again, the pro-
posed design can eliminate most of the snoop requests
in the baseline design, resulting in significantly reduced
snoop traffic.

100%

w
o
3
5
]
5
2

Conventional protocol OHS OHS_DLS
OSnooping transactions due to retry

ODirect request transactions (for handshake sharing)
W Normal snooping transactions

EData transfer transaction

OHS: Optimistic Handshake Sharing

OHS DLS: Optimistic Handshake Sharing + Data Location Speculation

Figure 6. Bus snooping traffic comparison.

6.4 Execution Time

Figure 7 shows the execution time of a single acceler-
ator task with the baseline protocol and the optimistic
handshake sharing protocol. The x-axis is the process-
ing capability of the accelerator relative to the avail-
able bandwidth. A value of 1/2 means that the accel-
erator processes data in half of the rate the on-chip fab-
ric could provide. Not surprisingly, when there is suf-
ficient bandwidth (1/8 to 1/2 cases), the proposed opti-
mizations have little performance implications. To our
surprise, it does not exhibit the same trend when the data
bandwidth matches with the accelerator processing rate.

Further investigation reveals that a cache does not have
a snoop queue large enough to hold a sufficient number
of overlapping requests that would fully utilize the avail-
able bandwidth between the cache and the accelerator.
By eliminating a majority of snoop requests, the hand-
shake sharing protocol enables the cache to pipeline data
onto the on-chip fabric without bubbles, resulting in a
13.7% performance gain. When the available bandwidth
is smaller than the processing rate of the accelerator, the
proposed design improves the performance up to 23% by
offering better utilization of the on-chip fabric.

1.25

)
T
—_

. 189

=

I Tar

Performance speedup
T

1=}
&
T

1.0037 1 1

1 . . P
4X 2X 1X 1/2X 1/4X 1/8%
Ratio of accelerator bandwidth Vs Bus bandwidth

Figure 7. Sensitivity to different data bandwidth.

One of the main benefits of the proposed design is
the reduction in power consumption. Unlike the per-
formance models, we have not been able to validate the
power models against the real hardware, thus we are un-
able to present power/energy numbers of different de-
signs in this paper. However, it is our belief that the
reduction of the power consumed by snoop operations
related to the accelerators is proportionally to the perfor-
mance numbers presented above.

7 Related Work

A few major microprocessor vendors, along with some
standards organizations, have started developing stan-
dards for the communication interface and programming
models of the accelerators. The examples include Intel’s
QuickAssist [16], AMD’s Torrenza [4], and the Tightly
Coupled Accelerators (TCAs) by AMD and HP.

Snoop filtering techniques were studied to eliminate
unnecessary cache tag accesses for energy savings. For
example, JETTY [12] uses an exclusive table to track the
subsets of lines that are not cached and an inclusive ta-
ble for the superset of the lines that are cached. These
two tables are small, cache-like structures. A bus snoop
request first probes these two tables for snoop filtering.
IBM Blue Gene/P also implements stream registers and

snoop caches to eliminate the vast majority of useless in-
validations [14].

A destination-set prediction scheme was proposed
to avoid indirect forwarding in directory protocol or to
eliminate unnecessary snoops by dynamically capturing
the sharing behavior of data access [1, 10].

Coarse-grain coherence protocols utilize dedicated
hardware buffers to monitor the coherence status of large
regions of memory, and use that information to avoid un-
necessary broadcasts [3,11, 18,20].

These techniques are all optimized for cache-to-cache
or core-to-core data movements. And in essence, they
reduce the snooping related energy consumption by uti-
lizing hardware structures smaller than the cache tag ar-
rays for filtering or prediction or tracking information.
While they can help an accelerator’s data streams to some
extent, they neither completely solve the problems that
an accelerator’s data streams have, nor fully exploit the
unique feature of accelerator streams. First, maintaining
the extra structures introduces additional hardware com-
plexity and incurs additional power consumption. Sec-
ond, these techniques often rely on history information
tracking and require a training phase for accurate filter-
ing or prediction. However, accelerator streams may be
too short to pass the training phase, rendering these struc-
tures less useful.

8 Conclusion and Future Work

As more special-purpose processing units are being in-
tegrated onto microprocessor chips, much research re-
mains to be done to optimize such architectures. This
paper hopes to serve as a case study for illustrating the
challenges and opportunities in such architectures and
demonstrating the potentials of possible optimizations.

This paper focuses on the streaming patterns exhib-
ited by a few on-chip accelerators. We have studied three
types of accelerators, deducted four common patterns
in data streams used by these accelerators, depicted the
efficiency of supporting such streams with a traditional
snooping-based cache coherence protocol, proposed two
extensions for a improved design, and evaluated the per-
formance of the proposed design quantitatively using a
full-system simulator.

Our activity has thus far been limited to the IBM
PowerEN™architecture. Many other on-chip accelera-
tor architectures are possible targets for the same explo-
ration and optimizations. Many other aspects of on-chip
accelerators can also be explored and improved. Accel-
erator architecture design and optimizations are an im-
portant area that we hope will attract a lot of talent in the
research community.

Our future work has two major aspects. First, we will
continue to investigate the memory access behaviors of
different types of accelerators. Second, we plan to ex-
tend this investigation from accelerator to other types of
on-chip modules, including on-chip DMA controller, on-
chip memory controller, as well core-to-core communi-
cations etc. We expect the insights obtained from these
investigation to motivate more architectural innovations.

