
Accelerating Decoupled Look-ahead via Weak Dependence Removal:

A Metaheuristic Approach∗

Raj Parihar and Michael C. Huang

Dept. of Electrical & Computer Engineering

University of Rochester, Rochester, NY 14627, USA

Email: {parihar@ece., michael.huang@}rochester.edu

Abstract

Despite the proliferation of multi-core and multi-threaded

architectures, exploiting implicit parallelism for a single se-

mantic thread is still a crucial component in achieving high

performance. Look-ahead is a tried-and-true strategy in un-

covering implicit parallelism, but a conventional, monolithic

out-of-order core quickly becomes resource-inefficient when

looking beyond a small distance. A more decoupled ap-

proach with an independent, dedicated look-ahead thread on

a separate thread context can be a more flexible and effec-

tive implementation, especially in a multi-core environment.

While capable of generating significant performance gains,

the look-ahead agent often becomes the new speed limit. For-

tunately, the look-ahead thread has no hard correctness con-

straints and presents new opportunities for optimizations.

One such opportunity is to exploit “weak” dependences.

Intuitively, not all dependences are equal. Some links in a

dependence chain are weak enough that removing them in

the look-ahead thread does not materially affect the qual-

ity of look-ahead but improves the speed. While there are

some common patterns of weak dependences, they can not

be generalized as heuristics in generating better code for the

look-ahead thread. A primary reason is that removing a false

weak dependence can be exceedingly costly. Nevertheless, a

trial-and-error approach can reliably identify opportunities

for improving the look-ahead thread and quantify the bene-

fits. A framework based on genetic algorithm can help search

for the right set of changes to the look-ahead thread. In the

set of applications where the speed of look-ahead has become

the new limit, this method is found to improve the overall sys-

tem performance by up to 1.48x with a geometric mean of

1.14x over the baseline decoupled look-ahead system, while

reducing energy consumption by 11%.

1 Introduction
Despite the ubiquity of multi-core and multi-threaded archi-

tectures, high single thread performance is still an important

processor design goal. It not only provides automatic perfor-

mance benefits and thereby improving productivity, but also

is important for the overall performance even for explicitly

parallel programs in speeding up serial sections and bottle-

neck threads.

∗This work is supported by NSF CAREER award CCF-0747324 and also

in part by NSFC under the grant 61028004.

Unfortunately, the two main drivers for single-thread per-

formance – faster clocks and advancements in microarchi-

tecture – have all but stopped in recent years. The future for

single-thread performance might appear bleak. That appear-

ance can be misleading. There is no evidence of a fundamen-

tal lack of parallelism in sequential codes. In fact, limit stud-

ies (similar to [37]) we have conducted confirm that modern

codes are just like older codes and have significant potentials

in implicit parallelism: As shown in Figure 1, even the in-

teger codes have a geometric mean parallelism of about 20

instructions per cycle even if we only look ahead a few hun-

dred instructions. The real question is whether we can realize

the potential without undue costs.

bzip2 crafty eon   gap   gcc   gzip  mcf   pbmk  twolf vortex vpr   Gmean 
1

10

50

IP
C

 

 
ideal:128 ideal:512 ideal:2K real:128 real:512 real:2K

Figure 1. Implicit parallelism of integer applications. The

three bars on the left indicate the amount of available par-

allelism (instructions per cycle) in the application when in-

spected with a moving window of 128, 512, or 2048 instruc-

tions. The three bars on the right repeat the same experiments

only this time under realistic branch misprediction and cache

miss situations that further constrain the available parallelism

to be exploited. Note that the vertical axis is in log scale.

Conventional out-of-order microarchitecture tightly inte-

grates look-ahead with the rest of the processing, which

makes looking too far ahead too expensive to be practi-

cal [29]. One way to improve look-ahead effectiveness is

to decouple the inspection activities for look-ahead purposes

from the normal processing. In particular, given the pro-

liferation of multi-core architectures, it is conceivable in a

“turbo-boost” mode to launch a look-ahead thread on a dif-

ferent core and pass on relevant information to the original

program thread [16, 30, 36, 38]. Given that the look-ahead

thread is only intended to assist, it can execute a “skeleton”

version (rather than a complete copy) of the program, which

allows significant acceleration [16]. Even so, the look-ahead

thread often becomes the new bottleneck [17] and its accel-

eration will directly translate to system performance gains.

A unique opportunity to speed up the look-ahead thread

is that it is not bound by unyielding correctness constraints

as in a regular thread. In particular, we hypothesize that

1



among the apparent dependences in a thread, there are plenty

of weak links. Cutting them from the look-ahead thread al-

lows us to speed it up without much loss of effectiveness.

However, it is not a simple task to identify weak links as the

effect of removing a weak link often depends on the dynamic

context and whether other links are removed, much like in a

Jenga game. In our exploration, we found that simple heuris-

tics based on the static code are unlikely to be an acceptable

solution as they lead to non-negligible false positives with

considerable performance costs – again akin to taking out

the wrong block in the Jenga game. Verifying the suspected

weakness by actual measurements is probably an indispens-

able component of any heuristics. Given such a framework of

trial-and-error, we argue that human analysis to find heuris-

tics in code patterns becomes unnecessary. Instead, we can

apply a metaheuristic approach and let the system perform

the search. We will discuss our proposed design in Section 4

and present experimental analysis in Sections 5. But first, we

will discuss background related work and motivation for our

approach in more detail in Sections 2 and 3, respectively.

2 Background and Related Work
Architecture and system designs have long incorporated

look-ahead techniques. Upon encountering a long-latency

instruction, out-of-order microarchitecture does not stall the

entire pipeline. The front-end continues to look into the fu-

ture instruction stream to find tasks to accomplish. Software-

or hardware-based prefetching achieves similar goals of

looking beyond currently executed instructions. These tradi-

tional designs are either limited in look-ahead distance (out-

of-order pipeline) or flexibility (prefetch based on certain

types of access patterns), which led to newer forms of look-

ahead.

In one group of ideas, the distance of look-ahead is ex-

tended by unblocking the various buffers. This can be done

by checkpointing state [27] or moving certain entries to less

powerful secondary buffers [9, 10, 13].

A significant body of work explored the concept of (micro)

helper threads (or subordinate threads), where small threads

are launched ahead of the targeted problematic instructions in

order to alleviate the problem [2, 7, 11, 14, 23, 25, 32, 40, 41].

Compared to the aforementioned systems, they are flexible

in target benefits (mispredictions or cache misses even with

irregular patterns) and in the look-ahead distance. These

helper threads can use regular thread contexts, but are per-

haps more suited to thread contexts designed specifically for

them [7].

A different flavor of helper threading uses a single, (near)

complete copy of the program on a separate thread context

to look ahead [5, 19, 24, 30, 31, 38]. We call this type decou-

pled look-ahead. The main attraction of this approach is that

it sidesteps some of the subtle implementation issues of the

micro thread approach. For instance, micro helper threads

are often hand crafted and carefully inserted at the right lo-

cations, perhaps after lengthy manual tuning. A fully auto-

mated mechanism to make these decisions may have diffi-

culty achieving similar effectiveness as the hand-crafted ver-

sions reported in the literature. Micro helper threads are

numerous. Without substantial hardware support, spawning

these threads, passing necessary initial values, and receiv-

ing results from them can create significant overheads for the

main thread, which offset their benefits. In contrast, a de-

coupled look-ahead thread is simple to generate and relies on

less extra hardware support or micromanagement from the

main-thread.

Although it seems wasteful to run the program twice, in

reality, the overhead is far smaller [16]. First, the look-ahead

thread can be a stripped-down version of the main thread,

reducing redundancy. Second, successful look-ahead pre-

vents the main thread from wasting resource on wrong-path

instructions or idling. Besides, decoupled look-ahead is in-

tended only as an on-demand mechanism when single-thread

performance is important and even then only to those appli-

cations benefiting sufficiently. An optimal look-ahead thread

provides large performance benefits at small energy costs and

this paper is but one more step in this direction. As the gen-

eral approach matures, decoupled look-ahead should repre-

sent a powerful turbo-boost mechanism.

