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Abstract

Modern microprocessors incorporate sophisticated techniques to
allow early execution of loads without compromising program cor-
rectness. To do so, the structures that hold the memory instructions
(Load and Store Queues) implement several complex mechanisms
to dynamically resolve the memory-based dependences. Our main
objective in this paper is to design an efficient LQ-SQ structure,
which saves energy without sacrificing much performance. We pro-
pose a new design that divides the Load Queue into two structures, a
conventional associative queue and a simpler FIFO queue that does
not allow associative searching. A dependence predictor predicts
whether a load instruction has a memory dependence on any in-
flight store instruction. If so, the load is sent to the conventional
associative queue. Otherwise, it is sent to the non-associative queue
which can only detect dependence in an inexact and conservative
way. In addition, the load will not check the store queue at exe-
cution time. These measures combined save energy consumption.
We explore different predictor designs and runtime policies. Our
experiments indicate that such a design can reduce the energy con-
sumption in the Load-Store Queue by 35-50% with an insignificant
performance penalty of about 1%. When the energy cost of the in-
creased execution time is factored in, the processor still makes net
energy savings of about 3-4%.

1 Introduction
Modern out-of-order processors usually employ an array of sophis-
ticated techniques to allow early execution of loads to improve per-
formance. Almost all designs include techniques such as load by-
passing and load forwarding. More aggressive implementations go
a step further and allow speculative execution of loads when the ef-
fective address of a preceding store is not yet resolved. Such spec-
ulative execution can be premature if an earlier store in program
order writes to (part of) the memory space loaded and executes af-
terwards. Clearly, speculative techniques have to be applied such
that program correctness is not compromised. Thus, the processor
needs to detect, squash, and re-execute premature loads. All subse-
quent instructions or at least, the dependent instructions of the load
need to be re-executed as well.

To ensure safe out-of-order execution of memory instruc-
tions, conventional implementations employ extensive buffering
and cross-checking through what is referred to as the load-store
queue, often implemented as two separate queues, the load queue
(LQ) and the store queue (SQ). A memory instruction of one type
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needs to check the queue of the opposite kind in an associative fash-
ion: a load searches the SQ to forward data from an earlier, in-flight
store and a store searches the LQ to identify loads that have exe-
cuted prematurely. The logic used is complex as it involves asso-
ciative comparison of wide operands (memory addresses), requires
priority encoding, and has to detect and handle non-trivial situations
such as operand size mismatch or misaligned data. These complex
implementations come at the expense of high energy consumption
and it is expected that this consumption will grow in future designs.
This is because the capacity of the queues needs to be scaled up to
accommodate more instructions to effectively tolerate the long, and
perhaps still growing, memory latencies. Furthermore, scaling of
these structures also increases their access latency, which makes it
hard to incorporate them in a high-frequency design. Beyond cer-
tain limits, further increasing the capacity will require multi-cycle
accesses, which can offset the benefit of increased capacity of in-
flight instructions.

To address the design challenges of orchestrating out-of-order
memory instruction execution, we explore a management strategy
that matches the characteristics of load instructions with the cir-
cuitry that handles them. We divide loads into those that tend to
communicate with in-flight stores and those that do not. This divi-
sion is driven by the empirical observation that most load instruc-
tions are strongly biased toward one type or another. We use the
conventional circuitry to handle the former, and a simpler alterna-
tive design for the latter. In this paper, we study both static and
dynamic mechanisms to classify load instructions into the two cat-
egories mentioned above. We also explore hardware support and
runtime policies in this design. We show that our design is effec-
tive, saving about 35-50% of the LSQ energy at a small performance
penalty of a few percent. After factoring in the energy lost due to
the slowdown, the processor as a whole still makes net energy sav-
ings. Thanks to the improved scalability of our design, we can also
increase the capacity of the LSQ much more easily and at a lower
energy overhead. This can mitigate the performance degradation
and the energy waste due to the slowdown.

The rest of the paper is organized as follows: Section 2 describes
our alternative LQ-SQ implementation; Section 3 outlines our ex-
perimental framework; Section 4 presents the quantitative analysis
of the design; Section 5 discusses the related work; and finally, Sec-
tion 6 concludes.

