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Abstract—Recently exposed vulnerabilities reveal the neces-
sity to improve the security of branch predictors. Branch
predictors record history about the execution of different
processes, and such information from different processes are
stored in the same structure and thus accessible to each other.
This leaves the attackers with the opportunities for malicious
training and malicious perception. Physical or logical isolation
mechanisms such as using dedicated tables and flushing during
context-switch can provide security but incur non-trivial costs
in space and/or execution time. Randomization mechanisms
incurs the performance cost in a different way: those with
higher securities add latency to the critical path of the pipeline,
while the simpler alternatives leave vulnerabilities to more
sophisticated attacks.

This paper proposes HyBP, a practical hybrid protection and
effective mechanism for building secure branch predictors. The
design applies the physical isolation and randomization in the
right component to achieve the best of both worlds. We propose
to protect the smaller tables with physically isolation based on
(thread, privilege) combination; and protect the large tables
with randomization. Surprisingly, the physical isolation also
significantly enhances the security of the last-level tables by
naturally filtering out accesses, reducing the information flow
to these bigger tables. As a result, key changes can happen less
frequently and be performed conveniently at context switches.
Moreover, we propose a latency hiding design for a strong
cipher by precomputing the “code book” with a validated,
cryptographically strong cipher. Overall, our design incurs a
performance penalty of 0.5% compared to 5.1% of physical
isolation under the default context switching interval in Linux.

I. INTRODUCTION

Recently exposed vulnerabilities reveal the necessity to
improve the security of branch predictors in mainstream
commercial processors [1]–[6]. The root cause of these
vulnerabilities is that modern processors generally adopt the
design principle of resource sharing, and branch predictor
is a typical example. From a security perspective, resource
sharing leads to a possible attack surface. Branch predictors
record history about the execution of different programs,
and such information is stored in the shared structure and
thus accessible to all processes. This leaves the attackers the
opportunities for malicious training and/or perception.

The fundamental defense strategy is to provide an iso-
lated execution environment for sensitive processes. Soft-
ware mitigations (e.g., converting secret-dependent branch

instructions into indirect jumps/computation instructions au-
tomatically [7], and inserting specific instructions manually
to protect high privileged processes from malicious training
by lower privileged processes [8]) cannot eliminate all run-
time sensitive information leakage. Hardware-assisted isola-
tion can be classified into two categories: 1) Flushing the
whole history table in a context switch or privilege change.
Software implementations typically introduce significant
slowdowns [9], which can be reduced by the hard-assisted
flush [10], [11]. Yet, because flushing only happens during
context or privilege switches, it can not completely solve
the problem in SMT architectures. 2) Physical isolation of
context from different threads and privilege levels. BRB [12]
is a state-of-the-art hardware implementation that provides
individual history tables for different programs. Although
BRB tries to limit hardware cost, it needs maintain separate
tables for all software thread-privilege level combinations.
Such physical isolation is fundamentally insufficient: with
limited storage, it can only provide isolation for limited
number contexts or threads.

Another promising solution is to apply randomization
to branch predictors [13]–[15]. The Samsung Exynos CPU
has implemented content encryption via simple substitution
cipher in branch-target buffers (BTB) and return address
stack (RAS) [13], but it only protects against some Spectre
variants (e.g., Spectre V2 and Spectre RSB), and lacks
effective coverage to other side channel attacks. Zhao et al.
employs lightweight XOR operation to encode the content
and index to mitigate branch predictor side-channels [15].
Lee et al. also propose to randomize the index of branch
predictor using low-latency cipher [14]. However, both sim-
ple XOR operation and LLBC proposed by CEASER [16]
have been proved to be linear and vulnerable to cryptanalytic
attacks—the complexity of finding an eviction set is the
same as when there is no randomization present [17], [18].

For a randomization based protection, encryption is the
crucial component that determines how secure the scheme
is. For branch predictor, the cipher needs to be embedded
into the pipeline, leading to important trade-offs between
security and performance. In modern branch predictor, the
prediction latency is usually 2 to 3 cycles. However, a
typical strong cipher takes many more cycles to produce the



ciphertext (e.g., over 10 cycles in AES, 8 cycles in PRINCE
on a 4GHz processor [19]). Thus, a key challenge is how
to embed it into the pipeline without major performance
degradation. The current solutions essentially choose to use
the simple cipher to trade-off security for low performance
overhead. Making it worse, a randomization-based secure
branch predictor using a strong cipher (e.g. AES cipher) still
requires changing the key more than one hundred times in a
typical Linux OS time slice. Lowering the change frequency
will significantly increase the probability of a successful
attack within a time slice.

In summary, the existing defense mechanisms suffers
from one of the three drawbacks: inadequate—flush cannot
protect different threads in SMT processor; or ineffective—
physical partition or replication incurs very high overhead
and considerable performance degradation; or expensive—
randomization is not panacea, and incurs high overhead
to be secure. We implemented existing schemes on the
cycle-accurate Gem5 [20] simulator and show the cost and
performance trade-offs in Table I. The flush is performed
on context switch and privilege change, and can be finished
in one cycle, but it is not useful for SMT when multiple
threads execute simultaneously. In partition, we fix the size
of branch predictor and divide it into four partitions (for
SMT-2, two threads, each has user and kernel mode). Each
partition is flushed on context switch. The performance loss
is due to smaller partition for each thread for a given mode.
In replication, we first increase the size of branch predictor
proportionally with the number of threads, and then partition
it according to (thread, privilege) combinations. For SMT-
2, the overhead is 100% and the performance loss is due
to smaller portion for each (thread, privilege). Disable SMT
shows the performance loss of not being able to execute
two threads simultaneously. The results will be discussed in
detailed in Section VII.

Defense Mechanism Performance Hardware Security
overhead cost Single-Thread SMT

Flush 5.1% 0 ! %

Partition 6.3% 0 ! !

Replication 2.1% 100% ! !

Disable SMT 18% 0 – !

HyBP 0.5% 21.1% ! !

Table I: Comparison of security mechanism.

While the performance loss of the alternative mechanisms
seems to be not quite significant, but we should not take
the single digit percentage lightly for the general-purpose
processors. They run all workloads, not only the benchmarks
but also the unforeseen ones. Thus, this paper’s goal is
to develop a new secure branch predictor with minimum
performance loss with reasonable hardware overhead. Given
the analysis of existing schemes, achieving this goal requires
fundamental innovations.

We propose HyBP, a practical hybrid protection and
effective mechanism for building secure branch predictors.