Finally, a metaheuristic strategy such as genetic algorithm

we used is a common approach in searching an otherwise in-

tractably large design space. It has been used to good effects

in other system optimization problems [1, 3, 26].

3 Motivation
Look-ahead can be used to extract all types of information

to help exploit implicit parallelism. Using it to mitigate

cache misses and branch misprediction is a familiar approach

and is the focus of our exploration for a number of reasons:

(a) misses and mispredicts introduce large bubbles that sig-

nificantly “dilute” available parallelism (see Figure 1); (b)

these bubbles are particularly difficult for conventional out-

of-order cores to tolerate effectively; and (c) targeting them

in a decoupled system is relatively easy to accomplish. In

the following, we discuss the rationale of focusing on accel-

erating the look-ahead thread (Sec. 3.1), the motivation to

exploit weak dependences (Sec. 3.2), and the reason to use a

metaheuristic approach (Sec. 3.3).

3.1 Speed Limit of Look-ahead

Intuitively, there is a fundamental tradeoff between the speed

and helpfulness of the look-ahead thread. With simple trans-

formations, a look-ahead thread can be constructed from the

original program thread and successfully reduce mispredic-

tion and cache misses for the main thread. But the look-ahead

thread often becomes the new speed limit. As an example,

let us look at our baseline decoupled look-ahead system il-

lustrated in Figure 2.

In this system, we use a parser to analyze the pro-

gram binary and create a skeleton version as the look-ahead

thread [16]. At runtime, this look-ahead thread runs on

a different core and pipes outcomes of committed condi-

tional branch instructions through a FIFO to the trailing

2



Ockp"
Eqtg

Dtcpej"SwgwgNqqm/cjgcf"
Eqtg

N2& N3&

Gzgewvgu"
Nqqm/cjgcf
umgngvqp

Gzgewvgu"
rtqitco
dkpct{

N4&

Tgikuvgt"uvcvg"u{pejtqpk¦cvkqp

Rtghgvejkpi"jkpvu

Dtcpej"rtgfkevkqp3

4
cffs"x2."x2."x2
pqr
000
000
div"c3."
2z34223h;c2
uwds"x2."v2."c4

cffs"x2."x2."x2
uwds"x2."v2."c4
eoqxig"c4."c4."x2
cffs"x2."x2."x2
uwds"x2."v2."c4
eoqxig"c4."c4."x2
uwds"c3."2z4."c3
cffs"x2."x2."x2
div"c3."2z34223h;c2
uwds"x2."v2."c4

Ockp"Ogoqt{

Rtqitco"
dkpct{

Umgngvqp

Figure 2. A generic decoupled look-ahead architecture.

main thread, which uses the outcomes as branch predictions.

The look-ahead thread also naturally prefetches data into the

shared L2 cache.

To understand the performance impact of this decoupled

look-ahead system, in Figure 3, we show the speed of bench-

marks in four configurations (the details of the experimental

setup are shown in Sec. 5.1). The first configuration is the

baseline where the benchmarks run on a single core. The sec-

ond configuration is the decoupled look-ahead system. One

performance upperbound of this second configuration is the

speed of an ideal system without any mispredictions or cache

misses, which is shown as connected dots above the bars.

The applications are sorted from left to right with increasing

gap from this upperbound.

As we can see from the figure, for 9 benchmarks (to the

left of the dashed line), the potential is small (less than 5%),

showing that the decoupled look-ahead architecture has suc-

cessfully achieved the goal. We can also see that, after us-

ing decoupled look-ahead, these benchmarks are reaching a

high sustained IPC (around 3 or more). Further increasing

the speed probably requires addressing the throughput bot-

tleneck of the pipeline.

For the remaining benchmarks, the potential can be quite

large. To understand the reason why the decoupled look-

ahead system falls short of the potential, we show the result

of a fourth configuration, where we measure the (approxi-

mate) speed of the look-ahead thread on its own. Because

of the approximation involved, this upperbound is not ex-

act [29]. We indicate this inexactness with shaded sidebands

around the simulated results.

The figure clearly suggests that for the vast majority of the

remaining cases, the look-ahead thread is the new bottleneck.

Indeed, among the 16 benchmarks, the decoupled look-ahead

architecture can run 14 of them (with the exception of apsi

and bzip2) almost exactly at the speed of running look-ahead

thread alone. For the rest of the paper, we will focus on these

14 (problematic) applications.

3.2 Weak Dependences

To further speed up the look-ahead thread, a number of ap-

proaches can be taken. Speculations commonly used in

helper threads [8, 39, 40] are an example. And in theory,

deep transformations beyond mechanistic slicing can be per-

formed to generate an optimal skeleton code solely for the

purpose of look-ahead. In this paper, we search for solutions

that do not require rewriting the skeleton code, but simply

skip those instructions that contribute least to its look-ahead

purposes. Intuitively, not all computations are equal. For

instance, some merely add small adjustments to addresses

which are inconsequential if all we wanted to do is to prefetch

the right cache line. Put in a different way, for our purpose of

look-ahead, the final address value weakly depends on such

small adjustments. Dependence strength is not a considera-

tion in a traditional analysis, which we used to generate the

look-ahead thread.

Weak dependence is not a mere possibility. We have ob-

served many examples in actual code. A simple litmus test

can be used to identify a weak dependence in isolation: if we

remove the instruction(s) from the look-ahead thread and the

overall system runs faster, that instruction (chain) can be con-

sidered to be weakly depended upon (or a weak instruction).

In Figure 4, we list a number of easy-to-explain examples

from two applications (vpr and mcf ).

• Mostly silent loads (and stores): These instructions often

load or store the same values to their target register or

memory location. In example ¬, the value loaded from

memory location happens to match the content of the

register most of the time. One particular root cause of

aplu msa wup mgri six swim facr gal gcc gap eon fma3 gzip craf vrtx apsi vpr bzp2 equk amp luc art perl mcf two 
0

1

2

3

4

IP
C

 

 
Decoupled Look−ahead Ideal (cache, branch)Look ahead speed limit Single−thread

Figure 3. Performance comparison of 4 configurations. Shown in the bars are baseline single core (left) and a decoupled look-ahead

system (right). Two upper-bounds are shown: the performance of a single core with idealized branch predictions and perfect cache

accesses (curve with circles), and the the approximate speed limit of the look-ahead thread (gray wide curve indicating approxima-

tion). The applications are sorted with increasing performance gap between the decoupled look-ahead system and the prediction- and

accesses-idealized single-core system.

3



0x12000a1f4:  cmple t4,0x64,v0
0x12000a1f8:  ...    ...

0x12000a200:  bne v0,0x1200367a8

.

...    ...    ...    ...
0x1200367b4:  bne t0,0x120036780

0x120036498:  ...    ...
...    ...    ...    ...

...    ...    ...    ...

...    ...    ...    ...
0x12003678c:  bne t5,0x1200367a8

...    ...    ...    ...
0x120036460:  beq t2,0x120036498

...             ...                ...
t2 -> 0

...             ...               ...

...             ...               ...
t0 -> 0x14209eba2       t2 -> 0
t2 -> 0                           t2 -> 1
t2 -> 1, t0 -> 0x14209eba2
...             ...              ...
s2 -> 248                      s2 -> 248
...             ...              ...
t5 -> 0

Inputs OutputPC: Instructions

fp -> 0                           fp -> 1
...             ...              ...
t0 -> 1

0x1200364b8:  ldl t2,0(t0)

0x1200364c0:  stl t2,0(t0)

0x1200364e0:  sextw s2,s2

0x1200367a8:  addl fp,0x1,fp

1

2

3

4

Frequent Value

0x1200364bc:  addl t2,0x1,t2

(A) Vpr

50x12000a1fc:  and v0,ra,v0

t4 -> 3                           v0 -> 0
...             ...              ...
v0 -> 0, ra -> 1              v0 -> 0 
v0 -> 0

(B) Mcf

Figure 4. Example of weak dependences in the original pro-

gram binary. In these examples from applications vpr and

mcf, each box represents a basic block. For clarity, only a

subset of instructions are shown. Frequent values of inputs

and output registers – captured using a profiler – are shown

on the right hand side. Shown in bold are instructions that

are weak and can be safely removed without impacting the

quality of look-ahead.

such behavior is unnecessary register spilling that led to

silent loading back later.