2 Architectural Design
2.1 Highlight of Conventional Design
High-performance microprocessors typically employ very aggres-
sive strategies for out-of-order memory instruction execution.
Loads access memory before prior stores have committed their data
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(buffered in the SQ) to the memory subsystem. To maintain pro-
gram semantics, if an earlier in-flight store writes to the same loca-
tion the load is reading from, the data needs to be forwarded from
the SQ (see Figure 1). This involves associative searching of the
SQ to match the address and finding out the closest producer store
through priority encoding. In most implementations, a load can ex-
ecute despite the presence of prior store instructions with an unre-
solved address. Such speculative load execution may be incorrect if
the unresolved stores turn out to access the same location. To detect
and recover from mis-speculation, every store searches the LQ in
an associative manner to find younger loads with the same address
and when one is found initiates a squash and re-execution. This is
referred to as a load-store replay in [8].

Figure 1. Conventional load-store queue design. A load
checks the SQ associatively to forward data from the nearest
older store to the same location. A store checks the LQ asso-
ciatively to find younger loads to the same location that have
executed prematurely.

In typical implementations [11, 18], a replay squashes and re-
executes all instructions younger than the offending load. To reduce
the frequency of replays, some processors use a simple PC-indexed
table to predict whether a load will be dependent upon a previous
store [8]. Loads predicted to be dependent will wait until all prior
stores are resolved, whereas other loads execute as soon as their
effective address is available.

2.2 Rationale
While load forwarding, bypassing, and speculative execution im-
prove performance, they also require a large amount of hardware
that increases energy consumption. In this paper we explore an al-
ternative load-store queue design with a different management pol-
icy that allows for a significant energy reduction. This new approach
is based on the following observations:

1. Memory-based dependences are relatively infrequent. Our ex-
periments indicate that only around 12% of dynamic load in-
stances need forwarding. This suggests that the complex dis-
ambiguation hardware in modern microprocessors is underuti-
lized.

2. On average, around 74% of the memory instructions that ap-
pear in a program are loads. Therefore, their contribution to
the dynamic energy spent by the disambiguation hardware is
greater than that of the stores. This suggests that more atten-
tion must be paid to loads.

3. The behavior of a large majority of load instructions is usually

strongly biased. They either frequently communicate with an
in-flight store or almost never do so. This suggests that they
can be identified either through profiling or through a PC-
based predictor at runtime, and treated differently according
to their bias.

2.3 Overall Structure
Based on the above observations, we propose a design where we
identify those loads that rarely communicate with in-flight stores
and handle these loads using a different queue specially optimized
for them. For convenience of discussion, we loosely refer to these
loads as independent loads and the remainder dependent loads.

Figure 2. Design of modified LQ-SQ with filtering. The LQ
is split into two queues, an Associative Load Queue (ALQ)
and a Banked Non-associative Load Queue (BNLQ).

The overall structure of our design is shown in Figure 2. The con-
ventional LQ is split into two different structures: the Associative
Load Queue (ALQ) and the Banked Non-associative Load Queue
(BNLQ). The ALQ is similar to a conventional LQ, but smaller. It
provides fields for the address and the load data, as well as con-
trol logic to perform associative searches. The BNLQ is a non-
associative buffer that holds the load address and the load data. Its
logic is much simpler than that of the ALQ, mostly due to absence
of hardware for performing associative searches. The banking of
the BNLQ is purely for energy savings and not based on address.
Therefore, architecturally, the BNLQ is just a FIFO buffer simi-
lar to the ROB (re-order buffer). Though independent loads rarely
communicate with in-flight stores, we still need to detect any com-
munication and ensure that a load gets the correct data. To do so,
we use a mechanism denoted as Exclusive Bloom Filter (EBF) to
allow quick but conservative detection of potential communication
between an independent load and an in-flight store and perform a
squash when necessary.

2.4 Using BNLQ and EBF to Handle Independent
Loads

According to its dependency prediction (Section 2.5), a load is sent
to the ALQ or the BNLQ. Since an independent load is unlikely to
communicate with an in-flight store, we allocate an entry for it in
the BNLQ that does not provide the associative search capability.
Additionally, the load does not access the SQ for forwarding at the
time of issue. As such, if an in-flight store does write to the same

2



location as the load, the data returned by the load could be incorrect
and we need to take corrective measures.