The key insight is that, we can apply the physical isolation
and randomization in the right component to achieve the best
of both worlds. Typically, modern branch predictors have
multiple tables and hierarchical designs with upper-level
small tables for best timing at low latency, and last-level
large tables to increase prediction accuracy [13], [21]–[23].
We propose to protect the smaller tables with physically iso-
lation based on (thread, privilege) combination; and protect
the large tables with randomization. Intuitively, the design
choice is very reasonable: physically isolating small tables
incurs much less overhead compared to applying isolation
for all tables. What’s less intuitive is that, the physical
isolation also significantly enhances the security of the last-
level tables by naturally filtering out accesses, reducing
the information flow to these bigger tables. As a result,
key changes can happen less frequently and be performed
conveniently at context switches. Moreover, we propose a
latency hiding design for a strong cipher. By precomputing
the “code book” with a validated, cryptographically strong
cipher, it can be removed from the timing critical path—
significantly mitigating the latency impact of using a strong
cipher (e.g., 8 in QARMA [24], PRINCE [19] on a 4GHz
processor). Without sacrificing performance, this optimiza-
tion provides stronger security than simple XOR operation
and low-latency block-ciphers for which the cryptographic
weakness can lead to a complete security subversion [17].

II. BACKGROUND

A. Attacks Through Branch Predictors

Conventional branch predictors allow different processes
to use the shared hardware resources for branch prediction.
This creates a side channel similar to those exploited in a
cache based side channel attack. It allows an attacker to
prime the predictor in a certain way to leak victim’s sensitive
information. The attacker can also achieve malicious training
in order to influence the victim’s (speculative) execution,
which in turn enables or enhances the victim’s information
leakage. Two types of attacks have been developed.

Reuse-based attacks: In structures such as PHT (Pattern
History Table), different programs directly access the com-
mon resource. Entries set by one process may influence the
other. This type of attack (e.g., BranchScope [2], Spectre
V1,V2 [1], and Branch Shadowing [10]) is therefore analo-
gous to reuse-based cache attacks [25].

Contention-based attacks: In cache-like structures (e.g.,
BTB), an attack similar to contention based cache attack can
be mounted. One requirement for constructing such attacks
is to create contention so that the old record is evicted. Then,
an attacker learns about the execution of the target branches
of a victim by sensing whether contention exists or not for
the corresponding entry of a branch predictor table [5], [26].



B. Randomization-Based Protection

Compared to the intuitive mechanisms physical isolation
and flushing, randomization achieves isolation of the con-
tent via encryption of information with less performance
costs [13]–[15]. Randomization transforms both index and
content of predictor tables—BTB and PHT—with thread-
specific encryption/encoding keys to obstruct malicious
threads from accessing contents of other threads. The keys
change under certain conditions so that countermeasures
have insufficient time to succeed. Figure 1 shows a specific
example with a “content key” and an “index key” that we
use in our design.

Figure 1: Overview of content encryption and index encryp-
tion. The red modules are designed for content encryption;
The green ones are for index encryption.

The purpose of the encryption is to introduce random-
ization to the actual index and content used in BTB and
make it harder for other entities to obtain useful information
despite the storage sharing. When a different thread i (with
its own set of keys) executes a branch, it will not obtain
the original tag or target address updated by thread j due
to the difference in their keys. It provides a logical isolation
of the content of BTB among different threads and different
privileges. The same randomization mechanism can also be
applied to PHT.

III. CHALLENGES OF RANDOMIZATION

Randomization breaks the fixed one-to-one correspon-
dence between the original value of index or stored content
and the actual value used in the predictor tables. This makes
it harder, but not impossible, for the attacker to perform
attacks. More importantly, it incurs high performance over-
head, as we discuss below.
A. Insecure Simple Ciphers

A secure encryption algorithm should satisfy two require-
ments: 1) uniformity of the output space, which equalizes
the probability that the output index falls on each branch
predictor table entry; and 2) nonlinearity between the in-
puts and outputs, which is crucial to resist cryptanalytic
attacks. The two requirements break the fixed index mapping
relationship and significantly improve the difficulty of the

attacker constructing conflicting items of a target branch
instruction or performing malicious training of a target
branch instruction. While simple low-latency ciphers such
as CEASER’s LLBC [16] can produce a ciphertext in just 2
cycles, Purnal et al. [17], [18] revealed that cryptographic
weaknesses in the CEASER’s LLBC can lead to a complete
security subversion.

B. Performance Overhead of Encryption

Figure 2: Performance impact on increased front-end
pipeline due to encryption latency. (The number in paren-
theses is the prediction accuracy of each application.)

Encryption increases the number of cycles of the front-end
pipeline, leading to the increased the penalty of mispredic-
tions. We investigate such performance impacts on our eval-
uation platform, which is described in Section VII. Figure 2
shows the performance loss when the front-end pipeline is
increased by 2, 4, and 8 cycles on a single-threaded core.
As expected, the applications whose performance is the most
sensitive to the longer pipeline are those with relatively low
prediction accuracy. We see that with an encryption latency
of 8 cycles, the performance loss can be as high as 19.5%.
Overall, using a commodity cipher (e.g., QARMA and AES)
with a latency of 8 cycles, the average performance loss due
to the longer front-end pipeline is close to 7.8%. The results
suggest that simply using strong cipher is not feasible.

C. Performance Overhead of Key Change

Ideally, given any input, the randomization process creates
a uniform distribution in the entire range in its output. It
minimizes information on the input an attacker can obtain
from observing the output. However, with repeated observa-
tions, an attacker may still succeed in extracting information.
For example, an attacker can efficiently mount a contention-
based attack against a particular branch, provided a small
set of lines that map to the same set can be found so
that executing these can create an eviction event for the
target branch. The Group-Elimination Method (GEM) is a
typical algorithm to create such an eviction set with high
efficiency [27], even though GEM is not the state-of-the-art
algorithm. The key point is that, it does not take a long time
to break the randomization mechanism on BTB.



Given L random lines that conflict with a target, GEM
excludes a group of lines at a time and retests to see if there
is a conflict. If the conflict persists, the group of lines are
known not to cause the conflict and can be eliminated. It
can be shown that in O(L) time, the algorithm will produce
an eviction set [27]. If we assume that the GEM method
works on BTB with the same efficiency, with a BTB size
of 7K entries, about 216 accesses are needed to construct
an eviction set. This means that a key change is required
at about every 216 accesses, equivalent to flushing the table
more than a hundred times in a typical operating system
time slice. The performance impact will be significant. With
smaller BTBs, the change needs to be even more frequent.

IV. THREAT MODEL

This paper has the following assumptions: The attacker
thread and the victim thread can run on the same processor
core. An attacker can know the source code and address
layout of the victim. An attacker has the ability to run the
victim program in single-step mode, such as manipulating
the APIC timer exploited in SGX-Step [28].

Table II: Classification of threat models. Our target scenarios
are marked with !. Scenarios not considered are marked
with ⃝. “privilege” is abbreviated as “priv”.