• Inconsequential adjustments: In both ­ and ¯, the value

was incremented by 1. In these two particular cases,

those updates are inconsequential and removing them

ended up being helpful.

• Dynamic NOP: Similar to the silent loads/stores, an

arithmetic and logical instruction may end up not chang-

ing the result most of the time. Particular examples are

sign extension as in ® and logical AND operation in °:

When the value is predominantly non-negative, sign ex-

tension has no effect. Similarly, when one input is zero

the other input does not matter.

Not only do weak dependences exist, they also have non-

trivial impact on system performance. In fact, in one par-

ticular application (art), we found that removing just a sin-

gle instruction from the look-ahead thread resulted in a 9.4%

performance improvement of the entire system! Clearly, sys-

tematically identifying and exploiting weak dependences is

useful.

3.3 Challenges of Predicting Weak Dependences

While weak dependences can be experimentally identified

and we can assign reasons to explain them after the fact

(as in the examples above), predicting them ahead of time

is an entirely different matter. After comprehensive testing

of individual instructions to round out all single weak in-

structions, we attempted to identify their uniqueness based

on the static instruction. Unfortunately, they consist of all

types of instructions and do not appear to be special at all

(see Sec. 5.3.4). Ultimately, it is the specific computation

and values involved that make their computation less conse-

quential than others.

Admittedly, some instructions are more likely than others

to be weak, but even in those cases, a single false positive

can negate all gains from correct predictions. Case in point:

instruction zapnot1 is a common occurrence in experimen-

tally identified weak instructions. In gap, a whopping 83.3%

of all zapnot (static) instructions are weak in isolation. Re-

moving all of them allows the program to speed up by 3.4%.

Unfortunately, if we falsely identify even one zapnot from

the remaining cases as weak, we can lose up to 5.9% per-

formance, more than wiping out all the gain from the right

selections. If we have more than one false positives, the per-

formance loss can go up to 13%.

Indeed, the very concept of weakness is context-

dependent. Fundamentally, we are performing a tradeoff: re-

moving some instructions can shorten the dependence chain

for the look-ahead thread. But the resulting approximation

leads to other costs. For instance, an incorrectly prefetched

cache line can hurt performance through pollution. In par-

ticular, when the approximation eventually causes the look-

ahead thread to deviate from the original program’s control

flow, we need to “reboot” (or re-initialize) it. This is a costly

operation. It is all but impossible to analytically attribute the

true cost to the exact root cause.

Finally, even if it is possible to identify weak dependences

in isolation, the effect of removing multiple instructions is

certainly complex and non-linear. To illustrate this effect, we

experimentally identify all weak instructions (in isolation) in

application perlbmk and sort them by the number of cycles

saved due to their removal. In Figure 5, we show the cu-

mulative effect of removing these 300+ instructions one by

one. Note that all 300 instructions are by themselves weak,

but once we pile on about 50 of them, the overall impact be-

comes negative. It goes from bad to worse, slowing down

the program by almost 40% at some point. To continue the

Jenga analogy, the tower clearly collapsed when we removed

a collection of individually safe-to-remove blocks.

0 50 100 150 200 250 300
−40%

−30%

−20%

−10%

0%

10%

20%

Cummulative weak instructions

P
e
rf

o
rm

a
n
c
e
 i
m

p
a
c
t 
o
v
e
r 

b
a
s
e
lin

e
 l
o
o
k
−

a
h
e
a
d

 

 

perlbmk

Figure 5. Performance impact of cumulatively removing in-

structions identified as weak in isolation.

Given the ad hoc nature of dependence strength, the non-

linearity of performance effects, and the interdependence of

individual chains, using heuristics and code analysis to pre-

dict weakness is at best a non-robust mechanism – in our

1It sets selected bytes of the source register to zero and copies the result

into the destination register.

4



opinion. However, regardless of the root cause of weakness,

the effect of removing instructions is experimentally measur-

able. Moreover, it appears to be reasonably stable across time

and different inputs. Therefore, we can easily envision a self-

tuning system that identifies weak instructions through trial

and error and figures out – via metaheuristics – the right com-

bination of these instructions to remove in order to maximize

performance gain.

Genetic algorithm is a good metaheuristic method to use

in such a self-tuning system. Developed in the 1970s to

solve optimization problems, genetic algorithm mimics nat-

ural evolution to adapt solutions slowly but steadily towards

more optimal versions [20, 21]. While genetic algorithms

can be a slow mechanism to derive solutions, they have

shown great potentials in finding intelligent solutions of con-

ventional optimizations and problems involving tricky trade-

offs [34]. Finally, genetic algorithm is a natural choice for

our system: We use a bit mask in our design to indicate which

instructions in the binary are part of the skeleton to be exe-

cuted in the look-ahead thread. The way the bits govern the

behavior of the skeleton is analogous to genes governing an

organism, making genetic algorithm a natural choice.

4 Genetic Algorithm Based Framework
4.1 Basic Design

Our goal is to find a skeleton that maximizes performance.

In our current design, the skeleton is a masked version of

the program binary: some instructions are dynamically sup-

pressed at fetch time. The task of the genetic algorithm is to

find the best mask. The initial candidate solutions can be gen-

erated from any heuristics. Indeed, they can be completely

random. From pairs of existing solutions, we use crossover

and mutation to create pairs of children solutions as part of

the next generation. To guide the evolution towards better

solutions, we need to assign better (faster) solutions with a

higher fitness score. Evolution can be stopped after a certain

number of generations or upon seeing diminishing return.

In a most straightforward case of fitness testing, given a

mask to be tested, we run the application with the corre-

sponding skeleton as the look-ahead thread, measure the new

execution time, and use the number of cycles saved (com-

pared to the reference run using the default skeleton and

the same training input) as the fitness score. Fitness tests

can also be performed online while the application is run-

ning (Sec. 4.3). As often is the case with genetic algorithm-

based problems, fitness tests are time-consuming. But with

proper optimizations, most applications could be meaning-

fully tuned on-line in the first minutes of their cumulative

execution, making the strategy practical.

In the following, we discuss the genetic algorithm frame-

work (Sec. 4.2), implementation issues regarding fitness tests

(Sec. 4.3), and the sampling framework that accelerates the

fitness tests (Sec. 4.4).

4.2 Framework of Evolution

Genes: In our framework, a gene is the fundamental unit of

modifications to the skeleton. For the most part, such a mod-

ification is masking off one (static) instruction. A “good”

gene is one that improves the system’s overall performance,

i.e., one that removes a weak dependence. Since our base-

line system depends on the fact that both threads execute

all branches, in this paper, we will not attempt to remove

branches. Therefore, for a skeleton with n static non-branch

instructions, we will have n possible genes. Out of these

n genes, there is a much smaller subset of good genes that

speed up the execution. To expedite the convergence to good

solutions, we only use those to form chromosomes.