Acknowledgements

We would like to express our thanks to the IBM
PowerEN™team. We would also like to thank Yu Zhang
from IBM China Research Lab, and Jian Li from IBM
Austin Research Lab, for the technical discussions and
valuable comments on earlier stages of this work. We
also wish to thank the anonymous reviewers for their
valuable comments and suggestions.

References

[1] E.E. Bilir, R.M. Dickson, H. Ying, M. Plakal, D.J. Sorin,
M.D. Hill, and D.A. Wood. Multicast snooping: a new
coherence method using a multicast address network.
In Proceedings of the 26th International Symposium on
Computer Architecture, pages 294-304, 1999.

Patrick Bohrer, James Peterson, Mootaz Elnozahy, Ram

Rajamony, Ahmed Gheith, Ron Rockhold, Charles Le-

furgy, Hazim Shafi, Tarun Nakra, Rick Simpson, Evan

Speight, Kartik Sudeep, Eric Van Hensbergen, and Lixin

Zhang. Mambo: a full system simulator for the PowerPC

architecture. SIGMETRICS Perform. Eval. Rev., 31(4):8—

12, 2004.

[3] J.F. Cantin, M.H. Lipasti, and J.E. Smith. Improving

multiprocessor performance with coarse-grain coherence

tracking. In Proceedings of the 32nd International Sym-
posium on Computer Architecture, pages 246-257, June

2005.

AMDs Holistic Vision for the Future: Torrenza Enables

Platform Innovation. http://www.instat.com/

promos/07/d1/IN0703889WHT _DahenUd9.pdf.

H. Franke, J. Xenidis, C. Basso, B. M. Bass, S. S. Wood-

ward, J. D. Brown, and C. L. Johnson. Introduction to

the wire-speed processor and architecture. IBM Journal
of Research and Development, 54(1):3:1-3:11, January

2010.

[6] H. Peter Hofstee. Power Efficient Processor Architec-
ture and The Cell Processor. In Proceedings of Inter-
national Symposium on High-Performance Computer Ar-
chitecture, volume 0, pages 258-262, Los Alamitos, CA,
USA, 2005. IEEE Computer Society.

[7] Intel. http://www.intel.com/design/
intarch/ep80579/index.htm.

[8] IPSec. http://datatracker.ietf.org/wg/
ipsec/.

[2

—

[4

—_

[5

—

[9] C. Johnson, D.H. Allen, J. Brown, S. Vanderwiel,
R. Hoover, H. Achilles, C.-Y. Cher, G.A. May, H. Franke,
J. Xenedis, and C. Basso. A wire-speed Power™ pro-
cessor: 2.3GHz 45nm SOI with 16 cores and 64 threads.
In Proceedings of IEEE International Solid-State Circuits
Conference (ISSCC), pages 104—105, February 2010.
[10] M.M.K. Martin, PJ. Harper, D.J. Sorin, M.D. Hill, and
D.A. Wood. Using destination-set prediction to improve
the latency/bandwidth tradeoff in shared-memory multi-
processors. In Proceedings of the 30th Annual Interna-
tional Symposium on Computer Architecture, pages 206—
217, June 2003.

[11] A.Moshovos. RegionScout: exploiting coarse grain shar-
ing in snoop-based coherence. In Proceedings of the
32nd International Symposium on Computer Architec-
ture, pages 234-245, June 2005.

[12] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary.
JETTY: filtering snoops for reduced energy consump-
tion in SMP servers. In Proceedings of the 7th Interna-
tional Symposium on High-Performance Computer Archi-
tecture, pages 85-96, February 2001.

[13] RMI XLP Series processor. http://www.rmicorp.
com/assets/docs/XLP832_Product_Guide.
pdf.

[14] V. Salapura, M. Blumrich, and A. Gara. Design and im-
plementation of the Blue Gene/P snoop filter. In Proceed-
ings of the 14th IEEE International Symposium on High
Performance Computer Architecture, pages 5-14, Febru-
ary 2008.

[15] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski,
N. Gura, R. Hetherington, P. Jordan, M. Luttrell, C. Ol-
son, B. Sana, D. Sheahan, L. Spracklen, and A. Wynn. Ul-
traSPARC T2: A highly-treaded, power-efficient, SPARC
SOC. In Proceedings of IEEE Asian Solid-State Circuits
Conference, pages 22-25, November 2007.

[16] Intel QuickAssist Technology. http://www.intel.
com/technology/platforms/quickassist/.

[17] C.F. Webb. IBM Z10: The Next-Generation Mainframe
Microprocessor. Proceedings of IEEE Micro, 28(2):19—
29, March 2008.

[18] T.F. Wenisch, S. Somogyi, N. Hardavellas, Jangwoo Kim,
A. Ailamaki, and Babak Falsafi. Temporal streaming of
shared memory. In Proceedings of the 32nd International
Symposium on Computer Architecture, pages 222-233,
June 2005.

[19] H. Yu, H. Franke, G. Biran, A. Golander, T. Nelms, and
B.M. Bass. Stateful hardware decompression in network-
ing environment. In Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Commu-
nications Systems, pages 141-150, New York, NY, USA,
2008. ACM.

[20] J. Zebchuk, E. Safi, and A. Moshovos. A Framework for
Coarse-Grain Optimizations in the On-Chip Memory Hi-
erarchy. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
314-327, December 2007.