Combinations of context switch and privilege change
Same-thread Same-thread Cross-thread Cross-thread

Same-priv Cross-priv Same-priv Cross-priv
Reuse-based

⃝ ! ! !(e.g. Bluethunder[20]
Branchscope [2])
Contention-based

⃝ ! ! !(e.g. Jump over
ASLR [29])

This paper focuses on defending against reuse-based and
contention-based attacks on branch predictors. HyBP defend
against most scenarios such as typical cross-thread or cross-
privilege reuse-based attacks (e.g. Spectre V2 [1], Branch-
Scope [2] and Bluethunder [3]) and contention-based attacks
(e.g. Jump over ASLR [29]). The only exception is the same-
thread and same-privilege attacks (e.g. Spectre V1 [1] and
malicious trojan injection attacks [6]). However, we believe
its root cause is not whether branch predictors is secure
and they can be defended by other security mechanisms
(e.g. SABC [30]). Therefore, we do not consider defending
against such attacks, and we don’t think that secure branch
predictors needs to solve this problem.

V. HYBRID PROTECTION MECHANISM

A. Defense Strategy

Based on the previous analysis of existing mechanisms,
we believe a practical defense mechanism for branch pre-
dictor to isolate threads and privilege levels should satisfy
three desirable properties:

• Limited performance impact;
• Minimal impact on processor pipeline;

• Compatible with modern branch predictor structures.
To achieve these goals, we propose HyBP, a practical and

effective hybrid protection mechanism for building secure
branch predictors. We now discuss the implementation is-
sues. It features three key ideas:

Hybrid protection: We overcome the drawbacks of phys-
ical isolation and randomization by applying each mecha-
nism in the right component to achieve the best of both
worlds. Modern predictors consist of multiple tables and
hierarchical designs with small upper-level tables and a large
last-level table [21], [22]. We propose a hybrid protection
mechanism that protect the smaller tables with physically
isolation based on (hardware thread, privilege) combination;
and protect the large tables with randomization.

Strong encryption: We transform both index and table
content with software thread-specific encryption/encoding
keys to prevent malicious threads from accessing contents
of other threads; the keys change under certain conditions
so that countermeasures have insufficient time to succeed.
While even simple encryption can defeat some existing
attacks, more sophisticated attacks are found to defeat very
recent proposals. We thus use strong encryption algorithms
and update the key periodically.

Latency hiding: To reduce the performance loss of
using strong encryption, of which the latency required is
significant (e.g., 8 cycles for QARMA [24], PRINCE [19]),
we propose to store precomputed partial results to allow
accelerated encoding/decoding in the instruction pipeline.

B. Isolation-Randomization Hybrid Scheme

The modern branch predictors [21], [22] have multiple
tables and hierarchical design. Based on such architecture,
neither physical isolation nor randomization is ideal: the
small table sizes lead to a small number of accesses for an
attacker to succeed; while physical isolation always incurs
high hardware overhead. On the other side, the small table
makes physical isolation relatively inexpensive to imple-
ment. The large tables can be protected by randomization
(encoding), which can be made more secure when many
accesses are naturally filtered out by the small tables.

Figure 3 shows an example of secure branch predictor
design based on a baseline BPU from AMD Zen2 [21]. In the
figure, the two upper-level BTBs (L0 and L1) and the base
predictor in the TAGE direction predictor are protected with
physical isolation. This can be achieved with a combination
of replication and physical partition. For instance, the tables
can be replicated for each SMT thread, with each thread
only accessing its own table. In all cases, when a context
switch occurs, the part of the table that belongs to the thread
being swapped out is flushed. This can be easily achieved by
changing the content and index keys. The larger tables (e.g.,
L2 BTB) are protected by logical isolation with encoding.
In all cases, the indices and content are encoded with index
keys and content keys respectively.



(a) BTB with HyBP (b) TAGE-SC-L predictor with HyBP

Figure 3: Example implementation of hybrid secure three-level BTB (a) and direction (TAGE-SC-L) predictor (b) on SMT-2
core. Each hardware thread has a randomized index keys table with as many as entries as the number of L2 BTB’s sets or
the entries of the longest tag table in TAGE predictor. Moreover, all the tables here are shown to use the shared content key,
though using table-specific key is a valid option. The shaded tables (lower level BTBs in (a) and base predictor in (b)) are
protected with physical isolation. The baseline predictor is from an AMD processor [21]: The three levels of BTB hold 16,
512, and 7K entries respectively, and the size of each entry is 60 bits, using random replacement; The TAGE component
consists of a base predictor which is a simple PC-indexed 2-bit counter bimodal table (8Kbits prediction, 4Kbits hysteresis),
thirty equal-sized tagged tables each with two interleaved banks featuring respectively (ten 12-bit 1K-entry banks, and twenty
16-bit 1K-entry banks); Each tagged entry consists a signed counter Ctr which sign provides the prediction, a (partial) Tag
and an unsigned useful counter U. The respective tag widths are 8 and 11 bits. Other details can be found in [31].

The hybrid design achieves a good balance of security
and implementation cost. Smaller tables gain good security
protection with physical isolation, while the bigger tables
avoid high cost in replication or physical partition. Interest-
ingly, there is an additional security benefit for the bigger
tables in a hybrid designs: L0 and L1 BTB naturally filter
out accesses, making it more difficult for the attacker to
observe a particular entry of the victim or to plant entries
in the shared L2 BTB. Taking the PPP algorithm as an
example [17], the algorithm relies on observing conflicts
with a target line from the victim to perform its elimination
process. In the presence of L0 and L1, the target line may
not be present in the shared L2 table to begin with. Only
through repeated evictions (due to activities from the victim)
can the target line have a chance to enter the L2 table. If the
system has an L0 and L1 BTB with physical isolation, when
the victim executes a taken branch, the last-level BTB is no
longer guaranteed to contain the line. Assuming the lower
level tables have a miss rate of m, then the information flow
to the last-level BTB is reduced to m times that without the
L0 and L1. Roughly speaking, an attack algorithm will take
1/m times longer to obtain the same information, allowing
the key to be changed less frequently.

C. Latency Hiding

So far, we have treated the encryption process as a black
box. In a real design, the latency of encryption presents
a challenge as discussed in Sec. III-B. While it is ideal
that faster ciphers with sufficient security guarantees can be
developed, we believe that it is very challenging and such
cipher is not available at present. In HyBP, we choose to
employ a fully validated commodity cipher, QARMA [32].
To mitigate the latency impact of using the cipher, we
propose to hide much of the latency through precomputation
of the “code book”.

For index, we use a table to store a number of index keys
generated by the commodity cipher, as shown in Figure 3.
This table is indexed by a part of the branch’s PC to retrieve
an index key for that PC. The key is used together with
the plaintext index to generate the actual index for table
accessing.

