
R3-DLA (Reduce, Reuse, Recycle): A More Efficient Approach to Decoupled
Look-Ahead Architectures

Sushant Kondguli and Michael Huang

Department of Electrical and Computer Engineering
University of Rochester, Rochester, NY

{sushant.kondguli, michael.huang}@rochester.edu

Abstract

Modern societies have developed insatiable demands for
more computation capabilities. Exploiting implicit paral-
lelism to provide automatic performance improvement re-
mains a central goal in engineering future general-purpose
computing systems. One approach is to use a separate thread
context to perform continuous look-ahead to improve the
data and instruction supply to the main pipeline. Such
a decoupled look-ahead (DLA) architecture can be quite
effective in accelerating a broad range of applications in a
relatively straightforward implementation. It also has broad
design flexibility as the look-ahead agent need not be con-
cerned with correctness constraints. In this paper, we explore
a number of optimizations that make the look-ahead agent
more efficient and yet extract more utility from it. With these
optimizations, a DLA architecture can achieve an average
speedup of 1.4 over a state-of-the-art microarchitecture for
a broad set of benchmark suites, making it a powerful tool
to enhance single-thread performance.

Keywords-single thread performance; decoupled lookahead
architecture;

I. INTRODUCTION

Modern societies have developed insatiable demands for
more computation capabilities. While in certain segments,
delivering higher performance via intense human labor
(manual parallelization and performance tuning) is justifi-
able, in many other situations, such effort is not necessar-
ily effective nor is it particularly efficient when the extra
resources (energy and loss of productivity) are properly
accounted for. Automatic performance improvement remains
a central goal in engineering future general-purpose comput-
ing systems [13]. After all, the systems have always been
designed to increase automation and productivity and to free
human from drudgery (including debugging a parallel code).

The two traditional drivers for single-thread performance
(faster cycles and advancements in microarchitecture) have

This work is support in part by NSF under grants 1514433 and 1722847,
and by a gift from Huawei. Due to space constraints, some details are left
out and can be found in the extended version of this paper [22].

all but stopped in recent years – and for good reasons, since
further gains from these approaches will come at significant
costs. However, the level of implicit parallelism is quite high
even in non-numerical codes. The real question is whether
we can realize the potential without undue costs. The typical
monolithic out-of-order microarchitecture appears to have
significant challenges exploiting this level of parallelism. In
particular, the instruction and data supply subsystem shoul-
ders a significant responsibility. Fig. 1 illustrates this point.
When data and instruction supply subsystem is idealized, the
average level of implicit parallelism is significantly higher
(about 5x) than when it is not, suggesting the subsystem as
a target for improvements.

as
t

bz
i

go
b

h2
6

hm
m lib

m
cf

om
n

sj
e

xa
l

gm
n0.1

1

10

100
ideal:128 ideal:512 ideal:2048 real:128 real:512 real:2048

IP
C

Figure 1. Implicit parallelism of integer applications. The
three bars on the left indicate the amount of available
parallelism (instructions per cycle) in the application when
inspected with a moving window of 128, 512, or 2048
instructions. The three bars on the right repeat the same
experiments only this time under a realistic branch mispre-
diction and cache miss situation that further constrains the
available parallelism to be exploited. Note that the vertical
axis is in log scale.

One possible way of strengthening this subsystem is to
use a decoupled look-ahead (DLA) architecture. In DLA, a
self-sufficient thread guides the look-ahead activities largely
independent of the actual program execution. Simply having
a thread for continuous look-ahead is not enough. Many
elements have to function properly and efficiently to create
a system that can offer sustained, deep, and high-quality
look-ahead that will provide significant benefits at acceptable
costs. In this paper, we discuss four optimizations on top of a
basic DLA architecture. Their effects are mainly to increase
the efficiency of the look-ahead thread and simultaneously
extract more utility out of it. The spirit of techniques are

somewhat analogous to the “reduce, reuse, and recycle”
mantra in waste reduction, hence the name R3-DLA.

The rest of the paper is organized as follows: Sec. II
discusses variants of DLAs and the related concepts of
helper threads; Sec. III explains the design details of the pro-
posed optimizations; Sec. IV performs experimental analysis
on these optimizations; and finally Sec. V summarizes the
findings.

II. BACKGROUND AND RELATED WORKS

A basic on-demand caching system is only part of the
solution to a high-performance instruction and data supply
subsystem. Anticipating needed data and prefetching them
is an indispensable component. Various types of prefetchers
have been proposed over the years targeting various proper-
ties of the applications’ address stream [14], [18], [21], [28],
[29], [36].

Ultimately, not all accesses can be described by simple
address patterns. Obtaining addresses through partial execu-
tion of the program represents a broad class of prefetching
approaches. On one extreme of the design spectrum, many
short threads are launched as helpers to precompute infor-
mation for data or instruction supply [7], [8], [11], [17],
[25], [26], [37]. Although these micro helper threads are an
immensely useful concept, marshalling a very large number
of micro threads can bring practical issues [22].

On the other extreme of the spectrum, an idle core in a
multicore system is used to execute a different copy of the
original program on a separate thread context [3], [10], [19],
[20], [27], [38], [42]. This copy is often a reduced version
of the program (which we referred to as the skeleton) so
that it can run faster to look ahead. This style of design can
be traced back to the Decoupled Access/Execute architec-
ture [35]. Unlike in DAE, however, the leading thread in
this group of designs does not affect the architectural state
and only performs look-ahead functionality. We therefore
refer to these designs as Decoupled Look-Ahead (DLA)
architectures.

DLA designs sidestep some of the practical problems
facing micro helper threads. But the key challenge becomes
how to create a look-ahead thread that is sufficiently au-
tonomous and yet fast enough to permit deep look-ahead.
Various ways are devised to improve the look-ahead thread’s
speed in order to stay ahead of the main program thread.
For instance, Slipstream [38] removes predicted dead in-
structions and biased branches; Dual-core execution skips
memory access instructions that miss in the L2 cache [42];
Tandem uses architectural pruning to make the hardware
faster [27]. Garg and Huang experimented with a more
purposeful-built look-ahead thread using a stripped-down
version of the original program [9].

In this past work, only a small number of ideas are
discussed at a time. By themselves these ideas have a
limited benefit – no different from ideas for conventional

microarchitectures. The limited benefit coupled with the
perceived disadvantage of doubling the resources needed
can hardly make DLA appear as a promissing solution that
we believe it is. Keep in mind, the extra thread context is
an infrastructure whose cost is amortized over future ideas.
As we will show in this paper, there are many conceivable
optimizations that can lower the overhead even more while
improving performance.

III. OPTIMIZATIONS OF DLA ARCHITECTURE

In this section, we first discuss a basic platform of
DLA (Sec. III-A), then discuss four optimizations in de-
tail: reducing look-ahead workload with prefetch offload-
ing (Sec. III-C); reusing value (Sec. III-D1) and control
flow information (Sec. III-D2); and recycling the skeleton
(Sec. III-E);

A. Baseline DLA

Our baseline DLA architecture is based on the one
proposed in [9]. Specifically, a skeleton of the original
program binary is generated which includes all the control
instructions and their backward dependence chain. A subset
of memory instructions is also included in the skeleton as
prefetch payloads along with their backward dependence
chain. During execution, this skeleton forms the static code
of the look-ahead thread (LT) and runs on a different core.
It passes relevant information (e.g., branch outcomes) which
speeds up the execution of the main thread (MT). At first
glance, it may seem wasteful to execute the same program
twice. But in reality, LT only executes a small portion of the
code (about a third in our design). Even when it does execute
an instruction, the actions involved may not be redundant.
For instance, wrong path instructions are mostly limited to
the LT; off-chip accesses are only time-shifted, not repeated;
We will present quantitative description on this point later
in Sec. IV and only note here that the energy overhead is
less than 25%.