To detect this situation, we use a bloom filter-based mechanism
similar to that proposed in [16]. The filter we use, denoted as EBF,
is a table of counters. When a load in the BNLQ is issued, it ac-
cesses the EBF based on its address and increments the correspond-
ing counter. (In our setup, counter overflow is very rare and thus
can be handled by any convenient mechanism as long as forward
progress is guaranteed. For example, the load can be rejected and
retried later. It can proceed when the counter is decremented or
until it becomes the oldest memory instruction in the processor, at
which time it can proceed without accessing the EBF.) When a store
commits, it checks the EBF using its address. If the corresponding
counter is greater than zero, then potentially one or more loads in
the BNLQ have accessed the memory prematurely. In this case, the
system conservatively squashes all instructions after the store. Note
that an EBF hit can be a false hit when the conflicting load and store
actually access different locations. We study a design that mitigates
the impact of such false hits in Section 2.6.

To correctly maintain the counter in the EBF, when the load in
the BNLQ commits, its corresponding EBF counter is decremented.
Additionally, when wrong-path instructions or replayed instructions
are flushed from the system, their modifications to the EBF should
be undone, otherwise the “residue” will quickly “clog” the filter.
This can be achieved by walking through the section of the BNLQ
corresponding to the flushed instructions and decrement the EBF
counter for any load that has issued. This is the solution we assume
in this paper. We have also experimented with “self-cleaning” EBFs
that do not actively clean out the residue. Instead, these filters tol-
erate the accumulation of residue and rely on periodic cleaning of
the whole filter to remove any residue. For example, we can use
alternating EBFs by dividing the dynamic instructions into fixed-
sized blocks and use a different EBF for a different block. When all
the instructions in one block have been committed, all entries in the
corresponding EBF can be reset to zero, cleaning all residue. How-
ever, in our limited exploration, we found that tolerating the residue
increases false hit rate of EBF and causes unnecessary flushes. The
increase can be quite significant in certain applications.

Load instructions allocated into the ALQ are still handled con-
ventionally. They check the store queue upon execution and the
stores check the ALQ too. Thus, when an independent load is dis-
patched and the BNLQ is full, it is accommodated in the ALQ.
Although, this “upgrade” increases the energy expenditure for that
load instruction, it avoids stalling dispatch which not only slows
down the program but also increases energy consumption. On the
other hand, a load predicted to go to the ALQ is not allocated into
the BNLQ when the ALQ is full. The reasoning is that there is a
high likelihood that doing so would trigger a squash which is very
costly both performance-wise and energy-wise. When the ALQ is
full during the dispatch of a dependent load, we simply stall the
dispatch.

Finally, the hashing function we use is simple:
address % EBF size. We use a prime number as the size
of the EBF (4001). Through experiments, we confirmed the
intuition that false hit rate is lower on average than if the size is
similar but is a two’s power (4096).

2.5 Dependency Prediction of Loads
In our design of the LQ-SQ mechanism, when a load instruction
is decoded, it is suggested by either a dynamic or a profile-based

predictor in which queue the load should be accommodated. We
study two different predictors.
2.5.1 Profiling-Based Predictor
In a profiling-based system, every static load is tagged as depen-
dent or independent based on profiling information. This way, load
dependence prediction is tied to the static instructions. This is a rea-
sonable approach because a large majority of loads have a strongly
biased behavior: they either frequently or almost never communi-
cate with an in-flight store. Table 1 shows the breakdown. On av-
erage, 92% of the static load instructions are strongly biased. The
dynamic instances of these instructions constitute a slightly lower
88% of all dynamic load instructions.

Static instructions
INT Avg FP Avg TOT Avg

Biased Independent Loads 75.5% 87.9% 82.4%
Biased Dependent Loads 11.8% 8.2% 9.8%
Unbiased Loads 12.7% 3.9% 7.8%

Dynamic instances
INT Avg FP Avg TOT Avg

Biased Independent Loads 63.8% 85.4% 75.8%
Biased Dependent Loads 16.1% 8.9% 12.1%
Unbiased Loads 20.1% 5.7% 12.1%

Table 1. Breakdown of static instructions into strongly-
biased dependent and independent loads and unbiased loads.
The same breakdown when each load instruction is weighted
by its total number of dynamic instances. Statistics are shown
as the average of the integer applications, that of the floating-
point applications, and the overall average. A load is consid-
ered a biased independent load when more than 99% of its
dynamic instances do not depend on an in-flight store. It is
considered a biased dependent load when more than 50% of
its dynamic instances are dependent on an in-flight store.