For content encoding, we choose to use a simple XOR
encryption for two reasons: 1) XOR operations are extremely
fast with a trivial hardware cost; and 2) since the bit width
of the content is much wider than the bit width of the index,
changes of content keys makes a simple XOR encryption an
effective mitigation technique (discussed in Section VI).



1) Precomputation for Keys Table: The production of
the code book is left outside the critical path as shown in
Figure 4 (shaded portion). When a new book is needed (e.g.,
upon context switch), we use the encryption engine QARMA
with an Index Seed to encode a sequence of readouts from
the timer register. The resulting sequence of ciphertext is
used to fill the code book. The Index Seed is calculated
with the combination of ASID (Address Space ID), VMID
(Virtual Machine ID) and RAND (value generated from
random number generator or PUF [33], [34]). This index
seed is generated completely in hardware, with no software
visibility of any intermediate values, even to the hypervisor.
We maintain an access counter for the code book. For
security, the code book is renewed upon in two situations
when 1) a context switch happens; and 2) the number of
accesses based on the counter reaches a threshold.

The Randomized Index Keys Table is built with SRAM
arrays. Its physical structure is irrelevant to the logical
meaning of keys. For instance, a 1K-entry table with 10-
bit keys per entry can be organized as a 256-entry array
of 40-bit words. During a renew of the code book, after the
initial pipeline fill-up of the cipher engine (of, say, 7 cycles),
a single 40-bit key will be produced every cycle. Thus the
code book will be renewed in 263 cycles.

2) Security Analysis of Keys Table: It is important that
the keys table does not introduce new side channels or spec-
ulative execution vulnerabilities associated with the access
of the table. We can see that for each BPU access, a keys
table access is needed. The table is not a cache, there is no
miss, and the access time is fixed. Therefore, the keys table
itself does not have timing side channels. In addition, keys
table renew is not affected by speculative execution or dis-
rupted by interrupts or exceptions, so there is no speculative
execution vulnerability. What’s more, refreshing randomized
index tables has two steps. The first is to update the content
keys stored in registers (1 cycle), and then the keys table
stored in the SRAM is refreshed (hundreds of cycles). Once
the content key is updated, the encrypted entries touched by
other previous threads cannot be decrypted correctly, thereby
ensuring security.

Figure 4: Overview of precomputation of the “code book”
to mitigate the latency impact of using the QARMA. The
gray shadow parts are for the generation of index keys.

D. Periodic Key Changes

The security of the system depends on a number of things,
including the size of the table, the hierarchy, the attacking
method, and the frequency of key changes. Given a particular
design, the frequency of key changes becomes the primary
control knob for security. Taking the baseline BTB as an
example, with L0 and L1 using physical isolation, and a
last-level table of 1024 sets, it requires roughly 228 accesses
to construct the PPP-based attack [17]. Thus, a key change
on the order of 228 instructions can be used.

Since the time period for change is comparable to that
of context switch time, it is advantageous to initiate key
changes at context switches. Intuitively, as a thread is
switched in, there is minimal amount of its state left over in
the tables, and thus a key change at this point will provide
the least amount of performance impact.

Additionally, to prevent cross-thread or cross-privilege
level attacks, each (thread, privilege) combination has its
own set of keys in the randomized index keys table. In other
words, the table holding keys for randomization is physi-
cally isolated among different active threads (in SMT) and
privilege levels. When there is a context switch, the current
thread’s keys in the randomized index keys table are updated.
It should be noted that the number of keys is non-trivial (e.g.,
2K entries in our example). Even with pipelining and wide
datapath encrypters, it requires a noticeable amount of time
to finish the update. Fortunately, the nature of our application
of encryption suggests that even if an instruction uses an
old key during the update procedure, the impact is only
on its prediction accuracy instead of the final correctness.
Therefore, we do not stall the execution pipeline during the
update. We evaluated this performance loss in Section VII-E.

VI. SECURITY ANALYSIS

Table III summarizes the security of different defense
mechanisms. Flush alone cannot completely defend against
contention-based attacks in SMT core. Physical isolation can
also be improved due to higher storage overhead (multi-
plexed in time). In case of BRB, its storage overhead is
more than twice that of HyBP. In contrast, hybrid isolation
mechanisms are both more secure than these defense mech-
anisms. The specific analysis is detailed as below.

Table III: Summary of the Protections.

Defense Mechanism Single-threaded core SMT core
Reuse Contention Reuse Contention

B
T

B Flush Defend Defend No Protection No Protection
Physical Isolation Defend Defend Defend Defend

HyBP Defend Defend Defend Defend

PH
T Flush Defend Defend No Protection Defend

Physical Isolation Defend Defend Defend Defend
HyBP Defend Defend Defend Defend

A. Security of BTB with HyBP

In a hybrid protection mechanism, a upper-level BTB
is physically isolated. Upon context switches, the previous



history becomes unrecognizable in the latter thread. Thus the
attacker cannot steal secret from a upper-level BTB. The
security vulnerabilities remain in the shared BTB. In this
analysis, we assume that the last-level BTB is W-way set
associative with an S-bit set index and a T-bit tag per entry.
Their typical values will be drawn from AMD Zen2 [21].

1) Reuse-based attacks: During such an attack, the entry
left by one party is being translated in multiple ways before
being used by another party, which makes it exceedingly
difficult to maintain controlled manipulation. Taking mali-
cious training as an example, the attacker wants to lay traps
in the BTB to direct the victim to a meaningful location.
First, these entries need to result in a BTB hit to be even
considered. For that the (partial) tag left by the attacker has
to match the encoded tag of a victim branch. The chance
for one entry to have a BTB hit is 1/2T . The attacker
can certainly lay many such traps, increasing the overall
probability to some degree. But there is a second hurdle
to clear: The content of the entry will need to lead to a
meaningful location, one that contains the malicious code.
Since the content is XOR-ed with another unknown key,
the probability of leading the victim to a specific address
is 1/2N , N being the number of stored partial address bits.
Again, the attacker can certainly prepare many such traps
and extend the attack over many intervals. But overall, the
chance of success is against a very large denominator 2N+T .
And N + T is usually more than 30 bits. Thus the time to
perform reuse-based attack is greater than the OS time slice.

The general analysis applies to the case of an SMT core
as well. The slight advantage to an attacker here is that they
can continue to re-plant new traps in the BTB, whereas in a
single-threaded core, those entries are gradually evicted and
the attack strength reduces with time in a context switch
interval.

2) Contention based attacks: In a contention-based attack
carried out on a conventional core, an attack like Jump [29]
can observe evictions of its own entry in BTB and thus
infer the address of a taken branch executed by the victim.
In our system, different hardware threads have different
private keys for indexing. Without the key of the victim
thread, the attacker can no longer make the inference of
the branch address. However, the attacker can conceivably
extend attacks on randomized caches to BTB. These attacks
include the state-of-the-art technique for finding eviction set,
Prime+Prune+Probe (PPP) [17] and blind contention.