Such an architecture requires the following support on
top of a generic multi-core architecture, ordered from least
to most special-purpose:

i) Containment of speculation: LT usually involves spec-
ulative optimizations and thus cannot be allowed to
update the architectural state. The support is simple as
most of the state is already naturally confined to the
thread context. The only additional support needed is
about dirty lines in the private caches (in our study,
the L1 data cache and the L2 cache). In the look-
ahead mode, they are not used to supply coherence
requests from other cores and are not written back
upon eviction, but simply discarded. In other words,
when a core executes in look-ahead mode, its private
caches only obtain data uni-directionally from the rest
system and never supplies data. It only supplies hints
as follows.

ii) Communication of look-ahead results: In a multicore
architecture with shared lower level caches, LT can
already warm up the shared caches without any ad-
ditional support. However, a mechanism to explicitly
pass on hints from LT is valuable. First, we can send
over the branch outcomes via the Branch Outcome
Queue (BOQ). The BOQ also acts as a natural mech-
anism to detect when LT veers off the correct control
flow; and to keep it from running too far ahead. In the
case an incorrect branch outcome is detected, a reboot
is triggered by MT which re-initializes LT. In addition
to the BOQ, we can also send other information such
as branch target addresses and prefetch addresses. We
use a Footnote Queue (FQ) for such less frequent
but wider data. On average, one footnote is generated
every 30 instructions. FQ is also used during reboot
to copy the architectural registers from MT to LT.

iii) Support for instruction masking: Finally, we find it
convenient to have the code of LT being a subset
of MT, thus allowing us to use the same program
binary and a set of bits to mask off instructions not on
the skeleton. These unwanted instructions are deleted
immediately upon fetch in LT. These mask bits can be
generated either offline or online through dependence
analysis of the program binary. In this paper, we model
a system where these bits are generated offline and
stored inside the program binary. At runtime, the I-
cache will combine the separately fetched mask bits
and instructions.

Summary of operations: To put these elements together,
we now describe the overall operation of the system (Fig-
ure 2). We assume the program binary is analyzed and
augmented with mask bits offline, the system always runs
in DLA mode, and that the two threads (the real program
thread and its look-ahead instance) run on individual cores
connected by the various queues discussed above. Note that
these are not intrinsic requirements to implement DLA. They
describe the most basic incarnation.

L1
	P
re
fe
tc
h	
Ta
rg
et
	

In
di
r.B

ra
nc
h	
Ta
rg
et
	

FQ	

In
di
r.B

ra
nc
h	
Ta
rg
et
	

L1
	P
re
fe
tc
h	
Ta
rg
et
	

TL
B	
Hi
nt
	

1	 0	 0	 1	
BOQ	

0 0	 1	 0	

0	 0	 0	 1	 1 0	 0	 1	

L3	

Core0	 Core1	

L2	L2	

	
code:	
..	
ldq						r1,	0(r5)	
addq		r1,	r1,	r3	
stq						r3,	0(r5)	
..	
NOP	
	
mask:	
10001010….	
….	

Binary

ldq	r1,	0(r5)	 addq	r1,	r1,	r3	 stq	r3,	0(r5)		 …...	1	 0	 0		

L1	 L1	

Figure 2. Architectural support for baseline DLA.

When a semantic thread is launched or context-switched
in, its architectural state is also used to initialize LT. Both
threads proceed to execute the code largely conventionally:
fetching, dispatching, executing, and committing instructions
according to the content of its architectural and microarchi-
tectural states. They differ from conventional cores in the
following way.

For the core executing the actual program thread (MT),
its fetch unit draws branch direction predictions from the
BOQ instead of its branch predictor. If the queue is empty,
we stall the fetch. The dequeued entry of BOQ may have a
footnote bit set. In that case, the control logic will dequeue
one or more entries from FQ and act according to the content
type. For example, if the entry is a branch target hint, then
the content from the entry (rather than from the core’s own
BTB) will be used for target prediction.

For the core executing in look-ahead mode, there are
three main differences. First, upon an instruction fetch, the
logic will delete unwanted instructions. Beyond the I-cache,
however, the masks are assumed to be stored in a different
location in the program binary for backward compatibility.
The masks are thus stored separately from the instructions
in the lower level caches. During an I-cache miss, the
controller will issue two read requests to the L2 cache for
the instructions (at the address Ai) and their masks stored
in address Am = f(Ai).

Second, LT will write hints into the queues for MT.
Specifically, at commit time, the outcome of a conditional
branch (“taken” or “not taken”) will be stored in FIFO order
in the BOQ. The BOQ serves a multitude of purposes. ¬ It
passes a branch outcome as a prediction to MT. This ensures
that in the steady state, the majority of branch mispredictions
are experienced only in LT. It is a simple and effec-
tive mechanism to detect incorrect look-ahead control flow.
When a branch prediction fed by LT turns out wrong, which
is relatively rare (0.06 per kilo instructions), it means that LT
is executing down the wrong path. We will reboot LT from
the current state of MT. ® We can easily know and control
the depth of look-ahead: the number of unread entries in the
BOQ equals the number of dynamic basic blocks LT is ahead
of MT. To prevent run-away prefetching, we only need to
limit the size of the BOQ (512 entries in this paper). ¯ It is a
convenient way to allow delayed (just-in-time) prefetching.
When a prefetch hint is generated, it can be associated with
a branch entry and released only upon the dequeuing of that
BOQ entry.

Finally, in addition to the continuous branch direction
hints, occasionally LT has other hints. Whenever it encoun-
ters a miss in TLB, L1 data cache, or BTB, it will pass the
relevant address through FQ and set the footnote bit in the
most recent BOQ entry.

B. R3-DLA: Overview

Before we discuss the proposed optimizations, it may be
helpful to put these ideas into the context of the vision
for DLA. As we have seen, there is significant implicit
parallelism in normal programs. It is not yet clear to us
what the best approach to exploiting this parallelism is.
Our current DLA design follows a path that first targets
instruction and data supply issue, basically because we
have to start somewhere. The baseline DLA design is also
just a starting point, intuitively with many low-hanging
optimization opportunities.

Indeed, as it turns out, there are a number of simple
things to do to either make the LT more efficient and/or
get more utility from it. In the first category, we can offload
certain type of look-ahead code to a finite state machine
(Sec. III-C), making the LT smaller and thus faster. In the
second category, we find that LT can provide more than
just branch prediction and addresses for prefetching. Both
the intermediate values and control flow information can be
reused, for example for value prediction (Sec. III-D). Finally,
the heuristic-driven skeleton in the baseline DLA is clearly
not optimal and can be adjusted online to other predefined
versions which, depending on the specific situation, can
make LT more efficient and/or more effective (Sec. III-E).