In the static profiling-based prediction, we mark any load instruc-
tion whose dynamic instances have a probability of more than a
threshold Th to conflict with an in-flight store in a profiling run.
More precisely, if t denotes the total number of instances of a cer-
tain static load, and d denotes the number of instances where this
load hashes to the same EBF entry as an in-flight store, this load is
predicted as dependent if d/t > Th. This notion of dependency is
broader than true data dependence as a load instance is considered
to be dependent even when there is a false dependence: load and
store to different locations map to the same EBF entry.

Note that in a realistic implementation, the profiling is likely to
require simulation support as we need to obtain the microarchitec-
tural information of how many instances of a load communicate
with an in-flight store. To explore the optimal threshold Th for each
application, in this paper, we simply perform brute-force search in
a region and find the one that best balances energy savings with
performance degradation. This exploration is discussed further in
Section 4. Once an optimal threshold is selected for an applica-
tion, static loads are marked in the program binary as dependent or
independent based on the threshold. This, of course, implies ISA
(instruction set architecture) support.
2.5.2 Dynamic Predictor
An alternative to a profile-based system is to generate dependence
prediction during execution. In our approach, the prediction infor-
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mation is stored in a PC-indexed table similar to the one used in
Alpha 21264 [8] to delay certain loads to reduce replay frequency.
This information determines which queue a load is allocated to. Ini-
tially, all loads are considered independent. This initial prediction
is changed if a dependence is detected. As to what updates can
be made to an entry already in “dependent” state, we consider two
different policies. One possible choice, which we explored in [6],
is to hold this prediction for the rest of the execution. This deci-
sion, based on the stable behavior observed in Table 1, is simple and
works reasonably well. A second policy includes periodic refresh-
ing of the table, restoring all predictions to “independent” [7]. The
idea behind this policy is that even loads that rarely communicate
with an in-flight store will be predicted as dependent after the first
instance of an EBF match, forcing all subsequent instances of the
loads to the ALQ. Using periodic refreshing, this effect is limited
to within a time interval. We use this policy as it improves perfor-
mance at a very small hardware cost [6]. Unlike the profiling-based
approach, the dynamic alternative needs neither change in the ISA
nor profiling. However, it requires extra storage and a prediction
training phase after each action of refreshing of the table.

When a store finds an EBF hit with its address, there is a poten-
tial dependence between the store and a load in the BNLQ. Without
the associative search capability of the BNLQ, however, we can not
find the offending load the way we find it in a conventional LQ.
Therefore, as mentioned earlier, we simply squash all instructions
after the store. However, we need to identify the load(s) that conflict
with the store so that we can train the predictor to direct them to the
ALQ in the future. For this purpose, we introduce a special DPU
mode (dependence predictor update mode). In this mode, after the
squash, load instructions are inspected at commit time in order to
find out those that triggered the squash. We save the index of the
squash-triggering EBF entry and the counter value at the time of
squash in two dedicated registers. When an independent load com-
mits during the DPU mode, its EBF entry index is compared to the
saved index. Upon a match, its dependency prediction is changed
to “dependent” in the PC-indexed predictor. The DPU mode termi-
nates when the number of matching loads reaches the saved count.
Note that in the re-execution after the squash, the addresses of loads
in the BNLQ are not guaranteed to repeat those prior to the squash
– the processor may follow a different predicted path, for example.
Thus, the DPU mode should also terminate by time-out.

2.6 Handling of EBF False Hits
The price for the simple and fast membership test using the bloom
filter is the existence of false positives: an EBF match does not
necessarily suggest a true data dependence. In our base design de-
scribed above, a false dependence is treated just like a true depen-
dence. In addition to an unnecessary squash, the cost of a false de-
pendence also includes increased pressure on the ALQ, which needs
to accommodate all loads considered dependent, truly or falsely. To
avoid the cost associated with false hits, we consider architecture
support to handle them differently.

When an EBF hit happens at the commit time of a store, in-
stead of immediately squashing all subsequent instructions, we walk
through the BNLQ (from the oldest load backward) to determine
whether the hit is because of true dependences. This is done by
reading out the address of each load and compare it with that of the
store. If an address match happens, we squash the offending load
and all subsequent instructions. (When using the dynamic predic-
tor, we also update the predictor at this time. Hence ,there is no
need for the special DPU mode.) If we finish the searching without

finding an address match, nothing needs to be done and we avoided
an unnecessary squash.