PPP-Based Attacks.
Inspired by PPP algorithms, we developed an attack

algorithm for the hierarchical BTB (shown in Algorithm 1).
Note that CaSA also use the PPP algorithms as the first step
in its end-to-end quantitative security analysis framework.
Different from CaSA, we use a more rigorous security
analysis because we assume that once a target eviction set is
found, the attack is considered successful. We also assume
that the attacker knows the virtual addresses of the program.

Algorithm 1 uses binary search to minimize the number of
victim invocations and adopting burst accesses and boot-
strapping to optimize the total BPU accesses. We considered
the worst case, assume that each branch instruction access
to the branch predictors will change the state of the branch
predictor, and branch predictor accesses occur every cycle,
so as to evaluate the number of required accesses for a PPP-
based attacks under extreme conditions.

The algorithm can be understood as going through three
steps:

Step 1: Preparing candidate set. Since an attacker can
control the virtual addresses, he can carefully construct
candidate collection C and split it into S subsets Ci. Each
subset contains W different elements. Note that each Ci

is actually an potential eviction set. Elements in Ci are
indexed to the same set in the original, un-randomized index,
while Ci and Cj have different indexes. However, due to
randomization, Ci and Cj may map to the same set in L2
BTB. These self-conflicts will be eliminated next.

Algorithm 1 Constructing Eviction Sets in HyBP
Input: x, victim target branch; g, victim gadget code; S, last-level

BTB sets; W, last-level BTB ways; C, candidate set.
Output: Eviction set for x.

1: {C1,C2...CS ;|Ci| = W} ← split(C,S)
2: for Ci in C do
3: if prune(Ci,C\Ci) then
4: C ← C\Ci

5: end if
6: end for
7: while |C| > W do
8: {G1,G2} ← split(C,2)
9: if E(test(G1,g∪x)) > E(test(G1,g)) then

10: C ← G1

11: else if E(test(G2,g∪x)) > E(test(G2,g)) then
12: C ← G2

13: else
14: return False
15: end if
16: end while
17: return C

Step 2: Eliminating self-conflicts. In the subsequent For
loop (Lines 2-6), the algorithm prunes the candidate set C
by sequentially loading into the BTB each Ci and measuring
the re-access delay. If a branch misprediction occurs during
a subset Ci (delay is greater than a threshold), it means that
one or more branches were evicted from BTB due to a set
conflict and Ci needs to be removed from C.

Step 3: Binary search of conflict set. After pruning,
collection C contains s′ subsets (s′ ≤ S). The algorithm
then uses binary search to find out which Ci conflicts
with the target branch. In the While loop (Lines 7-16), the
algorithm first splits the collection C roughly equally into
G1 (C1, C2... C⌈s′/2⌉) and G2 (C⌈s′/2⌉+1, Cs′/2+2...Cs′ ).
The test function determines whether the Gi conflicts with
the victim. The algorithm measures delay of re-accessing Gi



after the victim performs a gadget code with and without
x, respectively. If there is a perceived branch misprediction
(longer delay) after the gadget with x but not after the gadget
without x, this indicates that Gi is an eviction set of x. To
increase confidence of the decision, the algorithm repeats
the test and uses the mathematical expectation of the mispre-
diction deviation between test(Gi, g) and test(Gi, g

⋃
x) to

determine whether G1 or G2 contains the eviction set of x
(lines 9 and 11). If there is not enough difference between
the two cases, the search fails. Otherwise, the binary search
repeats on the subset Gi that contains the conflict set.

Compared with the baseline, our hybrid protection mech-
anism increases the difficulty of constructing evictions sets.
First, the physically isolated L0 and L1 BTB brings more
uncertainty to testing the number of misses in lines 9 and
11 of the algorithm. Our experimental results show that
the algorithm now has about 1% probability of success.
Consequently, an attacker needs to run the algorithm many
times. Concretely, for a 7-way L2 BTB with 210 sets,
constructing an eviction set for the target branch instruction
(using the 1% success probability) requires profiling roughly
227 BTB accesses. Second, the keys table for randomization
will renew periodically. 227 BTB accesses will take much
longer than a typical context switch interval. Upon a context
switch, the eviction set – even if found – is now obsolete.

Blind Contention Based Attacks. Another alternative
intuitive method is to randomly select some sets to detect the
target branch without finding the eviction set. To simplify
the analysis, we assume that an attacker has the ability
to completely filter out noise from other sets, but he still
needs to eliminate the self-conflicting noise of the target
set. In a BTB with S sets, there is a 1/S probability that a
branch instruction falls in the same set of the target branch
because the attacker and the victim use uncorrelated ran-
domized index mapping. Suppose that the attacker employs
n instructions to construct the blind contention and there
are i instructions falling on the target set, the probability
is
(
n
i

)
·
(
1
S

)i · (1− 1
S

)(n−i)
. Since if i > W , there will

inevitably be self-conflicts among them, thus i ∈ [1,W ] and
the probability of the i instructions falling into W ways
without self-conflict noise is W !/(W−i)!

W i · i
W . Finally, the

probability that a valid conflict occurs on the victim’s target
branch instruction is given by:

P =

W∑
i=1

((
n

i

)
·
(
1

S

)i

·
(
1− 1

S

)(n−i)

·W !/(W−i)!
W i

· i
W

)
(1)

For a BTB with 1024 sets and 7 ways, numerical analysis
shows that the probability of a valid conflict is maximal
(12%) when n = 1140. The number of expected accesses to
probe one secret at a time is n/P . For the hybrid protection
mechanism, the probability of the target branch locating at
the last-level BTB is 1/(L0 · L1). The probability that an
attacker is able to sense the target branch is reduced to

1/(L0 · L1) of equation (1). The attacker needs at least
n · L0 · L1/P accesses to successfully probe one target
branch. At least 228 accesses are required for one round of
blind contention attack. For multi-bit keys, the success rate
of blind contention based attacks will be further reduced.
The probability of success of the attack stealing a 32-bit
key is less than one in a million. Note that this is the
probability in a completely noise-free situation, in fact the
blind contention based attacks are very susceptible to lots
of noise, therefore the attacker usually performs the eviction
based attacks instead.

B. Security of PHT with HyBP

1) Reuse-based attacks: Suppose an attacker is powerful
enough to filter out his own noise, and the attacker knows the
table where the target branch locates. Security for TAGE-SC-
L predictor with hybrid protection mechanism is analyzed
as following.