C. Reduce: offloading strided prefetch

The first optimization speeds up LT by reducing its work-
load. The intuition is simple. LT serves as a software-guided
prefetch engine which is far more flexible and precise than
hard-wired, finite-state machine (FSM) driven prefetchers.
The cost, however, is that we need to execute a sequence
of instructions to compute the address for prefetching. For
simple, strided accesses, such a software-driven approach is
an overkill. Instead, we build a hardware FSM (which we
call T1) to offload this type of prefetch.

Note that there is an important difference in the design
goal between T1 and a traditional stride prefetcher. The
latter needs to extract the stride in the presence of unrelated
addresses and in the absence of any certainty that there
is a strided stream to begin with. Moreover, to improve
coverage, practical prefetcher designs target variations of
strided accesses. All these are non-trivial challenges and
often involves memorizing and cross-comparing a non-trivial
number of addresses. T1, on the other hand, merely carries
out the mundane task of address calculation and issuing
prefetches. In other words, compared to a traditional stride-
detecting prefetcher, T1 is only a dumb FSM carrying out
simple orders. Additionally, T1 only targets one common
situation and does not try to be general-purpose.

1) Overview of operation: The common situation targeted
by T1 is a loop with one or more memory access instructions
whose address gets incremented by a (run-time) constant
every iteration. In such a case, all we need for effective
prefetching is the stride (δ), the prefetch distance (n), and

the identity of the strided access instructions. When we
encounter a strided instruction, we can take its address (A)
and simply prefetch A+nδ. Given the identity of the strided
instructions, we can easily derive the stride and prefetch
distance: The former is simply the difference between the
addresses of two consecutive instances of the same static
instruction; The latter is the average access latency divided
by the time interval between two consecutive instances.
Instead of including these necessary instructions in the
skeleton to generate proper prefetches, we mark them in
MT and let T1 handle the prefetches. LT is thus smaller and
faster than otherwise.

2) Instruction marking: To summarize the discussion
above, all the T1 hardware needs is the identities of the loop
branch and the strided access instructions. These instructions
are marked with another bit (the S bit). The S bits are
generated the same time the skeleton masks are generated,
however they are a marker on the binary for MT1. They are
fetched from the program binary by MT in the same manner
as the skeleton’s mask bits. Note that the T1 hardware
located in MT’s core will use information from MT to pro-
duce corresponding prefetches for the instructions marked
with the S bit. Hence, the skeleton generation process will
completely ignore these instructions and their backward
dependencies while generating the skeleton for LT.

state	 loop	PC	 inst.	PC	 eff.	addr.	 stride	 cur.	3me	 pref.	distance	

Figure 3. T1 prefetch register fields.

3) Operations of FSM: With marking of S bits done, the
run-time operation is to calculate two parameters: stride and
prefetching distance. To accomplish these tasks, we use a
small prefetch table. An entry of this table is shown in Fig-
ure 3. All entries begin in an invalid state. Upon execution
of a strided instruction, an entry is allocated in the prefetch
table. T1 starts issuing prefetches (with a fixed prefetch
degree) as soon as the first instance of a stride is calculated.
Each entry in the table gradually moves from an invalid state
through transient states to the steady state. Transient states
help guard T1 against identifying incorrect strides resulting
from out-of-order execution. They also aid in calculating
appropriate prefetching distance using the information on
iteration time and average memory access latency. When
prefetching distance is calculated, T1 launches multiple
prefetches to “catch up” with the prefetching distance. T1
then transitions into a steady state in which it launches one
prefetch every iteration. All entries in the table are cleared
when a loop terminates.

1So, the skeleton now includes two bits per instruction: a mask for LT
and a mark for T1

D. Reuse of Value and Control Information
The software-controlled nature of the baseline DLA

makes it a very flexible branch predictor and prefetcher. The
cost for such flexibility is the extra execution. As we will see
later, even with offloading discussed above, LT still executes
about half of the dynamic instructions of the program. The
next two optimizations try to increase the benefit of this
work already done. In particular, since a significant portion
of the values have already been computed, we seek to reuse
them in the form of value prediction. Also, the content of
BOQ is highly accurate future control flow information and
can help improve instruction fetch for the trailing MT.

1) Value Reuse: A variety of techniques have been
proposed to predict values [30], [39]–[41]. Most of these
techniques rely on the history of the values produced to
predict future values. Unlike branch outcomes, a typical
value usually has non-trivial entropy and thus defy easy
predictions. However, in our system, many instructions have
already been executed in LT. Empirical observations show
that over 98% of them have the same result as their coun-
terpart in MT and thus lend themselves to reuse.

The basic support is similar to any value predictor: ¬ the
predicted value will be used to allow dependent instructions
to execute early; the instruction producing the value will
check the outcome with the prediction and, upon disagree-
ment, trigger a replay. In our system, instead of coming
from a value prediction table, the predictions are read in
FIFO order fed by LT. In our design, we extend the footnote
queue for this purpose: every instruction that we decide to
apply value reuse will allocate an FQ entry containing the
value and an offset indicating distance from the preceding
branch.

Again, unlike traditional value predictions, we have an
abundance of highly accurate results. Thus the key design
issue for our value reuse is to minimize the costs, which
includes communication from LT to MT and the perfor-
mance loss due to incorrect values. Our approach is to limit
value only to ”slow” instructions with a high confidence of
successful reuse. After some experiments, it quickly became
obvious that many different heuristics can achieve the goal.
We describe one runtime version below.

At the beginning of a new loop (Sec. III-E2), MT spends a
few iterations (8 in our experiments) identifying these slow
instructions, defined as having dispatch-to-execute latency
of at least 20 cycles. Their PCs will be recorded in a bloom
filter (let us call that Slow Instruction Filter or SIF). LT
checks this table at commit stage and if the instruction is
there, allocates a value reuse entry in FQ. The SIF is cleared
upon entering a new loop.

Our confidence mechanism is simplistic: when a value
prediction turns out incorrect, the entry of that static instruc-
tion is deleted from the SIF and LT will no longer provide
a prediction for that instruction. However, we observe that
this is infrequent (less than twice per million instructions).

skeleton		
mask	

i1	 1	 mul	 r8,r11,r5	
i2	 1	 add	 r6,r21,r4	
i3	 0	 mul	 r5,r12,r11	
i4	 1	 add	 r4,r5,r2	
i5	 1	 sub	 r10,r11,r10	
i6	 1	 ret	

can	skip	value	
predic<on	valida<on	

Figure 4. Example of skipping value prediction validation.

There is one small optimization to this basic support.
In some cases, we do not need to validate all predicted
values. We can skip those ALU instructions that only depend
on other instructions that have produced a predicted value.
Figure 4 shows an example. i4 sources from i1 and i2,
both of which produce a value prediction. When we see
this case, we can directly use i4’s value prediction as the
outcome and there is no need to execute i4 in MT. This is
because in our system, we have no speculative optimization
that can corrupt functional units in LT. So, if both values
are correct, then i4’s result is correct (barring hardware
reliability issues). If either value is incorrect, eventually,
there will be a value misprediction recovery upstream. i5,
on the other hand, cannot skip validation as it depends on a
value that is not predicted. This optimization will save about
11% of validations.

We implement this optimization with a simple score-
boarding logic at the decode stage in the MT core. When
an ALU instruction i produces a value prediction, we mark
its destination register as validated. Other instructions (e.g.,
loads, or instructions not producing a value prediction) will
clear the marking for its destination register. If an instruction
has a value prediction and its source registers are all marked
validated, it will not be executed for validation.