This sequential searching of the BNLQ takes non-trivial amount
of time. Assuming we can only read out one load address from
one bank of the BNLQ, the bandwidth of this searching is only
a few loads per cycle. Thus, the process can take tens of cycles.
However, this search happens in the background and during this pe-
riod, normal processing continues. The only constraints are that any
unchecked load in the BNLQ can not be allowed to commit and that
before a search finishes, we can not start another one. In practice,
these are unlikely to cause any slowdown: with a reasonable band-
width, the checking of the BNLQ can easily outpace the retirement
of instructions. If no address match is found, the latency of the
search should have little if any impact on the performance. Even if
a match is found, the delay in commencing the squash is not a cost
as it appears: every cycle we push back the squash, we are saving
a few independent loads (and other instructions in between) from
being squashed, unnecessarily. The occupancy of the BNLQ is not
a concern either as an EBF hit (which triggers a BNLQ search) is
very rare.

3 Experimental Framework
We evaluate our proposed load-store queue design on a simulated,
generic out-of-order processor. The main parameters used in the
simulations as well as the applications used from SPEC CPU2000
suite are summarized in Table 2. As the evaluation tool, we use a
heavily modified version of SimpleScalar [4] that incorporates our
LQ-SQ model and a Wattch framework [3] that models the energy
consumption throughout the processor. Profiling is performed using
the train inputs from the SPEC CPU2000 distribution, whereas the
production runs are performed using ref input and single sim-point
regions [17] of one hundred million instructions.

Processor
8-issue out-of-order processor
Register File: 256 INT physical registers, 256 FP physical registers
Func. Units: 4 INT ALUs, 2 INT Mult-Dividers, 3 FP Adders, 1 FP Mult-Divider
Branch Predictor: Combined; Bimodal Predictor: 8K entries; 2-level: 8K entries,
13 bits history size; Meta-Table: 8K entries; BTB: 4K entries; RAS: 32 entries
Queues: INT-Queue: 128 entries, FP-Queue: 128 entries
Caches and Memory
L1 data cache: 32KB, 4 way, LRU, latency= 3 cycles
L2 data cache: 2MB, 8 way, LRU, latency= 12 cycles
L1 instruction cache: 64KB, 2 way, LRU, latency= 2 cycles
Memory access: 100 cycles
LSQ simulated configurations
Baseline LQ-SQ: LQ: 80 entries; SQ: 48 entries
Proposed LQ-SQ: BNLQ-ALQ: 32-48, 40-40, 48-32, 56-24; SQ: 48 entries; EBF:
4K entries (4 bits per entry)
Benchmarks SPEC CPU2000
Integer applications: bzip2, crafty, eon, gap, gzip, parser, twolf, vpr
FP applications: applu, apsi, art, facerec, fma3d, galgel, mesa, mgrid, sixtrack,
wupwise

Table 2. Simulation parameters.

4 Evaluation
4.1 Main Results
We first present some broad-brushed comparison of our LQ-SQ de-
sign versus the conventional design. For easier analysis, we keep the
overall capacity of the LQ the same in all configurations. Note that
this is favoring the conventional design to a large degree as an im-
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(a)

(b)

Figure 3. Performance and energy impact of proposed LQ-SQ design using a profiling-based predictor (a) or using a dynamic
predictor (b). In all configurations, the combined capacity of the BNLQ and the ALQ is 80, the same as that of the LQ in the baseline
conventional system. In option A, a false EBF hit is handled just like a true dependence, whereas in option B, a false EBF hit is
detected through sequential searching of BNLQ and ignored.

Figure 4. Performance and energy impact of the proposed LQ-SQ design on individual applications. The configuration shown uses
a dynamic predictor and does not squash due to a false EBF hit (the “B” option). The size of the BNLQ and ALQ is 48 and 32,
respectively.

portant benefit of our design is the scalability of the BNLQ which
allows the processor to buffer more in-flight instructions to better
exploit long-range ILP. Due to the tremendous amount of data, in
many figures, we only show suite-wide averages. Recall that in our
LQ-SQ mechanism, a baseline design treats an EBF false hit just
the same as a true dependence, whereas a more advanced design se-
quentially searches the BNLQ upon an EBF hit and ignores a false
hit. For notational convenience, we refer to these two options as A
and B respectively.