First, the attacker cannot manipulate the victim deter-
ministically to execute the wrong path speculatively due
to content encoding (e.g., tag and saturating counter). Sec-
ond, index encoding poses strict requirements on attacks
to perceive the direction of target branch. An attacker
can no longer infer the direction through one Prime-Probe
operation. The average number of accesses to perform an
effective Prime-Probe operation is given by:

2I+T ·
(
2C+2U+1

)
(2)

I is the number of entries in each tag table, and U is the
useful bit of tag entry. With I = 13, T = 12, C = 2, U = 1,
the minimum number of accesses per cycle is about 228.

2) Contention-based attacks: Collision on the target entry
so that the old record is evicted is a necessary condition
for constructing contention-based attacks. In this case, an
attacker learns about the execution of the target branch
instructions by sensing whether contention exists. However,
TAGE-SC-L predictor has a default base branch predictor.
Even if tagged tables cannot give a prediction direction due
to contention, different branches typically use and update
the default predictor—rather than evicting each other’s en-
tries. Furthermore, the default branch predictor is physically
isolated and flushed upon context switches, the attacker
cannot control the state of the default predictor to per-
form a contention-based attack. Therefore, HyBP can defeat
contention-based attacks on PHT.

C. Analysis on the Frequency of Key Changing

For security, the keys need changing before an attacker
can complete any attack. As analyzed before, the shortest
attack time for the hybrid protected predictor is at least
227 accesses. Then the value is set as counter threshold by
OS. This is longer than the default Linux thread time slice
of 4 milliseconds (or 224 4GHz CPU cycles). Therefore,
changing the keys upon context switch is convenient and



can satisfy security requirements. Of course, the system
can also change the keys at a preset frequency regardless
of context switching. We count both speculative and non-
speculative BPU accesses using a dedicated counter. When
the counter exceeds the threshold, a keys changing request
is sent to the randomized index tables. Once the refresh is
triggered, the counter is reset to zero. Considering within a
default Linux thread time slice, neither BTB nor PHT can
be compromised, thus BTB and PHT can share the random
tables without security degradation.

When target victim branches increases from 1 to 16, the
BPU accesses drops from 228 to 224. It is close to the interval
of OS scheduling. First, when the victim branches were less
than 16, HyBP can protect it without performance loss. But
if victim branches were more than 16, frequent refreshes
will not pose a security risk, but might cause possible
performance loss. Considering that more than 16 branches
dependent on secret in a real victim application is rare
(e.g. square-and-multiply exponentiation function in RSA),
a feasible solution is to make code check and scheduling by
the compiler, thus avoiding the code segments containing
more than 16 secret-dependent branches.

D. Attack & Defense Experiments

To evaluate the effectiveness of our mechanism, we
conduct experiments with proof-of-concept (PoC) at-
tacks for BTB and PHT respectively on our FPGA-
based processor prototype based on the open-source
Berkeley Out-of-Order RISC-V processor (configura-
tion is introduced in Table IV). The PoC is open-
sourced at https://anonymous.4open.science/r/PoC-codes-
Branch-Predictor-Attacks-DFBD/.

In our experiment, we repeat the attack 10000 iterations.
A successful attack means that the victim branch jumps
to the trained direction more than 90 times per iteration.
For the baseline processor without any defense mechanism,
the accuracy of training BTB and PHT is 96.5% and
97.2%, respectively. With hybrid protection mechanism, the
accuracy of training both BTB and PHT decreases to less
than 1%.1 In summary, our mechanism introduces effective
protection against these attacks.

VII. EVALUATION

A. Methodology

Since our FPGA processor prototype does not yet support
SMT or hierarchical branch predictors, we modeled an
out-of-order processor using the cycle-level Gem5 simula-
tor [20]. This processor can support both single-threaded

1The 1% apparently successful attacks stem from the limitations of
the RISC-V experimental platform and software noises. For example, we
determine the success of attack by observing Flush+Reload cache side
channels. However, flushing a cache line precisely is not supported in
RISC-V instruction set, so we flush the whole cache with large arrays. This
presents false positive measurement noises on successful attacks. However,
an adversary cannot exploit these noises to construct attacks.

Table IV: OoO Processor Core Configurations.

Parameter Configurations
FPGA prototype Gem5 simulation

ISA RISC-V ARM
Frequency 2GHz (FPGA @ 50MHz) 2.5GHz
Processor type 4-decode,4-issue,4-commit 8-decode,8-issue,8-commit
Pipeline depth 10 stages 19 stages, fetch 4 cycles
ROB/LDQ/STQ 64/16/16 entries 352/128/72 entries
Issue Queue 20/16/10 (mem/int/flt) 120
BTB 256 × 2-way 1024 × 4-way, 4 cycles
PHT TAGE: 33 KB TAGE-SC-L: 66.6KB
ITLB/DTLB 8/8 entries 64/64 entries
L1 ICache 32KB, 8-way, 64B line 32KB, 4-way, 64B line
L1 DCache 32KB, 8-way, 64B line 48KB, 4-way, 64B line
L2 Cache 1MB, 16-way, 64B line 512KB, 16-way,64B line
L3 Cache None 4MB, 32-way, 64B line

Table V: Benchmark sets.

Type Workloads Workloads

H-ILP mix1: cactuBSSN r+imagick r mix2: wrf r+namd r

H-ILP mix3: fotonik3d r+exchange r mix4: wrf r+cactuBSSN r

MIX mix5: imagick r+xz r mix6: imagick r+bwaves r

MIX mix7: wrf r+mcf r mix8: namd r+roms r

L-ILP mix9: xz r+cam4 r mix10: cam4 r+xalancbmk r

L-ILP mix11: lbm r+bwaves r mix12: cam4 r+bwaves r

core and SMT core modes. Both cores are modeled after
the latest Intel Sunny Cove core [35] as shown in Table
IV. We experimented on the branch predictors with a three-
level BTB as in AMD Zen2 [21] and TAGE-SC-L [31]
predictor. The modifications of hierarchy BTB and TAGE-
SC-L predictor with hybrid protection mechanism are shown
in Figure 3. We have implemented two other defense mech-
anisms (Flush and Physical isolation) for comparison.

We adopt SPEC CPU2017 benchmarks [36] with refer-
ence input size for performance evaluation. For the SMT
experiments, pair-wise combinations are selected according
to the standard methodology [37], [38]. These combinations
fairly represent the spectrum of performance and branch
prediction characteristics. To make a fair comparison of our
policy, we distinguish between three types of workloads: H-
ILP, L-ILP, and MIX. H-ILP workloads contain only high
ILP thread, L-ILP workloads contain only low ILP threads,
and MIX workloads contain a mixture of both. High-ILP
benchmarks include cactuBSSN, imagick, wrf, namd and
exchange2. Low-ILP benchmarks include bwaves, cam4,
lbm, mcf, xalancbmk and xz. The resulting combination
is shown in Table V. The simulator is warmed up for one
billion instructions, and then run another billion instructions
in the cycle-accurate mode. Two separate metrics are used
respectively for the raw execution performance and the
execution fairness [37]. For performance, we measure IPC
throughput, the sum of the IPC values of all running threads,
as it measures how effectively resources are being used. For
fairness, we use the Hmean metric proposed in [37], [39].
Hmean measures the harmonic mean of the IPC speedup
(or slowdown) of each separate thread, exposing artificial
throughput improvements achieved by providing resources
to the faster threads.