It is entirely possible that removing two (or more) instruc-

tions together can improve performance when removing any

individual instruction alone slows down the program. The

reason is that a weak dependence can be a chain of instruc-

tions, of which, any individual instruction will not appear

to be weak. In general, if we remove an instruction I from

the code, we should remove all instructions on I’s exclusive

backward dependence chain, i.e., all instructions that are only

helping instruction I and nothing else. Unfortunately, identi-

fying the entire exclusive backward dependence chain is not

easy as we need either complex hardware support or slow

software analysis. Note that letting genetic algorithm stum-

ble upon these chains is theoretically possible, but exceed-

ingly inefficient. For simplicity, we choose to use an approx-

imate approach and form multi-instruction genes as possible

weak dependence chains to be removed. To limit the number

of genes for testing, we only form genes from consecutive

instructions and up to five in one gene.

Prescreening and fitness tests: To measure the impact of

a gene, we activate it (masking off the corresponding instruc-

tions), measure the speed, and compare that to the original

system without the modification. Again, in the simpler ex-

ample of off-line profiling, the fitness score of the gene is the

number of cycles saved. Note that the fitness score is only

used in a probabilistic way later on. Measurement precision

requirement is not high. In particular, in the first step of oper-

ation, we will filter out the bad genes from all possible genes.

We do not need exact fitness score of a bad gene. In many

cases, it is very clear early on that a gene is a bad one (e.g.,

causing too many look-ahead thread reboot). We can thus

terminate the measurement early.

After prescreening single-instruction genes, we screen

multi-instruction genes. A multi-instruction gene is only

considered positive if its performance benefit is higher than

the sum of all constituent instructions’ individual benefit.

Initial chromosome pool: Given N positive genes in an ap-

plication, the chromosome is represented as an N -bit vector.

In our experiments, N ranges between 30 and 300. To “jump

start” the evolutionary process, in addition to N single-gene

chromosomes (Figure 6-a), we seed the initial pool of chro-

mosomes with some heuristically-derived solutions. This is

known as hybridization.

5



X

Multi-Instruction Genes

X X
X X X

X X

X X
X X X
X X X X

X X X X X X X X X

Initial Chromosomes

A B C
Subroutines

(b) Superposition 
Chromosomes

(c) Orthogonal 
Chromosomes

(a) Single-gene 
Chromosomes

Single-Instruction Genes

Chromosome

X
X

X
X

X

Figure 6. Look-ahead chromosome representation. Genes

are basic blocks of chromosomes and can be either single-

instruction or multi-instruction. Marking of a gene (shown as

X) knocks out the associated instructions from the chromo-

some (look-ahead binary).

The first heuristic is simply to turn on many genes and

create a “superposition” of genes. Not surprisingly, turning

on all genes is almost never a good design, as too many ap-

proximations weaken the function of the look-ahead thread

beyond repair. To create partial superpositions, we sort all

N genes based on their fitness score and create N − 1 dif-

ferent chromosomes starting from one that contains the two

top-ranking genes, and going down the list, adding one more

gene at a time to the previous chromosome (Figure 6-b).

Lastly, we use the heuristic that modifications to differ-

ent subroutines are likely to be more orthogonal to each

other than are those in the same subroutine. We thus se-

lect one gene from each subroutine to form a chromosome.

Specifically, we sort the genes from each subroutine sepa-

rately based on their fitness score. We pick the top-ranking

gene from each subroutine to form the first chromosome; the

second-ranking genes for the second chromosome, and so on.

If all the genes from a subroutine have been exhausted, that

subroutine will not contribute to later chromosomes. Finally

when all but one subroutine have exhausted their genes, the

process stops (Figure 6-c).

Population size and parent selection: For simplicity of

implementation, we use a fixed population size. Based on

several factors such as the number of positive genes, the

cost of fitness tests, and convenience of experiments, we

chose 96 as the population size. Of all the initial chromo-

somes formed, only 96 unique members will be selected as

generation-1 population. To select these members, we use an

approach that can be likened to repeatedly spinning a roulette

wheel with a large number of slots to select one winner at a

time. Each member occupies a number of slots proportional

to its fitness.

Given one generation of population, we go through the

parent selection process in order to reproduce. This is again

done with the roulette wheel approach. We go through iter-

ations, each time selecting two parents to do crossover and

mutation to generate two offsprings.

Crossover and adaptive mutation: Crossover is the pro-

cess of multiple (two in our case) parents swapping parts

to form the same number of offsprings. Uniform crossover

and multi-point crossover are attractive alternatives to one-

point crossover as they tend to produce very different solu-

tions from one generation to another [18]. We experimented

with single-point, multi-point, uniform mask based, fusion

operator, and xor based crossover. We chose fusion operator

based on limited experiments. Fusion operator is an enhance-

ment over uniform crossover where each bit of the vector is

randomly decided to follow one of the parents based on a

probability proportional to that parent’s fitness score.

Crossovers allow chromosomes to exchange their genes

but does not create diversity outside gene patterns present

in the current generation. Mutation is thus added, which

randomly flips individual genes based on certain probabil-

ity. This probability increases in each generation to lower

the chance that the algorithm gets stuck at local optima [4].

Survival and uniqueness test: It is possible to go through

iterations of reproduction and produce more offsprings than

parents. In that case, after performing fitness tests on all off-

springs, a mechanism similar to the roulette wheel can be

used to determine which ones survive into the next genera-

tion to keep the population size fixed. In our case, to mini-

mize expensive fitness tests, we do not generate superfluous

offsprings. We perform tests to maintain unique offsprings

and all of them survive into the next generation.

We also use elitism, which is a type of mechanisms to

shield the best solution(s) from destructive evolution. We use

one flavor of elitism which remembers the currently known

best chromosome. This chromosome may not be present in

the current population.

Putting it together: The complete process flow is shown

in Figure 7 and can be divided into three parts: baseline

look-ahead thread construction, initial chromosome genera-

tion, and evolution. We start with program binary and build

baseline unoptimized look-ahead binary using conventional

approach [16]. We then select positive single- and multi-

instruction genes, i.e., weak dependences in isolation. We

form some initial chromosomes from these genes based on

some heuristics. Finally, we start the genetic algorithm to

gradually fine-tune the solutions.

4.3 Online and Offline Fitness Tests

The tuning performed by the genetic algorithm can be done

either offline or online. In the offline case, the algorithm will

measure the execution time of the same application (win-

dow) many times, each time with a different skeleton.We

found that a few generations of evolution is sufficient to sig-

nificantly improve the performance. The control program

running the genetic algorithm only needs to manipulate bit

masks for skeletons to be tested, launch the program, read

performance counters, and perform simple calculations and

book-keepings. It thus incurs negligible overheads. The bulk

of the tuning delay comes from the actual profiling runs. But

these runs not be extensive and there is significant parallelism

in administering the fitness tests. Overall, it is feasible to

have a fully automated self-tuning process complete in min-

6



Program
Binary

Look-
ahead
Binary

Chromosome creation GA evolution

Single-Gene
Chromosome

Parents Pool

Children 
Pool

Reproduction

Roulette
Wheel

Parent
selection

Fitness test,
Elitism

In
iti

al
 C

hr
om

os
om

e 
P

op
ul

at
io

n

Look-ahead construction

S
in

gl
e-

In
st

ru
ct

io
n 

G
en

es

(Binary Parser)

1
2

3

4

5

6

7

8

M
ul

ti-
In

st
ru

ct
io

n 
G

en
es

Superposition
Chromosome

Orthogonal
Chromosome

Xover &
Mutation

De-
duplication

Figure 7. Genetic algorithm based framework to refine look-ahead binary by removing weak dependences.

utes. Such offline-tuning can be done at software release or

install time. The cost of tuning is easily amortized over the

life cycle of the particular release.

In addition to offline tuning, we can also perform the evo-

lution online as the program runs. For online evolution, the

system is similar to diagnosis embedded in software that we

see today. Instead of sending certain statistics to the software

vendor to improve the next release (or to mine the data for

commercial purposes), we keep the statistics as the applica-

tion’s metadata to improve its speed. The metadata will be

kept on persistent storage so that the evolution process can

span over multiple runs, if needed.