We use the conventional design as the baseline of the compar-
ison and show the slowdown, energy savings in the LQ-SQ, and
processor-wide energy savings of our designs. In Figure 3-(a), we
show the results of using a profiling-based dependency predictor
and in Figure 3-(b), we show those of using a dynamic dependency
predictor. In all cases, we explore different distributions of the total
LQ capacity into the ALQ and the BNLQ.

From this figure, we can make a few observations. First, our
design does achieve the goal of reducing energy consumption of
the dynamic memory disambiguation mechanism without inducing
much performance penalty. We see that the average performance
degradation is about 1% in most configurations and that the energy
savings range between 35% and 52% of total LQ-SQ energy con-
sumption. Since energy is dissipated diversely throughout the pro-
cessor, the total energy savings for the entire processor (factoring
in the energy waste due to the increased execution time) are much
less significant. Nevertheless, the design makes net energy savings
in the processor.

Second, as we reduce the ALQ size, the energy consumption
in the LQ-SQ continues to reduce. However, the slowdown also

increases due to the more frequent stalls when the ALQ is full.
This increased performance degradation incurs global energy waste
which can negate the energy saved in the LQ-SQ. Indeed, although
infrequent, memory-based dependences still exist and require effi-
cient handling. When the resource is not sufficiently provided, the
machine becomes unbalanced and thus inefficient. We have per-
formed some experiments using a degenerated configuration with-
out an ALQ. In this case, the average slowdown is about 19% and
the energy consumption of the whole processor increases by about
9% (over the baseline conventional system) despite that the LQ-SQ
energy is reduced.

Third, on balance, the profile-based predictor is slightly better.
This is largely because that with meticulous tuning, the predictor is
able to mark loads that occasionally communicate with an in-flight
store as independent. These loads do not increase the pressure on
the ALQ. In contrast, with the dynamic predictor, these loads are
marked as dependent reactively after the squash, not avoiding the
penalty, and increasing the pressure on the ALQ until a refresh.
Nevertheless, the difference in the results is insignificant and prob-
ably does not justify the higher implementation cost of the profiling
and the ISA support.

Fourth, special handling of EBF false hits (option B) is effective.
As fewer loads are moved to the ALQ, the energy savings in the
LQ-SQ increase by a few percent. More importantly, the reduction
in ALQ pressure reduces the frequency of stalls due to ALQ full
and thus the performance penalty. This is especially apparent when
the size of the ALQ is small. For example, in the configuration
with the dynamic predictor and a 24-entry ALQ, the performance
penalty of using option B is about 1.5%, half as much as the 3%
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penalty using option A (Figure 3-(b)). Our results also show that in
option A with a dynamic predictor, even when all falsely-dependent
loads are moved into the ALQ, the average false EBF hit rate is still
about 28%. (This rate changes little when the size of BNLQ and
ALQ changes.) When option B is used, this rate increases to about
53% because loads causing EBF false hits are still kept in the BNLQ
thus increasing the chance of more false hits. Note that even with
the elevated false hit rate, an EBF hit is still a very rare event. On
average, one hit occurs in every 1500 committed instructions.
Per-application results In Figure 4, we zoom into one configu-
ration and show the detailed results of individual applications. The
behavior seen in this figure is quite representative across all the con-
figurations. We see that there is variation across different applica-
tions as expected, but the variation is not significant. In the fol-
lowing discussion, we return to showing just the average results for
brevity.
Scaling BNLQ capacity As mentioned earlier, we artificially
keep the combined capacity of the BNLQ and the ALQ to be the
same as that of the LQ in the baseline conventional design in or-
der to have a cleaner contrast between the two designs. This intro-
duces some performance degradation since a centralized resource
is always more fully-utilized than a distributed one. In practical
designs, however, a larger BNLQ can be used to offset the perfor-
mance degradation of using distributed resources. In Table 3, we
show the result of a very limited experiment where we use a slightly
larger BNLQ of 80 entries together with a 32-entry ALQ. In con-
trast, we also show the result where the BNLQ is kept at 48 entries
as in the earlier experiments.

BNLQ=48, ALQ=32
INT Avg FP Avg TOT Avg

Slowdown 1.43% 2.26% 1.78%
Energy Savings in LQ-SQ 40.6% 43.9% 42.4%
Energy Savings in Processor 3.11% 2.85% 2.99%

BNLQ=80, ALQ=32
INT Avg FP Avg TOT Avg

Slowdown 1.1% -2.8% -1.07%
Energy Savings in LQ-SQ 41.6% 46.9% 44.5%
Energy Savings in Processor 3.41% 5.17% 4.36%

Table 3. Energy and performance impact of increasing the
size of the BNLQ. The experiments use the dynamic predictor
and option B.