Experimental setups with different defense mechanisms
are named as follows:

Baseline: The original OoO processor using branch pre-
dictor without any defense mechanism.

HyBP: Both BTB and PHT are equipped with our hybrid
protection mechanism.

Flush: Flushing the predictor completely upon context
switches or privilege changes.

Partition: Allocating separate branch tables for different
threads and/or different privilege levels.

Replication: Replicating last-level BTB for each thread
and partition each table among user/privilege.

Figure 5: Normalized IPC of hybrid protection mechanism
on a single-threaded core.

B. Performance Evaluation on Single-threaded Cores

We start with the performance degradation of our
proposed hybrid protection mechanism using isolation-
randomization (HyBP). Figure 5 shows the performance
impact for individual applications under different context
switching intervals. We see that some applications have
a high sensitivity to branch predictor behavior and the
frequency of key changes can result in close to 21% perfor-
mance degradation under very frequent context switchings.
But on average, and taking a moderate interval size of 16M
cycles (default context switch length in a typical Linux at
4GHz), the performance cost for protection is less than 0.5%
and the performance cost caused by BTB accounted for 74%
of the overall performance cost.

We now compare HyBP to two alternatives: flush-based
protection (Flush) and partition-based physical isolation
(Partition). Figure 6 shows the resulting average perfor-
mance degradation under different context switching inter-
vals (from 256K to 16M cycles). We should start at the
interval size 16M cycles (default context switch length). We
observe that our HyBP’s 0.5% performance degradation is
much smaller than 6.3% and 5.1% for the other two mech-
anisms. Also, across the range of context switch intervals,
HyBP maintains its performance advantage.

The main source of performance loss for HyBP is context
switching: When an application resumes its execution after
being swapped out and back again on the baseline, it
will benefit from its residual state in the BPU. With all
three protection mechanisms, the residual state is either
explicitly flushed or inaccessible due to the change of key.

Figure 6: Average performance degradation of three different
protections for a single-threaded core under different context
switching intervals (The shaded part of the Flush bar repre-
sents the performance loss caused by context switch flush).

However, the other two mechanisms have extra sources:
additional flushes due to privilege level changes (Flush)
and performance loss due to reduction in available branch
predictor resource (Partition). We can see that when the
period of context switching is 16M cycles or longer, the
impact from context switching becomes minimal for all three
mechanisms. For the other two alternatives, the performance
cost remains high due to their respective causes.

Specifically, for some branch-sensitive test cases such as
fotonik3d and xz, the performance loss of Partition reaches
18.2% and 19.4% respectively under the interval size of
16M cycles. For other test cases that are sensitive to context
switch, especially for deepsjeng, the performance loss of
HyBP and Partition at the 256K cycles is 14.4% and 10.7%,
respectively. When the context switching period increases to
16M cycles, the performance loss of HyBP is reduced to
0.6%–far better than Partition (7.9%).

C. Evaluation on SMT Cores

Figure 7 compares performance impacts of physical par-
titioning and HyBP mechanisms on an SMT core. Here we
do not compare with Flush mechanism like in a single-
threaded core. This is because Flush is no longer a solution
as it fails to protect against certain attacks in SMT cores.
The case for SMT is a bit more complicated than in a
single-threaded core: there may be resource conflicts in the
baseline system that the protection mechanism can either
ameliorate or exacerbate due to chance. And indeed, we find
that there are more cases where the protection mechanism
actually improves upon the baseline’s performance. Overall,
we see that HyBP is consistently a high-performance option
in Figure 7(a), with a maximum loss of 3.8% compared to
12.6% and 8.9% for physical partitioning and replicating. On
average, the impact is 0.2% for HyBP compared to 4.4% for
the Partition.

In terms of fairness, HyBP also outperforms Partition
and Replication as can be seen in Figure 7(b). Due to the
fierce competition for resources, H-ILP workloads are more
sensitive to the Partition and the performance fluctuations
are also more severe than HyBP. And we see that the



maximum Hmean degradation of mix02 for Partition is
nearly 17% compare to 2.3% for HyBP. Even for MIX and
L-ILP types of workloads where resource competition is
less, HyBP still shows much less Hmean degradation (less
than 1% in all cases) compared to Partition (up to 11% and
an average of 3.6%). Overall, HyBP is clearly more practical
than Partition on SMT cores.

(a) IPC throughput

(b) Hmean fairness degradation

Figure 7: Throughput and Hmean fairness degradation of
four isolation mechanisms on an SMT core with default
context switch interval length in a typical Linux at 4GHz.
D. Hardware Cost Estimation

The hardware cost of hybrid protection mechanism con-
sists of three parts: replication of L0 and L1 BTB, base
predictor, random tables and encryption modules. We will
use a 2-way SMT as an example in calculating area cost.

1) The total storage need for the replicated L0 and L1
BTB and base direction predictor is 16.3 KB.

2) The random tables take total of 5 KB. BTB and
TAGE predictor share the same random tables and Each
random table takes 1.25 KB. A SMT-2 core requires
four tables for (thread, privilege) combinations.

3) Finally, QARMA-64 cipher has an area of 1238.1um2

in a state-of-the-art FinFet 7 nm technology [32], which
is roughly equivalent to 1.4 KB storage.

All told, the area cost is roughly equivalent to 22.7 KB
or 21.1% of the cost of the branch predictor.

Figure 8 explores the area/performance tradeoffs com-
pared to Replication and HyBP. We evaluate a variety of
design points of Replication on a scaled-up branch predictor.
As the storage overhead of the branch predictor increases in
the range of 0 to 300%, the performance loss caused by
Replication gradually decreases. At 0 point, each hardware

Figure 8: The impact of the replication mechanism on
performance as the branch predictor scales up on SMT-2
cores.

thread uses the same branch predictor resources as Partition.
When the storage overhead increases to 100%, the branch
predictor portion that each hardware thread uses are equiv-
alent to the Replication. Until the storage overhead reaches
about 240%, the performance overhead is roughly equivalent
to that of HyBP (perf loss 0.5%, overhead 21.1%).