Finally, once the value prediction framework exists, we
can add some critical-path instructions back to the skeleton.
Clearly the trade-off is faster execution of MT at the
expense of slowdown of LT. In general, whether adding
an instruction to the skeleton speeds up the whole system
or not depends on the balance of the duo. It opens up a
general optimization problem of choosing the right skeleton
that maximizes system performance. In this paper, we only
follow a simple heuristic to find candidates: they have a long
dispatch-to-execute latency (more than 20 cycles on average)
and have more than one dependent instruction. The skeleton
construction algorithm will include the necessary backward
dependence chain.

2) Control flow information reuse: Instruction fetch can
sometimes be a source of pipeline bubbles. In DLA, the
presence of future control flow information allows us to
ameliorate this problem to some extent for MT. For instance,
a trace cache [32] can increase the number of fetched
instructions per cache access. Having a highly accurate

stream of branch predictions from the BOQ is a significant
advantage to leverage when using a trace cache. However,
trace cache is an expensive form of instruction caching. In
this paper, we opt for a simpler approach that is in fact more
effective in our setup.

The basic idea is to reduce idling for the instruction fetch
unit by allowing it to continue even if the decode stalls.
In other words, we want to decouple the fetch unit from
the rest of the pipeline – or in the case where this has
already been done to the baseline architecture, increasing
the degree of decoupling with a bigger buffer. The key
point to emphasize is that the BOQ offers a much higher
degree of branch prediction accuracy. Without this accu-
racy, fetching too much down the predicted control flow
is unlikely to pay off, and indeed can even backfire and
slow the whole processor down. In fact, in a conventional
architecture, sometimes a more constrained fetch unit is
beneficial as it slows down the pollution created by the
relatively common wrong-path instructions. In other words,
the benefit of having a fetch buffer is clear for DLA, but
not necessarily so for a conventional architecture. We will
show this in the experimental analysis later in Sec. IV-C.

E. Re-cycling the Skeleton

In DLA, the skeleton is constructed using simple heuris-
tics. Given this basic skeleton, if we add one more memory
instruction (and its backward dependence chain), LT is
likely to run a bit slower but potentially helping MT avoid
more misses. Depending on which thread tends to be the
bottleneck, this small change may increase or decrease
system performance. We can see that there is a vast number
of possible variations and the basic skeleton is unlikely to
be optimal. The question is, therefore, are there significantly
better options than our default? If so, how can we system-
atically and efficiently arrive at such options?

These are all questions beyond the scope of this paper.
Nevertheless, we do know that simple tunings can effectively
improve the performance. The general approach is to create
a few versions of skeleton and cycle through them to find
out the best empirically.2

1) Versions of skeleton: The most basic version of the
skeleton includes all branches and their backward depen-
dence chains and is produced with a binary parser. From
this starting point, we may add or subtract instructions using
a few broad heuristics coupled with static-time profiling. In
our experiments we collect these statistics by executing the
programs with training inputs and use them to build skele-
tons that are used during the actual run. We experimented
with five options:

• L2 prefetch targets: Instructions that account for signifi-
cant portions of L2 misses can be added to the skeleton;

2This process may repeat a few times to average out noise. Admittedly,
the analogy with recycling in the normal sense is tenuous.

• L1 prefetch targets: Instructions that account for signifi-
cant portions of L1 misses can be added to the skeleton;

• Value reuse targets: Instructions that have a long dis-
patch to execute latency can be added to the skeleton;

• T1 targets: Memory instructions that are handled by
T1 are by default removed from the skeleton. However,
they may be added back (as they might warm up cache
for LT).

• Biased branches: Conditional branches with a bias over
a threshold can be converted to unconditional branches
in the skeleton.

These independent options naturally lead to many differ-
ent combinations. Our empirical observation shows that a
very small number of combinations need to be searched to
obtain noticeable benefits. We evaluate a design that cycles
through six versions of skeleton empirically observed to be
most often helpful. Changes to the number of options, the
number of versions, or the thresholds used in identifying
target instructions will likely affect the exact outcome. The
key point to note is that this is not an effort to find the
optimal points in the design space, but simply an attempt
to pick a few different points so that we can avoid poor
design points due to simplistic heuristics. Also note that the
skeleton generation process (Fig. 5) is an offline, automated
process just as in the baseline, except it produces more than
one skeleton.

2) Controller: With a number of skeleton options, the
goal of the controller is to find the skeleton version that
maximizes the benefit. To do this, we divide the execution
into repeating code units, or loosely speaking, loops. For
each loop, we cycle through different versions to find out
the best.

To identify the current loop, we capture the backward
“loop branch” (Figure 6). Two consecutive instances of the
loop branch without an interleaving instance of another
loop branch marks the two ends of an iteration. Note that
units need to be of sufficiently coarse granularity, otherwise
we can neither accurately measure execution statistics nor
profitably adjust the system configuration. So, a unit of
execution is one or more iterations lasting, say, at least
10,000 instructions.

Note that recursive functions can represent a significant
portion of the execution time without having a detectable
loop. To deal with these cases, we treat certain function call
instructions as if they are loop branches. In such a case, an
“iteration” may not have the same meaning as we are used
to. But it is still a valid strategy to observe the behavior of
a unit of multiple iterations to predict that of a future unit.

During execution, the controller will run each loop for
enough iterations under a particular skeleton. This will
allow an accurate measurement of the speed (instructions
committed per unit time) of that loop under that skeleton.
After cycling through all skeletons, the controller selects
the skeleton showing the highest speed and use it for the

steady state. The identity of the loop (PC of the loop branch)
and the corresponding best configuration is then stored in a
Loop-Config Table (LCT as shown in Figure 6). If a loop PC
is found in the LCT, the controller selects the corresponding
configuration.

Note that all the steps involved in re-cycling skeleton can
be done either on-line as the application runs, or off-line
using training runs. For the simple recycling discussed in
this paper, we believe the offline approach is more advisable
as we need no architectural support (other than performance
counters). However, an online recycling support (like the one
we discussed) may be a better alternative in a more dynamic
environment. We will compare the effect later in Sec. IV-C.

F. Recap

To sum up, a basic DLA design uses one core to execute
a look-ahead thread and passes information through two
queues (BOQ and FQ) to help accelerate MT. On top of
this basic design, we propose to add a number of supporting
elements (Figure 7) to accelerate either LT or MT:

• T1: A prefetching FSM to offload prefetching of loop-
based strided accesses;

• Value reuse: logic to pass register values from LT
through FQ and used as predictions in the front-end
of MT;

• Fetch buffer: using an extended buffer to fetch instruc-
tions down the path predicted in the BOQ;

• Re-cycle controller (hardware support optional): cycles
through a number of skeleton mask bits to pick the best
performing configuration.

With these elements, the R3-DLA becomes significantly
more effective as we will show next. More importantly, these

optimizations are merely examples of what can be done to
make the DLA models more effective. We believe that there
are plenty of opportunities in DLA to keep on extracting
more implicit parallelism.

IV. EXPERIMENTAL ANALYSIS

In this section, we perform experimental analyses of
the proposed design. After detailing the simulation setup
(Sec. IV-A) we first show bottom-line results of a complete
system (Sec. IV-B) and then provide more detailed analyses
to gain insight of the individual design decisions (Sec. IV-C).