We can see that indeed even this moderate increase in the size
of BNLQ can reduce the performance penalty and thus further im-
prove processor-wide energy savings. In fact, for floating-point ap-
plications, by slightly increasing the BNLQ size, the performance
is higher than that of the baseline. This is because floating-point
applications tend to have a higher demand of the LQ resource and
we are able to partially meet that demand by increasing the capac-
ity of the BNLQ. As expected, with the increase in performance,
the processor-wide energy savings increase even though the LQ-SQ
energy savings remain largely unchanged.

4.2 Dependence Prediction
In order to compare the profile-based (static) and the dynamic de-
pendence predictors, and to study the effect of thresholds used in the
static predictor, we follow Grunwald et al. and employ the following
metrics used in confidence estimation [10]:

• Predictive Value of a Positive test (PVP). It identifies the prob-
ability that a load dependence prediction is correct. It is com-
puted as the ratio between the number of correctly predicted
dependent loads and the total number of loads predicted as
dependent.

• Predictive Value of a Negative test (PVN). It identifies the
probability that a load independence prediction is incorrect. It
is computed as the ratio between the number of mispredicted
independent loads and the total number of loads predicted as
independent.

In our case, using predictors with a high PVP reduces the pressure
on the ALQ. This reduction translates into higher energy savings.
On the other hand, if a load is incorrectly sent to the BNLQ, a
squash is performed, resulting in a significant performance penalty.
Therefore, in our design, only very low PVN values are acceptable.
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Figure 5. PVN and PVP values for profile-based and dy-
namic predictor. The results shown are the average values for
all applications in a configuration using option A with a 48-
entry BNLQ and a 32-entry ALQ. For profile-based predictor,
the data points reflect different thresholds Th: 0, 0.01, 0.02,
..., 0.1, 0.2, 0.3, 0.4, 0.5.

In Figure 5, we visually present the measurements of PVP and
PVN for different thresholds in the static predictor and for the dy-
namic predictor with and without refreshing. Intuitively, without
refreshing, a dynamic predictor predicts any load that has a depen-
dent instance as a dependent load. It is thus very similar to a static
predictor with a very low threshold. We can see that this indeed
is the case. Like a static predictor with 0 threshold, it is not opti-
mal. Compared with using a higher threshold, say 0.1, a 0 threshold
renders the PVP value much smaller (reduced energy saving oppor-
tunities) without reducing PVN (performance degradation) much.
When refreshing is applied, the PVP for the dynamic predictor is
improved significantly, while the PVN does not degrade noticeably.

4.3 Threshold Exploration in Profiling
From Figure 5 we can also see that when the threshold is above 0.1,
the result of a static predictor quickly deteriorates: PVP remains
much the same (or even reduces a little bit) and PVN sharply in-
creases. Hence, in the profiling stage, we only need to explore the
range between 0 and 0.1 to find the best threshold. We find that a
simple algorithm is sufficient in our experiments. We start from the
smallest value (0.01 in our case) and gradually increase the value.
With each new threshold, we measure the performance degradation

6



and energy savings. We stop when the ratio between processor en-
ergy savings and performance degradation starts to reduce.

In general, as we increase the threshold, we are putting more
loads into the BNLQ. This reduces the pressure on the ALQ, thus
speeds up the program and saves energy. When the threshold is
raised to such a level that the loads are well balanced between the
two queues, further increasing the threshold will not improve per-
formance as the gain of reducing dispatch stall due to ALQ full is
canceled out by the loss due to squash of dependent loads in the
BNLQ. From this point on, the more loads we put into the BNLQ,
the more squashes we get. This not only slows down the program
but also reduces processor-wide energy savings. Figure 6 shows a
typical example that visualizes the above discussion.
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Figure 6. Threshold exploration. The example shown is the
results of application gzip on a configuration with 40 entries
in BNLQ and ALQ each and using option A. The cross in the
figure shows the threshold we choose.