During the initial stage of evolution, the program will

likely run slower than without the self-tuning. This is mostly

because we will inevitably try bad solutions. But this is only

a short-term cost that will be more than compensated for

in the later stage of evolution (Sec. 5). Another source of

slowdown is the intermittent execution of the control algo-

rithm, which reads counters, calculate probabilities, and so

on. However, this overhead is largely theoretical as the mag-

nitude is minuscule. We have measured our implementation

of the control program and found that it executes about 16

million instructions for the entire evolution process that can

last hundreds of billions of instructions. Overall, the over-

head for online self-tuning is negligible. The real question

is how fast we can reach an optimal stage. And there are

mechanisms to accelerate that as we discuss below.

4.4 Sampling-Based Fitness Tests

To screen for potential genes, we will test static instructions

on the look-ahead thread, which can be more than a thousand

in some applications. After screening for potential genes we

need to perform NIC+m×NP fitness tests, where NIC is the

number of initial chromosomes, m is the number of genera-

tions of evolution, and NP is the size of population (96 in our

case). All together, hundreds of fitness tests are needed in our

applications. If we use naive (offline) profiling, hundreds of

runs of an application are needed to reach a solution (though

using smaller inputs). Significant reduction in test time can

be achieved using two simplifications: sampling and multi-

gene tests.

Sampling: The code module (loop or subroutine) that con-

tains the gene are invoked countless times during one run of

the application. These instances are rather self-similar [22].

Taking enough sample instances will provide a reasonably

accurate estimate of the impact of the modification, espe-

cially because the sign of performance impact is more im-

portant than the exact magnitude – the magnitudes are only

probabilistic heuristics. And indeed, as we will show later,

sampling errors do not affect the quality of the solution.

Module-based sampling is especially useful for the online

version. Unlike offline profiling where we can control what

to run when performing fitness tests, in an online system we

do not have the choice. Since we need to measure execution

speeds with and without a modification at two different time

points, we would need the system to behave the same way at

these two points except for the modification. This way, the

difference in measurement can be attributed to that modifica-

tion alone, not random variation. If we choose the two time

points to be two instances of the same code module (a form

of stratified sampling), the random variation will be far lower

than if we choose two time windows [22]. Of course, the im-

pact will still be calculated from the measurement of many

samples. Once we know the performance impact of a partic-

ular chromosome on every module, the program-wide impact

is estimated as the weighted-average of the per-module im-

pacts, the weight being that of the execution time for each

module.

Multi-gene fitness tests: When we make a modification to

some part of the code, intuitively its performance impact is

localized to a certain extent. If we assume that the impact is

limited to the code module that contains the modification (or

gene), then we can perform tests on different genes that ap-

pear in different code modules simultaneously. All we need

to do is to measure performance (say IPC) of the instances of

code modules and attribute the change in performance to the

tested gene within the corresponding code module.

When we use both simplifications, we will be able to per-

form a fitness test not for every profiling run of an applica-

7



tion, but for every batch of instances of a code module.

5 Experimental Analysis
Using our experimental setup (Sec. 5.1), we first show the

ultimate performance benefit of weak dependence removal in

Sec. 5.2. We then offer some in-depth discussion in Sec. 5.3

and compare to other look-ahead designs in Sec. 5.4.

5.1 Experimental Setup

We perform our experiments using a cycle-level, execution-

driven in-house simulator.2 We faithfully model support for

a decoupled look-ahead system, including when the lead

thread diverge from the actual program’s control flow. The

simulator also faithfully model a number of details in ad-

vanced designs such as load-hit speculation (and schedul-

ing replay), load-store replays, keeping a store miss in the

SQ while retiring it from ROB [12]. Our baseline core

is a generic out-of-order microarchitecture with parameters

loosely modeled after POWER5 [35]. An advanced hard-

ware global stream prefetcher based on [15, 28] is also im-

plemented [29]. The configuration parameters are shown in

Table 1.

Baseline core

Fetch/Decode/Issue/Commit 8 / 4 / 6 / 6

ROB 128

Functional units INT 2+1 mul +1 div, FP 2+1 mul +1 div

Fetch Q/ Issue Q / Reg. (int,fp) (32, 32) / (32, 32) / (80, 80)

LSQ(LQ,SQ) 64 (32,32) 2 search ports

Branch predictor Gshare – 8K entries, 13 bit history

Br. mispred. penalty at least 7 cycles

L1 data cache (private) 32KB, 4-way, 64B line, 2 cycles, 2 ports

L1 inst cache (private) 64KB, 2-way, 128B, 2 cycles

L2 cache (shared) 1MB, 8-way, 128B, 15 cycles

Memory access latency 200 cycles

Look-ahead core: Baseline core with only LQ, no SQ

L0 cache: 32KB, 4-way, 64B line, 2 cycles

Round trip latency to L1: 6 cycles

Communication: Branch Output Queue: 512 entries

Reg copy latency (recovery): 64 cycles

Table 1. Microarchitectural configurations.

Applications and inputs: We use applications from SPEC

CPU2000 benchmark suite compiled with optimization flag

-O3 for Alpha using a cross-compiler built on gcc-4.2.1.3 We

use the train input for profiling, and run the applications for

500 million instructions, which generally cover the exercised

code region in later non-profiling runs. After the offline evo-

lution, the modified look-ahead thread will be used for per-

formance benefit analysis. We use ref input and simulate 100

million instructions after skipping over the initialization por-

tion as indicated in [33].

5.2 Overall Performance Results

Recall that out of all the benchmarks, 14 showed a bottle-

neck in the speed of the look-ahead thread. For these appli-

cations, we compare two systems: baseline decoupled look-

ahead system and one that adds a step of offline self-tuning

2Instruction interpretation and linux system call emulation are partially

borrowed from [6].
3Technical issues in cross-compilation have prevented us from obtaining

complete results from the SPEC CPU2006 suites at the time of writing of

this paper. For the partial results obtained, however, there is no material

difference from the experiments presented here [29].

(with a different training input, of course) to remove weak

dependences. Their speedups over a single-threaded execu-

tion are shown in Figure 8.

craf eon  gap  gzip mcf  pbmk two  vrtx vpr  amp  art  eqk  fma3 luc  Gmean
1

2

3

4

5

6

S
p
e
e
d
u
p
 o

v
e
r 

s
in

g
le

−
th

re
a
d

 

 

Baseline look−ahead

GA based look−ahead

Figure 8. Speedup of baseline look-ahead and genetic

algorithm-based self-tuned look-ahead over single-core base-

line architecture. The vertical axis is log scale.

Offline self-tuning provided a speedup from 1.02x to 1.48x

with a geometric mean of 1.14x (or a harmonic mean of

1.13x). Note that the performance advantage is obtained by

executing fewer instructions in the look-ahead thread – even

after accounting for additional reboots which have been faith-

fully modeled. Thus this performance gains comes with en-

ergy savings. Our simulations show that total energy is re-

duced by about 11% from the baseline decoupled look-ahead

system. This is mostly due to reduced execution time and

less activity (the look-ahead thread retires 9.9% fewer in-

structions now).

Compared to the single-threaded conventional execution,

decoupled look-ahead achieves a speedup of 1.39x. With our

proposal’s 1.14x (multiplicative) benefit, the total speedup

improves to 1.58x. Such a speedup is obtained using a fully

automated system without any programmer effort, little addi-

tional hardware support, and over all applications not already

saturating the pipeline. It is becoming competitive with the

speedup achieved using explicit parallelization and certainly

more significant than what can be achieved via moderate fre-

quency increases.

Overall, these results show that weak dependence removal

is a technique with relatively significant payoff. As another

contributing piece, this technique further improves the en-

ergy efficiency of decoupled look-ahead and makes it a com-

pelling performance boosting mechanism to add to a general-

purpose multi-core architecture.