E. Sensitivity Analysis on the Size of Keys Tables

Table VI: Performance overhead under different randomized
index keys table sizes

Entries per keys table
1K 2K 4K 16K 32K

Context switching 4M 1.4% 1.5% 1.7% 1.8% 1.9%
interval (cycle) 16M 0.5% 0.5% 0.6% 0.7% 0.9%

When context switches, the current thread’s keys in the
randomized index keys table are updated. It should be noted
that refreshing randomized index tables takes hundreds of
cycles. During this phase, the branch instruction uses the
result trained by the old key, causing performance loss due
to mispredictions. Table VI shows the performance overhead
under different randomized index keys table sizes. With the
increase of keys table, the performance overhead of HyBP
increase accordingly. When the keys tables increase from
1K to 32K, the performance overhead increases from 0.5%
to 0.9% with typical context switch interval length. At this
time, HyBP and BRB have similar performance, but the
storage overhead is half of BRB.

F. Comparisons

There are many ways to design a secure branch pre-
dictor. HyBP achieves a good balance between security,
performance, and implementation cost. In the following, we
discuss the earlier Table I in detail.

Flush, physical partitioning, and disabling SMT bring per-
formance degradation/throughput reduction of 5.1%, 6.3%,
and 18% respectively. To put such performance degradation
in perspectives, the performance gain from using the latest
TAGE-SC-L over the decades-old tournament predictor in
our setup is just 5.4%. Thus, for general-purpose processors,
even performance degradation/improvement under 10% is



crucial. One should not settle with the 5% ∼ 6% per-
formance degradation and stop innovating new ideas. In
contrast, HyBP only incur a performance degradation of
0.5% with a very modest area overhead of 21.1%. We claim
that it is a major advance of the state-of-the-art.

Specifically, Flush has a marginal hardware cost. But it
fails to protect against certain attacks in SMT cores since
flushing only happens during context or privilege switches.
The performance overhead of the Flush mechanism is due to
context switch flushing and privilege change flushing which
are used to defend against cross-privilege attacks and cross-
thread attacks respectively. As shown in Figure 6, when
the context switching interval is below 512K cycles, the
privilege change flushing is the majority (>57%); otherwise,
context switching is dominant.

For physical isolation, we consider two methods. 1) Par-
tition: If we keep the size unchanged and divide the branch
predictor evenly, the performance loss of partition increases
by about 5.1% on average (and up to 19.4%) compared to
our hybrid protection mechanism. It is similar to throwing
away decades of performance improvements from advances
in branch predictors. 2) Replication: Assigning separate
tables to all thread privilege level combinations is also
impractical. Taking the SMT-2 processor as an example,
assuming that only user and kernel privileges are considered.
If we just replicate for each thread and partition each table
among user/kernel so each privilege level can only use 50%
table, the performance loss is 2.1%, but the storage overhead
is 100% Alternatively, we scale up the branch predictor
to make its performance equal to HyBP, but the storage
overhead reaches 240%—clearly far worse than HyBP (perf
loss 0.5%, overhead 21.1%).

BRB [12] is a state-of-art mitigation mechanism that can
be considered as a replication mechanism since it maintains
a small checkpoint of branch predictor states for each context
upon context switches and restores it once the context
becomes active. The hardware cost of one BRB checkpoint
is about 6.6KB (BTB: 2.6KB, bimodal:1KB, and TAGE
predictors: 3KB). The storage overhead grows with more
contexts. Even with the recommended three checkpoints per
hardware thread, the storage overhead is more than twice
that of HyBP.

VIII. RELATED WORK

Countermeasures against the vulnerabilities in branch
predictor can be classified into four categories.

Reducing information leakage through the side channel.
For instance, branches that carry sensitive information can
be transformed into safe instructions that do not leave a
mark in the branch predictors [7]. Limiting performance
counter usage can reduce the information obtained by the
attacker [40]. InvisiSpec [41], Conditional Speculation [42],
CleanupSpec [43], and STT [44] prevent speculative execu-
tion from generating visible microarchitectural state.

Flushing the predictor tables to contain randomized new
results. Performing this by software during context switch
can bring non-trivial overhead [9]. Such expensive opera-
tions can be limited to only the sensitive processes [45]. The
impact on performance and prediction accuracy of flushing
predictor table in hardware has been studied [46], [47]. The
longer the context switch interval, the smaller the impacts.
These observations are consistent with ours.

Using dedicated hardware as a general approach to isolate
from different processes. Sensitive applications in SGX can
be provided with their own branch predictor tables [2]. Ear-
lier work on performance improvement considered saving
and restoring compressed branch prediction information [48]
or providing thread-private branch predictors on SMT pro-
cessors [49]. BRB is a proposal to retain partial predictor
state in on-chip SRAM banks per context and select a
correct entry for the active context when a context switch
occurs [12].

Randomizing index and content of branch predictor has
been proposed. Samsung Exynos has implemented content
encryption via simple substitution cipher in branch-target
buffers and return address stack [13], but it only protects
against some Spectre variants (e.g., Spectre V2 and Spectre
RSB). Lee et al. [14] and Zhao et al. [15] propose to
randomize the index of branch predictor to mitigate branch
predictor side-channels using low-latency cipher. However,
they use the LLBC proposed by CEASER [16]. LLBC has
been proven to be linear and vulnerable to cryptanalytic
attacks [17], [18].

IX. CONCLUSION

This paper proposes HyBP, a practical hybrid protection
and effective mechanism for building secure branch predic-
tors. HyBP protects the smaller tables with physical isolation
based on (thread, privilege) combination; and protect the
large tables with randomization. Surprisingly, the physical
isolation also significantly enhances the security of the last-
level tables by naturally filtering out accesses, reducing
the information flow to these bigger tables. As a result,
key changes can happen less frequently and be performed
conveniently at context switches. Overall, our design incurs a
performance penalty of 0.5% compared to 5.1% of physical
isolation under the default context switching interval in
Linux.
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A low-latency block cipher for pervasive computing applica-
tions (asiacrypt’12),” in Proceedings of the 18th International
Conference on The Theory and Application of Cryptology and
Information Security, 2012, p. 208–225.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, and S. Sar-
dashti, “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[21] D. Suggs, M. Subramony, and D. Bouvier, “The AMD “Zen
2” processor,” IEEE Micro, pp. 45–52, 2020.

[22] ANANDTECH, “Arm’s new Cortex-A78 and Cortex-X1
microarchitectures: An efficiency and performance diver-
gence,” https://www.anandtech.com/show/15813/arm-corte
x-a78-cortex-x1-cpu-ip-diverging/3, 2020.

[23] IBM, POWER9 Processor User’s Manual. Version 2.1, 2019.

[24] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss,
and S. Mangard, “ScatterCache: Thwarting cache attacks via
cache set randomization,” in 28th USENIX Security Sympo-
sium (USENIX Security 19), Aug. 2019, pp. 675–692.



[25] F. Liu and R. B. Lee, “Random fill cache architecture,” in
Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 203–215.
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