A. Simulation Setup

For simulation purposes, we use Gem5 [4] simulator
to model our proposed architecture. Our baseline is an
aggressive out-of-order pipeline with a Best Offset [28]
prefetcher (BOP) at L2. This prefetcher is selected because
in our experiments it provided the best average performance
gain among a group of 7 state-of-the-art prefetchersover all
application suites experimented [22]. The prefetcher is con-
figured with 256 RR table entries and 52 offsets as described
in [28]. Additional technical details about the baseline are
provided in Table I. Unless otherwise mentioned, we use this
baseline configuration in all of our experiments. For DLA
reboots, we add a 64 cycle delay to account for copying of
the architectural registers from the trailing thread to the look-
ahead thread. Note that since the chances of reboots are rare
in DLA (0.6 on average in a 10k instruction window), their
impact on performance is minimal e.g., increasing the reboot
cost to 200 cycles will degrade the overall performance of
R3DLA by less than 2%.

For comparison, we have also modeled a number of
similar approaches [11], [16], [31] ranging from earlier

L3

Pre-decode	and	
Instruction	Fetch

Decode

ROB	&	Retirement	
Unit

Schedulers/	WB

ALUs

D-Cache	&	D-TLB

I-Cache	
&

I-TLB

in
de
x

xx
xx

FOOTNOTE	
QUEUE

xx
xx

xx
xx

xx
xx

1 0 0 1 1

Va
lu
e	
pr
ed
.

L2
	p
re
fe
tc
h

TL
B	
pr
ef
et
ch

In
di
r.	
Br
.	t
ar
ge
t

L1
	p
re
fe
tc
h

1 0 1
BOQ

1 0 0

1 0 0 1 0 1

Rename	/	Allocate

PRF

VR

PREF

L2

MEMFPUs LD/STBRU

RC

Skeleton	Mask	Decoder
Pre-decode	and	
Instruction	Fetch

Decode

ROB	&	Retirement	
Unit

Schedulers/	WB

ALUs

D-Cache	&	D-TLB

I-Cache
&

I-TLB

PRF L2

MEMFPUs LD/STBRU

Skeleton	Mask	Decoder

BPBP

Rename	/	AllocateVR RC

, :	DLA structures	&	connections

, :	R3-DLA	structures	&	connections

T1 T1

reduce: T1, reuse: VR &	FB,	 recycle: RC

FB FB

PREF

Figure 7. Architectural support for R3-DLA. The gray colored rectangle on the left represents the lead core and the one on the
right represents the main core. Structures included by DLA are patterned and the connections are indicated with the dashed lines.
Structures included by R3-DLA are shaded and the connections are indicated with the dotted lines.

Figure 5. A pseudo code outlining the steps involved in
generating different skeletons used by the recycle optimiza-
tion. A few seed vectors are constructed using profiling
information obtained from the program binary and training
runs. A skeleton is generated from a seed vector by including
backward dependencies of each seed present in it. Multiple
combinations of these seed vectors can therefore produce
multiple skeletons. The recycling optimization we used in
our evaluations uses six of these skeletons (Line 21 in the
figure).

design of SlipStream to the recently proposed state-of-the-
art runahead execution scheme called Continuous Runahead
Engine (CRE). Under our baseline configuration (Table I),
CRE outperforms other designs. It generates its helper
threads at runtime and executes them on a custom processor
located at the memory controller. We modified CRE’s design
to prefetch data into L1 which on average provides higher
overall performance than just prefetching into LLC. Note
that since we do not ignore any of the applications in
our evaluations and since our baseline configuration uses 3
levels of cache hierarchy with BOP as a L2 prefetcher, our
performance numbers for CRE appear different than the ones
reported in [11]. For similar configuration and applications,
the average performance gain of CRE on our platform is
within 5% of the ones reported in [11]. In the case of [9],
the factors like memory model, improved prefetcher/branch
predictor and an overall aggressive baseline all contribute to
the variation in the reported performance benefits.

For CPU’s energy consumption modeling, we use Mc-
PAT [24] and assume a 22nm technology node. We mod-
ified McPAT to correctly model our proposed architecture
and additional hardware structures shown in Figure 7. To
compute main memory energy, we use DRAMPower [5].

Loop	PC	 sktID	
0x1240	 0	

0x1148	 4	

(LCT)	

read	best	
performing	
skeleton	

LoopBr	 Loop	Iter.	 Inst	Cnt.	 Cycles	 testSktID	 maxIPC	 bestSktID	

found

update if
not equal not found insert best

performing
skeleton

Loop
Register

(LR)

Commi=ed	
InstrucAon	

>	Loop	Threshold	

ROB	

Loop	Br?	

++

++

++

reset	

runtime search
for best skeleton

Recycle Controller (RC)

Figure 6. Skeleton recycling flow chart. As a loop branch
retires, the Loop Config Table (LCT) is queried for the
skeleton that is optimum for the current loop. If none of
the entries in LCT match the loop branch, different fields
in the Loop Register (LR) are used to cycles through each
of the available skeletons for a few iterations of the loop
and identify the optimum skeleton for the loop. The LCT is
updated when an optimum skeleton is found and that skeleton
is used by lead thread until a new loop branch retires from
ROB.

Processing
Node

20-stage pipeline, out-of-order, 4-wide, 192 ROB, 96 LSQ,
128INT/128FP PRF, 4INT/ 2MEM/ 4FP FUs, Tage SC-L Predictor
(configured as the 256kBits predictor described in [33]), 4K Entry
BTB, 32-entry RAS

Operating
Points

0.8V, 3.0GHz

L1 Caches 32KB I-cache and 32KB D-cache, 4-way, 64B blocks, 3 ports, 1ns,
32 MSHRs, LRU

L2 Cache 256KB, 8-way, 64B blocks, 2 ports, 3ns, 32 MSHRs, LRU, BOP [28]
L3 Cache 2MB, 16-way, 64B blocks, 12ns, LRU
Main
Memory

4GB, DDR3 1600MHz, 1.5V, 2 channels, 2 ranks/channel,
8 banks/rank, tRCD=13.75ns, tRAS=35ns, tF AW =30ns,
tW T R=7.5ns, tRP =13.75ns

DLA Support
BOQ 512 entries (512x2 bits = 128B)
FQ 128 entries (128x64 bits = 1KB)

R3-DLA Support
T1 16 prefetching entries (512B)
FB 32 instructions (256B)
VPT 32 Entries (32x64 bits = 256B) (used by VR)
LCT 16 Entries (136B) (used by RC)

Table I. System configuration.

We evaluate our proposal on a broad set of bench-
mark suites. In addition to the SPEC2006 [12] benchmark
suite, we use CRONO [1] (a graph application suite),
STARBENCH [2] (embedded applications), and scientific
workloads from NAS Parallel Benchmarks (NPB). For
SPEC2006, we use reference inputs. For STARBENCH
we use large inputs. NPB is simulated with C class of
workloads. For CRONO we use graph input data structures
from google, amazon, twitter, mathoverflow and california
road-networks. All benchmarks are compiled using gcc with
-O3 option. To reduce simulation time, we use SimPoint
sampling methodology. To accurately capture all phases of
the application we use the SimPoint Tool [34] to generate
five simpoints per benchmark with 10 million instruction
intervals. We warm up the caches for 100 million instruc-
tions before beginning each of the simpoint intervals. All
the simulation results are obtained from these simpoints.