5.3 Diagnostic Analysis

As a concept, it is almost trivial that we can exploit weak-

ness of dependence in a correctness-insensitive environment

such as look-ahead. What is challenging is quantifying it

precisely so that we can maximize the gain. The following

analysis attempts to shed light on various aspects of the op-

eration: how well it achieves the tradeoff between speed and

accuracy of look-ahead (Sec. 5.3.1), how long it takes to find

good solutions (Sec. 5.3.2), and the robustness of the solu-

tions and the entire system (Sec. 5.3.3). Finally, we will

discuss the strengths and weakness of using a metaheuris-

tic approach relative to relying on conventional analysis and

8



crafty eon gap gzip mcf perlbmk twolf vortex vpr ammp art equake fma3d lucas Average

Baseline look-ahead skeleton (%dyn) 87.14 72.29 76.22 64.72 59.95 78.98 81.05 58.10 67.06 66.60 54.33 32.86 79.50 32.21 65.07

GA tuned look-ahead skeleton (%dyn) 82.66 65.83 67.79 57.35 52.61 70.22 78.25 56.31 59.01 63.22 41.11 30.06 73.50 28.53 59.03

Total program instructions (static) 57568 79730 74650 23205 18286 120529 53936 95121 42089 43154 25588 25639 249464 103235 72299

Instructions in 100m window (static) 12543 6562 4130 1424 381 9692 2456 12230 1061 958 582 1041 3098 319 4034

Individual weak instructions (static) 172 57 211 207 117 417 110 398 261 223 173 628 104 55 224

Instructions removed using GA (static) 51 15 37 56 20 30 24 37 33 24 36 40 35 12 32

Table 2. Dynamic size of baseline and genetic algorithm based self-tuned look-ahead thread relative to the original program binary

and static instruction count of the original program and those removed by the framework (last row).

heuristics (Sec. 5.3.4).

5.3.1 Tradeoff between speed and accuracy

In Table 2, we show the detailed instruction counts for the

look-ahead thread. For these applications, the baseline look-

ahead thread is about 65% that of the main thread. After

weak dependence removal, the look-ahead thread is about

90% of its original size. This relatively significant dynamic

size reduction is a result of removing between 12 and 56

static instructions from the code.

The removal of these instructions will make the look-

ahead thread less accurate as a predictor for future behavior

of the main thread. It causes the look-ahead thread to veer off

the correct program control flow more often than before and

increases the number of reboot events. Table 3 summarizes

the number of reboots in both the baseline decoupled look-

ahead system and our new proposal. For brevity, we only

show the range and average of the rates. We separate the in-

teger and floating-point results since they are rather different.

On an average, 3-4 extra reboots are encountered for every

100,000 instructions. This is still an acceptably low rate.

INT (9 apps) FP (5 apps)

Max Avg. Min Max Avg. Min

Baseline look-ahead 79.8 26.8 0.5 31.7 6.7 0.0

Self-tuned look-ahead 112.0 31.4 3.9 43.5 10.0 0.0

Table 3. Reboot rate for baseline and the proposed self-tuned

decoupled look-ahead systems. The rates are measured by the

number of reboots per 100,000 committed instructions in the

main thread.

Another sign of reduced accuracy of the look-ahead thread

is the change in the coverage of L2 misses averted. In the

baseline decoupled look-ahead, 90% of L2 misses are averted

in the main thread. The rate actually improved slightly to

90.4%. This suggests that whatever imprecision in address

calculation in the new look-ahead thread is more than offset

by the speed increase. As a result, the L2 prefetch capability

is maintained even under a more challenging environment.

5.3.2 Speed of search

Genetic algorithm convergence: To see how quickly the

genetic algorithm can find a good solution, we track the

chromosomes generated through seven generations. Figure 9

shows this change. To show results from different applica-

tions together, we normalize the performance gain. The so-

lutions are represented as cycles saved and normalized to that

of the best solution for that application. A few applications

achieved very small performance gain (<5%), making this

normalization potentially misleading. They are therefore ex-

cluded from this figure.

From the figure, we can see that the convergence is fairly

1 2 3 4 5 6 7
0%

20%

40%

60%

80%

100%

# of Generations 

P
ro

g
re

s
s
 r

e
la

ti
v
e
 t
o
 b

e
s
t 
G

A
 s

o
lu

ti
o
n

 

 

eon

mcf

pbmk

twolf

vpr

art

eqk

fma

amp

lucas

Figure 9. Normalized gains achieved through generations of

evolution.

quick: after 2 generations, all applications achieved more

than half of the benefit; after 5 generations, at least 90%

of benefits are achieved. Nevertheless, we can not ascertain

whether these optima are local. We have observed 12 gen-

erations and so far have seen no application breaking away

from the best result all found within 7 generations.

Profile time: The amount of profiling time it would take in

a real system for the complete genetic evolution process can

be broken down into the control software overhead and the

time it takes to executed certain amount of code in order to

measure execution speed. Recall that the control software

manipulates chromosomes through crossover and mutations,

and performs bookkeeping on the fitness scores. Depending

on the number of genes, the software executes between 4.8

million (lucas) and 43.2 million (perlbmk) instructions with

an average of 16.8 million instructions. This overhead is on

the orders of millisecond for the entire evolution stage and is

clearly negligible.

For offline profiling (with sampling and multi-gene tests),

the complete prescreening (for an average of 862 genes) and

genetic evolution (7 generations with population size 96 per

generation) process involves profiling runs between 16.9 bil-

lion (eon) and 61.5 billion (mcf ) instructions with an average

of 32.1 billion instructions. On the target machine, this trans-

lates to roughly 2 to 20 seconds.

1 

1.5 

2 

2.5 

3 

1
 

1
1
6
 

2
3
1
 

3
4
6
 

4
6
1
 

5
7
6
 

6
9
1
 

8
0
6
 

9
2
1
 

1
0
3
6
 

1
1
5
1
 

1
2
6
6
 

1
3
8
1
 

1
4
9
6
 

1
6
1
1
 

1
7
2
6
 

1
8
4
1
 

1
9
5
6
 

2
0
7
1
 

2
1
8
6
 

2
3
0
1
 

2
4
1
6
 

2
5
3
1
 

2
6
4
6
 

2
7
6
1
 

2
8
7
6
 

2
9
9
1
 

3
1
0
6
 

3
2
2
1
 

3
3
3
6
 

3
4
5
1
 

3
5
6
6
 

3
6
8
1
 

3
7
9
6
 

3
9
1
1
 

4
0
2
6
 

4
1
4
1
 

4
2
5
6
 

4
3
7
1
 

4
4
8
6
 

4
6
0
1
 

4
7
1
6
 

A
cc
u
m
u
la
te
d
 I
P
C
 

Number of instruc6ons (in millions) 

Single‐thread baseline  Baseline decoupled look‐ahead  Online self‐tuned look‐ahead 

Figure 10. Comparison of single-thread, baseline look-ahead

and self-tuned look-ahead using online evolution.

9



For an online self-tuning system, the overhead mainly

comes from testing bad skeleton configurations that actu-

ally slow down the system. However, bad configurations

are quickly discarded and therefore do no have a lasting im-

pact. Figure 10 shows this effect visually with the cumula-

tive speed (measured by IPC) of equake running in a single-

threaded version, in the baseline decoupled look-ahead sys-

tem, and in an online self-tuning system. In the very early

stage for equake, the online version is noticeably slower than

the baseline decoupled look-ahead system, but the gap nar-

rowed afterward and within 1.8 billion instructions the on-

line version broke even and maintained the lead thereafter.

By the end of 4.6 billion instructions, its overall cumulative

speed was already 10% faster than the baseline decoupled

look-ahead system. Our online evolution experiment is per-

formed with brute-force simulation and is thus excruciatingly

slow. Additional examples and analysis will be included in

the technical report [29].

5.3.3 Robustness

L2 cache sensitivity: Given that L2 misses are significantly

reduced, it is natural to assume that the system’s overall ef-

fect is highly sensitive to the L2 cache size. We carried out a

sensitivity study where the genetic evolution was performed

on our original platform (with 1MB L2 cache) but the testing

of the final product was carried out with 2MB and 4MB L2

caches. The results are shown in the Figure 11. For brevity,

we only show the geometric mean.