B. Overall Benefits

It is worth noting that in this paper, we assume DLA is
only used as a turbo-boosting technique – when there is
an idle core/thread. We assume otherwise exploiting explicit
parallelism yields better results.3

1) Performance: We first measure the overall perfor-
mance of R3-DLA and compare it to that of the underlying
microarchitecture and that enhanced by our baseline DLA.
We show these three configurations both without a hardware
prefetcher (left group of 3 bars In Figure 8-a) and with BOP
prefetcher (right group of 3 bars). All performance results
are normalized to the microarchitecture with BOP, which
represents the best we can do today without using DLA
techniques.

For clarity, we summarize the results of an entire bench-
mark suite into a single bar showing the geometric mean
of the whole suite and an I-beam showing the range of
values. This figure contains a lot of information that can
be organized into a number of observations:

i) R3-DLA provides high performance compared to
the underlying microarchitecture with an advanced
prefetcher. The speedup ranges from 1.06x to 2.24x
with a geometric mean of 1.4x. While the average
performance gain is significant, there is also a wide
range of result. DLA is most likely to be selectively
applied when the benefit is large. For instance, for
the top half of the applications, the geometric mean
speedup would be 1.51x.

ii) R3-DLA is also significantly faster than more basic
DLA designs. On average, R3-DLA outperforms the
baseline DLA by about 1.25x. This shows that the
proposed optimizations are effective. Figure 8-b briefly
compares the overall performance among a set of
related approaches: B-fetch [16], SlipStream [31] and
CRE [11].

iii) DLA is a fully-flexible prefetcher and thus has over-
lapping targets with a standalone prefetcher such as
BOP. When used with R3-DLA, BOP can still help
as it frees up DLA’s attention to better handle the
remaining targets, making the system a bit more
efficient. However, the “collaboration” between the
two mechanisms is unplanned for and the benefit
is somewhat limited: while BOP can improve the
baseline architecture by 1.27x, its effect on an R3-
DLA system is only 1.13x. We conjecture that a
more conscious collaboration between a standalone
prefetcher and DLA will be more effective.

2) Efficiency: One common concern of DLA architec-
tures is the energy cost. While it is tempting to assume
the energy cost (or at least power) doubles in DLA due

3Note that this is not always true anymore. And as more ideas are
developed, we may reach a point where the decision whether to use resource
for one type of parallelism or the other becomes a non-trivial one.

to executing the program twice, it would be a significant
overestimation even for the baseline DLA design, not to
mention R3-DLA, which further lowers the overhead.

First and foremost, LT is a much lighter thread, with an
average length of only 36% that of MT. Second, not all
LT activities are overheads. Some are time-shifted activities
(e.g., most memory accesses). Others help MT avoid almost
all wrong-path instructions. Finally, faster execution lowers
fixed energy costs. Note that LT-to-MT communication
is insignificant (averaging 2.2 bits per instruction) and is
faithfully modeled. To see this in a bit more detail, in
Table II, we show the amount of activities, the resulting
dynamic and static power in both LT and MT, all normalized
to the baseline microarchitecture. We see that LT expends
much less dynamic energy or power than baseline. Also,
despite running much faster than baseline, MT’s power is
comparable to the latter since it significantly reduces waste.

D X C Dyn.
Energy

Dyn.
Power

Static
Power

Power

DLA LT 49% 48% 48% 48% 54% 94% 71%
MT 77% 86% 100% 88% 96% 99% 97%

R3-DLA LT 35% 29% 29% 30% 42% 93% 64%
MT 77% 82% 100% 80% 110% 95% 103%

Table II. Average of activities (in Decode, eXecution, and
Commit stages), energy, and power for both threads in DLA
and R3-DLA all normalized to baseline. Note that for every
instruction committed in the baseline processor, 1.16 are
executed and 1.25 decoded.

Combining these factors together, our energy estimates
(Figure 9) suggest that the average normalized energy for
R3-DLA is 1.11x for the processor and 0.9x for memory
(all geometric means). There is significant variation among
individual benchmarks (with arithmetic mean 1.19x and 0.92
respectively.) In terms of energy delay product, DLA is 6%
worse than baseline while R3-DLA is 19% better on average.

spec crono star npb all
0.50

0.75

1.00

1.25

1.50

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

cp
u
 e

n
e
rg

y

DLA R3-DLA

(a)

spec crono star npb all
0.50

0.75

1.00

1.25

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

d
ra

m
 e

n
e
rg

y

DLA R3-DLA

(b)

Figure 9. Comparison of energy normalized to baseline spent
in (a) cpu (b) dram by DLA and R3-DLA.

3) Application in SMT cores: Finally, with increased
efficiency and sophistication, R3-DLA opens up the DLA
architecture to more usage scenarios e.g., in SMT cores.
Since SMT presents new opportunities for optimizing DLA
architectures, a more complete treatment of the subject is
left in [23].

spec2k6 crono starbench npb all
0.0

0.5

1.0

1.5

2.0

sp
e
e
d
u
p

0
.7

9

1
.0

4

1
.2

1

1
.0

0

1
.1

2

1
.4

2

0
.7

2

0
.9

9

1
.2

7

1
.0

0

1
.1

1

1
.3

7

0
.8

4

0
.9

9

1
.3

0

1
.0

0

1
.0

9

1
.3

5

0
.8

0

1
.0

6

1
.1

9

1
.0

0

1
.1

3

1
.3

9

0
.7

9

1
.0

2

1
.2

3

1
.0

0

1
.1

2

1
.4

0

BL (noPF)

BL

DLA (noPF)

DLA

R3-DLA (noPF)

R3-DLA

(a)

all
0.0

0.5

1.0

1.5

2.0

sp
e
e
d
u
p

1
.0

5

1
.0

8

1
.0

9

1
.1

2

1
.4

0

B-Fetch

S-Stream

CRE

DLA

R3-DLA

(b)

Figure 8. Performance gain over an aggressive baseline with BOP at L2. NoPF shows the normalized performance of a baseline
configuration with no prefetcher.

C. Detailed Analysis

We now look at the contribution of each individual
element in the design and some aspects of their interaction.

1) Offloading strided prefetch: With offloading stride
prefetching, we move the comparatively simpler task of
prefetching for certain strided accesses to a hardware FSM.
This alone reduces the skeleton size (from 66% to 45% on
average, more on that later), allowing LT to run faster, and
in turn making it more likely to succeed in other prefetches.
To understand the effect, we compare three different options
of prefetching these strided accesses: a modified stride
prefetcher [15],the baseline DLA, and R3-DLA. We show
the mean and median L1 MPKI (misses per kilo instructions)
for strided and the remaining accesses in Table III.

strided others
config. BL BL +

stride
DLA DLA

+ T1
BL BL +

stride
DLA DLA

+ T1
mean 12.4 8.4 5.9 2.1 7.4 6.9 6.1 4.8
median 10.0 4.8 4.0 1.1 3.9 3.5 2.8 3.2

Table III. L1 MPKI divided between strided accesses and
non-strided accesses, corresponding to four different config-
urations. For brevity, only means and median are shown.

We can imagine that T1 is far from perfect, requiring
the loop to start a few iterations before catching up. This
is why there is still a non-trivial 2.1 MPKI remaining for
strided accesses. But in comparison, both baseline DLA and
a hardware prefetcher are worse with 5.9 and 8.4 MPKI re-
maining respectively. Additionally, the offloading improved
DLA’s ability to target non-strided misses, reducing it from
6.1 to 4.8 MPKI on average. The medians show a similar
trend.