1MB 2MB 4MB

1.0

1.5

2.0

S
p

e
e

d
u

p

 

 

BL BL−DLA GA−DLA

Figure 11. Speedup of various configurations: baseline (BL)

baseline decoupled look-ahead (BL-DLA), and genetic algo-

rithm tuned decoupled look-ahead (GA-DLA) for various L2

cache sizes. All results are geometric means of speedup rela-

tive to single-threaded execution on a 1MB L2 system.

From the figure, we can see that having larger L2 caches

simply raises the bar on all configurations. In fact, the

speedup of our proposal remains surprisingly stable: it is

1.139x, 1.133x, and 1.131x for 1, 2, and 4MB configurations

respectively. In other words, the difference is less than 1% if

the L2 size is quadrupled. This experiment also clearly shows

that solutions evolved from a similar but not identical system

are still useful. That observation suggests opportunities to

further amortize tuning costs given support at the ecosystem

level.

Simplified fitness test: We use two simplifications to ac-

celerate fitness tests: sampling and multi-gene tests. In the-

ory, these simplifications can introduce errors and poten-

tially mislead the genetic algorithm into suboptimal solu-

tions. To quantify the impact of these fitness test simplifica-

tions, we contrast two systems that only differ in their fitness

tests: one uses complete profiling runs of 500 million instruc-

tions apiece (and costing us a tremendous amount of simula-

tion cycles) the other with sampling based measurement and

multi-gene testings discussed in Sec. 4.4. Specifically, we

sample module instances at a rate of 1 per 30. For each ap-

plication, we take the evolved result from each generation;

measure its performance gain (cycles saved); and normalize

it to that of the final (generation 7) result found in the full

profiling. In Figure 12, we show a representative application.

1 2 3 4 5 6 7
40%

60%

80%

100%

# of Generations

P
ro

g
re

s
s

 

 

Precise

Sampling

mcf

Figure 12. Comparison of generational solutions using full-

run fitness tests (precise) and sampling based fitness test (sam-

pling) for one representative application.

The result clearly shows that even though the evolution

may go through different paths due to different fitness scores

and thus assigned probabilities, the two evolutionary paths

are essentially lock-stepped in its overall progress, suggest-

ing that accelerated fitness tests make virtually no difference.

The final best solutions are also almost identical in terms of

their gene composition. Additionally, we found that the av-

erage of the population’s fitness also rises in similar ways

in both runs. This result also shows that even though ran-

domization is used in the evolution process, with a sufficient

population size, the outcome is not chaotic.

5.3.4 Strengths and weaknesses of metaheuristics

An alternative to using metaheuristics is a compiler analysis-

based approach. Based on our experience, there are signif-

icant challenge in such an approach for our task. Although

we have summarized some common patterns of weak instruc-

tions, they are hard to generalize. Predicting weakness based

on the instruction itself is extremely challenging if we want to

avoid false positives, which are very costly. In fact, if we rep-

resent all weak instructions as a distribution based on static

code attributes (opcode and number of operands), the vector

shows a correlation coefficient of 0.958 with that represent-

ing all non-weak instructions. To us, this clearly suggests that

weakness is not determined by the static instruction. More-

over, weakness is not additive. Removing multiple known

weak instructions can slow down the thread as has already

been shown in Figure 5. Indeed, hundreds of individually

weak instructions are found in almost every program. But

the best solution from the evolution process removes only 12

to 56 instructions. With these instructions removed, we go

back and retest the hundreds of weak instructions and have

found very few to be still weak. This suggests that even if

conventional analysis is used to identify potential candidates,

trial-and-error is still indispensable.

Like a typical metaheuristic approach, our framework does

10



gzp  vpr  gcc  mcf  cra  eon  pbm  gap  vrtx bzp  twlf wup  swm  mgr  apl  msa  gal  art  eqk  fac  amp  luc  fma  six  apsi gmean

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
S

p
e
e
d
u
p
 o

v
e
r 

s
in

g
le

−
th

re
a
d

 

 

Speculative slice limit (Ideal study)

Dual−core execution (DCE_64)

Self tuned decoupled look−ahead

5.94

Figure 13. Comparison of state-of-art decoupled look-ahead system with previous proposals. The latency to copy register file is set to

64 cycles for DCE. Speedups are normalized to a 4-wide, out-of-order single-thread baseline with a state-of-art L2 stream prefetcher.

not care about the meaning of the adjustments such as remov-

ing an instruction. As such, simplistic conclusions (e.g., if A

is not needed nor is its exclusive backward slice) can only

be stumbled upon by chance. To see how much conventional

analysis can contribute to the metaheuristic search, we per-

form a slicing pass on top of the evolution-derived new skele-

ton. This pass removes some additional instructions and re-

sults in an average of 1% performance gain. For this specific

target problem, it appears that just relying on metaheuristics

is enough.

5.4 Comparison with Previous Proposals

To better understand the effectiveness of our proposal, we

compare it with two existing approaches, one representing

a micro helper thread approach [39, 40], the other a decou-

pled look-ahead approach [38]. In the former case, we fol-

low [40] and only model the upperbound of the resulting sys-

tem by idealizing the top 10 problematic instructions. This

is the effect when the helper threads are always on-time, ac-

curate, and overhead-free. We show the speedup of these

configurations as well as our system in Figure 13. Since

a more realistic implementation of microhelper thread will

only achieve part of the potential (57% according to [40]),

we use a horizontal line on the bar representing the average

of micro helper thread approach to provide a visual reference.

Compared to the micro helper thread approach, our design

is not limited by a small number of targets. In many applica-

tions, especially newer codes, “problematic” instructions are

numerous and widely spread out. Compared to dual-core ex-

ecution (or other similar approaches [5,19,30]), our approach

is much more effective in allowing the look-ahead thread to

run faster and stay ahead of the main thread to be useful.

Recap: To summarize, the current decoupled look-ahead

system achieves significant performance compared to previ-

ous proposals across diverse set of applications that range

from control-intensive integer codes to large loop-based

floating point applications.

6 Conclusions
Single-thread performance remains a key processor design

goal despite the slowdown of traditional drivers. Look-ahead

strategy, though not a silver bullet, still has significant poten-

tial. In particular, a flavor of decoupled look-ahead architec-

ture has shown significant benefits but is often limited by the

speed of the look-ahead thread. Our study has shown that

there are plenty of instructions that contribute marginally to

the “precision” of the outcome and thus can be eliminated

in the look-ahead thread to speed it up without a significant

impact on the look-ahead effectiveness.

In this paper, we have presented a metaheuristic based ap-

proach that incrementally removes weak dependences using

genetic algorithm. The algorithm provides a straightforward

framework to empirically explore the space of interacting op-

portunities. The result of this search is encouraging. Dozens

of weak instructions are removed from thousands of static

instructions, resulting in speedup as much as 1.48x and a ge-

ometric mean of 1.14x, while reducing the energy consump-

tion of the system. Our study also shows that the mechanism

is rather robust in that (a) the performance boost is virtu-

ally the same across different L2 sizes; and (b) the system

is rather tolerant to measurement noise due to sampling and

approximations in fitness tests.

With the help of the evolution framework, the speedup of a

decoupled look-ahead system increases from 1.39x to 1.58x

(geometric means) using two cores compared to the baseline

single-threaded execution. We estimate the time for evolu-

tion to be on the orders of seconds to minutes, and during

the process the extra control overhead is negligible. In our

opinion, this technique further strengthens decoupled look-

ahead as at least a compelling mechanism, at least for turbo

boosting.

References
[1] D. Abts, N. Jerger, J. Kim, D. Gibson, and M. Lipassti. Achieving

predictable performance through better memory controller placement

in many-core CMPs. In Proceedings of the International Symposium

on Computer Architecture, pages 451–461, June 2009.

[2] M. Annavaram, J. Patel, and E. Davidson. Data Prefetching by De-

pendence Graph Precomputation. In Proceedings of the International

Symposium on Computer Architecture, pages 52–61, June 2001.

[3] J. Ansel, M. Pacula, Y. Wong, C. Chan, M. Olszewski, U. O’Reilly,

and S. Amarasinghe. Siblingrivalry: Online Autotuning Through Lo-

cal Competitions. In Proceedings of the International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems, pages

11



91–100, October 2012.

[4] Seung-Hee Bae and Byung-Ro Moon. Mutation Rates in the Context

of Hybrid Genetic Algorithms. Springer Berlin Heidelberg, 2004.

[5] R. Barnes, E. Nystrom, J. Sias, S. Patel, N. Navarro, and W. Hwu.

Beating In-Order Stalls with “Flea-Flicker” Two-Pass Pipelining. In

Proceedings of the International Symposium on Microarchitecture,

pages 387–399, December 2003.

[6] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0.

Technical report 1342, Computer Sciences Department, University of

Wisconsin-Madison, June 1997.

[7] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simultane-

ous Subordinate Microthreading (SSMT). In Proceedings of the Inter-

national Symposium on Computer Architecture, pages 186–195, May

1999.

[8] R. Chappell, F. Tseng, A. Yoaz, and Y. Patt. Difficult-Path Branch Pre-

diction Using Subordinate Microthreads. In Proceedings of the Inter-

national Symposium on Computer Architecture, pages 307–317, May

2002.

[9] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High-Performance

Throughput Computing. IEEE Micro, 25(3):32–45, May/June 2005.

[10] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,

H. Zeffer, and M. Tremblay. Simultaneous Speculative Threading: A

Novel Pipeline Architecture Implemented in Sun’s Rock Processor. In

Proceedings of the International Symposium on Computer Architec-

ture, pages 484–295, June 2009.

[11] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and

J. Shen. Speculative Precomputation: Long-range Prefetching of

Delinquent Loads. In Proceedings of the International Symposium on

Computer Architecture, pages 14–25, June 2001.

[12] Compaq Computer Corporation. Alpha 21264/EV6 Microprocessor

Hardware Reference Manual, September 2000.

[13] J. Dundas and T. Mudge. Improving Data Cache Performance by Pre-

Executing Instructions Under a Cache Miss. In Proceedings of the

International Conference on Supercomputing, pages 68–75, July 1997.

[14] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Analysis

of Branch Mispredictions and Its Application to Early Resolution of

Branch Outcomes. In Proceedings of the International Symposium on

Microarchitecture, pages 59–68, November–December 1998.

[15] I. Ganusov and M. Burtscher. On the Importance of Optimizing the

Configuration of Stream Prefetchers. In Proceedings of the 2005 Work-

shop on Memory System Performance, pages 54–61, June 2005.

[16] A. Garg and M. Huang. A Performance-Correctness Explicitly Decou-

pled Architecture. In Proceedings of the International Symposium on

Microarchitecture, pages 306–317, November 2008.

[17] A. Garg, R. Parihar, and M. Huang. Speculative Parallelization in De-

coupled Look-ahead. In Proceedings of the International Conference

on Parallel Architecture and Compilation Techniques, pages 412–422,

October 2011.

[18] S. Gilbert. Uniform Crossover in Genetic Algorithms. In Proceedings

of the 3rd International Conference on Genetic Algorithms, pages 2–9,

1989.

[19] B. Greskamp and J. Torrellas. Paceline: Improving Single-Thread Per-

formance in Nanoscale CMPs through Core Overclocking. In Pro-

ceedings of the International Conference on Parallel Architecture and

Compilation Techniques, pages 213–224, September 2007.

[20] J. Holland. Adaptation in Natural and Artificial Systems. University

of Michigan Press, Ann Arbor, Michigan, 1975.

[21] J. Holland. Genetic algorithms. Scientific American, pages 114–116,

July 1992.

[22] W. Liu and M. Huang. EXPERT: Expedited Simulation Exploiting

Program Behavior Repetition. In Proceedings of the International

Conference on Supercomputing, pages 126–135, June–July 2004.

[23] C. Luk. Tolerating Memory Latency Through Software-Controlled

Pre-execution in Simultaneous Multithreading Processors. In Proceed-

ings of the International Symposium on Computer Architecture, pages

40–51, June 2001.

[24] F. Mesa-Martinez and J. Renau. Effective Optimistic-Checker Tandem

Core Design Through Architectural Pruning. In Proceedings of the In-

ternational Symposium on Microarchitecture, pages 236–248, Decem-

ber 2007.

[25] A. Moshovos, D. Pnevmatikatos, and A. Baniasadi. Slice-processors:

an Implementation of Operation-Based Prediction. In Proceedings

of the International Conference on Supercomputing, pages 321–334,

June 2001.

[26] J. Mukundan and J. Martinez. MORSE: Multi-objective Reconfig-

urable Self-optimizing Memory Scheduler. In Proceedings of the In-

ternational Symposium on High-Performance Computer Architecture,

pages 25–29, February 2012.

[27] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead Execution:

An Alternative to Very Large Instruction Windows for Out-of-order

Processors. In Proceedings of the International Symposium on High-

Performance Computer Architecture, pages 129–140, February 2003.

[28] S. Palacharla and R. Kessler. Evaluating Stream Buffers as a Sec-

ondary Cache Replacement. In Proceedings of the International Sym-

posium on Computer Architecture, pages 24–33, April 1994.

[29] R. Parihar and M. Huang. Accelerating Decoupled Look-ahead via

Weak Dependence Removal: A Metaheuristic Approach. Technical

report, Electrical & Computer Engineering Department, University of

Rochester, February 2014.

[30] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A Study of Slip-

stream Processors. In Proceedings of the International Symposium on

Microarchitecture, pages 269–280, December 2000.

[31] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tol-

erance in Microprocessors. In Proceedings of the International Sym-

posium on Fault-Tolerant Computing, pages 84–91, June 1999.

[32] A. Roth and G. Sohi. Speculative Data-Driven Multithreading. In Pro-

ceedings of the International Symposium on High-Performance Com-

puter Architecture, pages 37–48, January 2001.

[33] S. Sair and M. Charney. Memory Behavior of the SPEC2000 Bench-

mark Suite. Technical report, IBM T. J. Watson Research Center, Oc-

tober 2000.

[34] D. Shasha. Future of computing: inspiration from nature. ACM Cross-

roads, 18(3):38–39, spring 2012.

[35] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner.

POWER5 System Microarchitecture. IBM Journal of Research and

Development, 49(4/5):505–521, September 2005.

[36] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Proces-

sors: Improving both Performance and Fault Tolerance. In Proceed-

ings of the International Conference on Arch. Support for Prog. Lang.

and Operating Systems, pages 257–268, November 2000.

[37] D. Wall. Limits of Instructions-Level Parallelism. In Proceedings of

the International Conference on Arch. Support for Prog. Lang. and

Operating Systems, pages 176–188, April 1991.

[38] H. Zhou. Dual-Core Execution: Building a Highly Scalable Single-

Thread Instruction Window. In Proceedings of the International Con-

ference on Parallel Architecture and Compilation Techniques, pages

231–242, September 2005.

[39] C. Zilles and G. Sohi. Understanding the Backward Slices of Per-

formance Degrading Instructions. In Proceedings of the International

Symposium on Computer Architecture, pages 172–181, June 2000.

[40] C. Zilles and G. Sohi. Execution-Based Prediction Using Speculative

Slices. In Proceedings of the International Symposium on Computer

Architecture, pages 2–13, June 2001.

[41] C. Zilles and G. Sohi. Master/Slave Speculative Parallelization. In

Proceedings of the International Symposium on Microarchitecture,

pages 85–96, November 2002.

12