Figure 10 evaluates both performance and memory traffic
metrics among the various choices. For brevity, we only
show the aggregate result as the suite-wide average (repre-
sented by the bar) and range among individual applications
(represented by the I-beams).

First, we see that offloading works very well with DLA
across all four suites, achieving a geometric mean speedup of
1.14x over all benchmarks. Second, this offloading arrange-
ment is noticeably more effective as well as more efficient
than simply adding a hardware stride prefetcher. In terms
of performance, offloading never slows down the system in

spec crono star npb all

1.0

1.2

1.4

0.88

0.92

0.96

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

1.32

1.36

1.40

sp
e
e
d
u
p

1
.0

7
1

.1
5

1
.1

0
1

.1
3

1
.0

2
1

.0
7

1
.0

3
1

.1
2

1
.0

6
1

.1
3

DLA + Stride DLA + T1

(a)

spec crono star npb all

0.8

1.0

1.2

0.72

0.76

0.80

0.84

0.88

0.92

0.96

1.00

1.04

1.08

1.12

1.16

1.20

m
e
m

o
ry

 t
ra

ff
ic

DLA + Stride DLA + T1

(b)

Figure 10. Comparison of (a) speedup and (b) normalized
memory traffic of two different configurations: DLA with a
stride prefetcher and DLA with offloading (DLA+T1).

any benchmarks and has a high mean speedup (compared
to 1.06x for adding a stride prefetcher). This is because the
T1 hardware does a much more limited and easier job than
a conventional stride prefetcher [6]. This can be seen by
the memory traffic result shown in Figure 10-b: the total
memory traffic is lower with adding T1 than with adding a
stride prefetcher. Some of the extra prefetches from the stride
prefetcher are useless and create pollution, which contributes
to the lower performance.

2) Reusing control flow information: Using a fetch buffer
to decouple fetch stage and decode stage is not a new
idea. The key point here is that DLA makes it far more
effective due to the much higher branch prediction accuracy.
Figure 11-a shows the performance gains obtained by adding
a fetch buffer over a baseline system and a DLA system.

We see from the figure that the impact of a fetch buffer
can be negative in the baseline system. In fact, for NPB suite,
the overall effect is negative. When averaging over all ap-
plications, the benefit is relatively small (4% improvement).
In contrast, when driven by the highly-accurate prediction
sequence from BOQ, the fetch buffer almost never hurts and
the benefit can be as high as 1.28x. Overall, the speedup due
to this addition is 1.08x.

3) Re-cycling skeleton: Re-cycling does not add new
direct mechanisms for better look-ahead. It merely searches
the configuration space for a better solution. Figure 12 shows
the distribution of the skeleton being chosen in re-cycling of
skeleton. Each color shows a different configuration being
chosen. Although some simulation windows have a single
choice for a major portion of the window, all of them
have chosen a number of different solutions for different
loops. This suggests that using simplistic heuristics to design

spec crono star npb all
0.8

1.0

1.2

0.80

0.84

0.88

0.92

0.96

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

1.32

sp
e
e
d
u
p

FB over BL FB over DLA

(a)

spec crono star npb all

1.0

1.1

1.2

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

1.28

sp
e
e
d
u
p

1
.0

9

1
.1

2

1
.0

8

1
.1

0

1
.0

6

1
.0

7

1
.0

5

1
.0

9

1
.0

8

1
.1

0

Dynamic Static

(b)

AS VR FB

1.0

1.2

0.84

0.88

0.92

0.96

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

1.32

sp
e
e
d
u
p

1
.0

2

1
.0

8

1
.0

2

1
.0

6

1
.0

5

1
.0

8

First Technique Last Technique

(c)

Figure 11. (a) Comparison of performance gains obtained by a Fetch Buffer over BL system and over DLA system (b) The speedup
differences between dynamic and static tuning (c) Speedup when an optimization is applied first or after other optimizations.

bz mcgohm sj li h2omas xa bwmi ze gr le na so po ge lb spAVG
0.0

0.2

0.4

0.6

0.8

1.0

sp
e
e
d
u
p

a b c d e f

Figure 12. The distribution of skeleton versions chosen
during online tuning.

the default skeleton is unlikely to pick an optimal design
for a particular situation. Some dynamic tuning is perhaps
necessary.

Our experiments show that re-cycling skeleton improves
performance by about 1.08 on average and up to 1.27x
as shown in Figure 11-b. The figure also compares the
difference between dynamic on-line and static off-line (using
training inputs) tuning. We see that static tuning consistently
shows better result. This is partly due to the fact that in
dynamic tuning, more time is spent trying out suboptimal
configurations. We note that in both approaches, the tuning
is done in a very crude way and in a coarse-grain manner.
This observation suggests that a more methodical, fine-grain
tuning may be able to further improve the performance of a
DLA system.

4) Synergy of individual optimizations: While some op-
timizations proposed improve the speed of the look-ahead
thread, others extract more benefit from the look-ahead
thread to improve the main thread. There is an additional
synergy when all these techniques are combined: in a DLA
system, the overall speed in a given phase is limited by
the slower of the two threads. So, if a technique speeds
up only one thread, the system performance will increase
but only to the point where the other thread becomes the
new bottleneck. The rest of the benefit will only manifest
when something is done to improve the other thread. So,
when multiple techniques are applied, their combined benefit
will usually be higher than implied by the benefit of each
individual technique measured in isolation. We show this
visually in Figure 11-c.

In this experiment, we take the baseline DLA platform
and measure the performance impact of applying only one
of the three techniques. We compare that to applying the

same technique last, that is, when the platform already
incorporated other techniques. We see that in all three cases,
if we measure the technique’s benefit when it is applied as
the first step, then none looks especially promising averaging
about 2-5% gain. However, if we measure the difference
it makes as the last technique to be applied, the same
technique now appears to have a noticeably higher 6-8%
benefit. Thus, as we add more optimizations to the design,
more performance benefit may be unlocked.

V. CONCLUSIONS

Today’s general-purpose applications continue to have
significant levels of implicit parallelism. However, data and
instruction supply subsystem presents significant barriers to
exploiting this parallelism in a conventional microarchitec-
ture. Decoupled look-ahead systems are a potential solution.
In this paper, we have explored a number of optimizations
to such an architecture. They include ¬ reducing the look-
ahead thread workload by offloading simple prefetch pattern
to a finite state machine; reusing available values and con-
trol flow information to improve execution and instruction
supply to the main thread; and ® fine-tuning by cycling
through a number of pre-made skeletons. Each of these
techniques makes a seemingly limited contribution when
applied in isolation. But combined together, they improve the
performance of a basic DLA system by 1.25x and achieves
a speedup over a conventional architecture with a state-
of-the-art prefetcher by 1.4x on average. This performance
advantage differs from application to application and can
be as high as 2.24x, suggesting that if used selectively and
judiciously, an optimized R3-DLA system is already a high-
performance solution of exploiting the available implicit
parallelism. Furthermore, analyses of the system suggest the
potential for further improvements.

REFERENCES

[1] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. Crono: A benchmark suite
for multithreaded graph algorithms executing on futuristic multicores.
In IEEE International Symposium on Workload Characterization,
pages 44–55, 2015.

[2] M. Andersch, B. Juurlink, and C. Chi. A benchmark suite for
evaluating parallel programming models. In Proceedings of Workshop
on Parallel Systems and Algorithms (PARS), volume 28, pages 1–6,
2013.

[3] A. Ansari, S. Feng, S. Gupta, J. Torrellas, and S. Mahlke. Illusionist:
Transforming lightweight cores into aggressive cores on demand. In
Proceedings of the International Symposium on High-Performance
Computer Architecture, February 2013.

[4] N. Binkert et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[5] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and
K. Goossens. DRAMPower: Open-source DRAM power and energy
estimation tool, 2012. http://www.drampower.info.

[6] T. Chen and J. Baer. Effective hardware-based data prefetching for
high-performance processors. In IEEE Transactions on Computers,
volume 44, pages 609–623, 1995.

[7] M. Dubois and Y. Song. Assisted execution. Technical Report, De-
partment of Electrical Engineering, University of Southern California,
1998.

[8] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Analysis
of Branch Mispredictions and Its Application to Early Resolution of
Branch Outcomes. In Proceedings of the International Symposium on
Microarchitecture, pages 59–68, November–December 1998.

[9] A. Garg and M. Huang. A Performance-Correctness Explicitly De-
coupled Architecture. In Proceedings of the International Symposium
on Microarchitecture, pages 306–317, November 2008.

[10] A. Garg, R. Parihar, and M. Huang. Speculative Parallelization
in Decoupled Look-ahead. In Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques,
pages 412–422, October 2011.

[11] M. Hashemi, O. Mutlu, and Y. Patt. Continuous runahead: Transparent
hardware acceleration for memory intensive workloads. In 49th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–12, 2016.

[12] J. Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17, September 2006.

[13] W. Hwu. Top Five Reasons Why Sequential Programming Models
Could the Best to Program CMPs. Keynote Speech, International
Symposium on Microarchitecture, December 2006.

[14] Y. Ishii, M. Inaba, and K. Hiraki. Access map pattern matching for
high performance data cache prefetch. Journal of Instruction-Level
Parallelism, 2011.

[15] B. Janssens J. Fu, J. Patel. Stride directed prefetching in scalar
processors. In Proceedings of the International Symposium on
Microarchitecture, December 1992.

[16] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and
D. Jimenez. B-Fetch: Branch prediction directed prefetching for Chip-
Multiprocessors. In Proceedings of the International Symposium on
Microarchitecture, December 2014.

[17] D. Kim, S. Liao, P. Wang, J. del Cuvillo, X. Tian, X. Zou, H. Wang,
M. Gikar, J. Shen, and D. Yeung. Physical Experimentation with
Prefetching Helper Threads on Intel’s Hyper-Threaded Processors. In
Proceedings of the International Symposium on Code Generation and
Optimization, pages 27–38, March 2004.

[18] S. Kondguli and M. Huang. T2: A Highly Accurate and Energy
Efficient Stride Prefetcher. In Proceedings of the International
Conference on Computer Design, November 2017.

[19] S. Kondguli and M. Huang. A Case for a More Effective, Power-
Efficient Turbo Boosting. ACM Transactions on Architecture and
Code Optimization, 15(1):5–22, March 2018.

[20] S. Kondguli and M. Huang. Bootstrapping: Using SMT Hardware
to Improve Single-Thread Performance. IEEE TCCA Computer
Architecture Letters, 17(2):205–208, July 2018.

[21] S. Kondguli and M. Huang. Division of Labor: A More Effective Ap-
proach to Prefetching. In Proceedings of the International Symposium
on Computer Architecture, June 2018.

[22] S. Kondguli and M. Huang. ”R3-DLA (Reduce, Reuse, Recycle): A
More Efficient Approach to Decoupled Look-Ahead Architectures”.
arXiv preprint arXiv:1812.04514, December 2018.

[23] S. Kondguli and M. Huang. Bootstrapping: Using SMT Hardware
to Improve Single-Thread Performance. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, April 2019.

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: An Integrated Power, Area and Timing
Modeling Framework for Multicore and Manycore Architectures. In
Proceedings of the International Symposium on Microarchitecture,
December 2009.

[25] J. Lu, A. Das, W. Hsu, K. Nguyen, and S. Abraham. Dynamic Helper
Threaded Prefetching on the Sun UltraSPARC CMP Processor. In
Proceedings of the International Symposium on Microarchitecture,
pages 93–104, December 2005.

[26] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas.
Cherry: Checkpointed Early Resource Recycling in Out-of-order
Microprocessors. In Proceedings of the International Symposium on
Microarchitecture, pages 3–14, November 2002.

[27] F. Mesa-Martinez and J. Renau. Effective Optimistic-Checker Tandem
Core Design Through Architectural Pruning. In Proceedings of
the International Symposium on Microarchitecture, pages 236–248,
December 2007.

[28] P. Michaud. Best-Offset Hardware Prefetching. In International
Symposium on High Performance Computer Architecture, pages 469–
480, 2016.

[29] K. Nesbit, A. Dhodapkar, and J. Smith. Ac/dc: An adaptive data
cache prefetcher. In Proceedings of the International Conference on
Parallel Architecture and Compilation Techniques, September 2004.

[30] A. Perais, F. Endo, and A. Seznec. Register sharing for equality
prediction. In 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–12, 2016.

[31] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A Study of
Slipstream Processors. In Proceedings of the International Symposium
on Microarchitecture, pages 269–280, December 2000.

[32] E. Rotenberg, J. Smith, and S. Bennett. Trace Cache: a Low Latency
Approach to High Bandwidth Instruction Fetching. In Proceedings
of the International Symposium on Microarchitecture, pages 24–34,
December 1996.

[33] A. Seznec. Tage-scl branch predictors again. In 5th JILP Workshop
on Computer Architecture Competitions (JWAC-5): Championship
Branch Prediction (CBP-5), 2016.

[34] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In Proceedings of
the International Conference on Arch. Support for Prog. Lang. and
Operating Systems, pages 45–57, October 2002.

[35] J. Smith. Decoupled Access/Execute Computer Architectures. ACM
Transactions on Computer Systems, 2(4):289–308, November 1984.

[36] S. Somogyi, T. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-Temporal
Memory Streaming. In Proceedings of the International Symposium
on Computer Architecture, June 2009.

[37] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, , and M. Upton.
Continual Flow Pipelines. In Proceedings of the International
Conference on Arch. Support for Prog. Lang. and Operating Systems,
October 2004.

[38] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Proces-
sors: Improving both Performance and Fault Tolerance. In Proceed-
ings of the International Conference on Arch. Support for Prog. Lang.
and Operating Systems, pages 257–268, November 2000.

[39] R. Thomas and M. Franklin. Using dataflow based context for
accurate value prediction. In International Conference on Parallel
Architectures and Compilation Techniques, pages 107–117, 2001.

[40] D. Tullsen and J. Seng. Storageless Value Prediction Using Prior
Register Values. In Proceedings of the International Symposium on
Computer Architecture, pages 270–279, May 1999.

[41] K. Wang and M. Franklin. Highly accurate data value prediction
using hybrid predictors. In Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, pages 281–290, 1997.

[42] H. Zhou. Dual-Core Execution: Building a Highly Scalable Single-
Thread Instruction Window. In Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques,
pages 231–242, September 2005.