4.4 Refreshing Period Exploration
As explained before, in the design using a dynamic predictor with-
out refreshing [6], once a prediction changes to “dependent” for a
load instruction, it remains that way for the duration of the program.
This increases the pressure on the ALQ and makes some applica-
tions increase their execution time dramatically. With refreshing of
the prediction table, loads that only occasionally communicate with
an in-flight store are given a second chance to be considered inde-
pendent and thus reducing the ALQ pressure. However, refreshing
also forces the predictor to be retrained to recognize biased depen-
dent loads, at a cost of one squash per load. Thus, the period of
refreshing needs to be balanced between the two demands. On the
one hand, the sooner (more frequent) refreshing happens, the fewer
instances of those “occasionally-dependent” loads are sent to the
ALQ. On the other hand, the more frequent refreshing is, the more
squashes there are due to retraining. Figure 7 shows the perfor-
mance and energy impact of different refreshing periods. From this
figure, we can see that a period of 100,000 cycles tends to be a good
choice for all configurations. This is the setting we use in the results
shown earlier in this section.

5 Related Work
Recently, there has been a large body of work optimizing address-
based memory disambiguation logic, namely the load-store queue.
Many designs adopt a two-level approach to disambiguation and
forwarding. The guiding principle is largely the same. That is to

(a)

(b)

Figure 7. The impact on performance degradation (a) and
processor energy savings (b) of the refreshing period in the
dynamic predictor. The data shown reflect a system using
option A.

make the first-level (L1) structure small (thus fast and energy effi-
cient) and still able to perform a large majority of the work. This L1
structure is backed up by a much larger second-level (L2) structure
to correct/complement the work of the L1 structure. The L1 struc-
ture can be allocated according to program order or execution order
(within a bank, if banked) for every store [1,9,19] or only allocated
to those stores predicted to be involved in forwarding [2, 14]. The
L2 structure is also used in varying ways due to different focuses.
It can be banked to save energy per access [2, 14]; it can be filtered
to reduce access frequency (and thus energy) [1, 16]; or it can be
simplified in functionality such as removing the forwarding capa-
bility [19]. In contrast to these hierarchical designs, the two queues
(BNLQ and ALQ) in our design are in parallel and the contents are
mutually exclusive.

Another body of work only uses a one-level structure (for stores)
but reduces check frequency through clever filtering or prediction
mechanisms [13,16]. In [16], a conservative membership test using
bloom filter can quickly filter out accesses that will not find a match.
In [13], only loads predicted to need forwarding checks the SQ. The
safety net is for the stores to check the LQ to find mis-handled loads
at the commit stage.

Memory dependence prediction is an important alternative to
address-based mechanisms to allow aggressive speculation and yet
avoid penalties associated with squashing [12]. The key insight is
that memory-based dependences can be predicted without depend-
ing on the actual address of each instance of memory instructions
and this prediction allows for stream-lined communication between
likely dependent pairs.
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Finally, value-based re-execution presents a new paradigm for
memory disambiguation. In [5], the LQ is eliminated altogether
and loads re-execute to validate the prior execution. The SQ and
associated disambiguation/forwarding logic still remain. Filters are
developed to reduce the re-execution frequency [5, 15]. Otherwise,
the performance impact due to increased memory pressure can be
significant [15].

6 Conclusions
In this paper, we have proposed a split-LQ design where the conven-
tional associative load queue (LQ) is replaced with a smaller asso-
ciative LQ (ALQ) and a banked non-associative LQ (BNLQ). Loads
are processed differently and accommodated in different queues
based on the prediction whether they are dependent on an in-flight
store. Dependence enforcement for the ALQ is the same as in the
conventional design, whereas that for the BNLQ is done through a
bloom filter that is inexact and conservative but energy-efficient for
the common case where there is no dependence.

For dependence prediction, we have studied the effectiveness of
dynamic and profile-based predictors. A profile-based predictor is
able to fine-tune the prediction threshold based on each applica-
tion’s characteristics and this leads to better results than a basic dy-
namic predictor where a load is always predicted as dependent if
a past instance has been dependent on an in-flight store. However,
with periodic refreshing of the predictor table done at an optimal
period, the difference between a dynamic and a static predictor is
small.

We have also explored reducing the impact of false hits in the
bloom filter by sequentially searching the BNLQ and initiating a
squash only when a true dependence is found. The main benefit of
this is that loads triggering false hits do not need to be treated as a
truly-dependent load and therefore contend for space in the ALQ.
This optimization is especially helpful when the size of the ALQ is
small.

Overall, the several design options all achieve significant energy
savings in the LQ-SQ (about 35-50%) with a negligible average
performance penalty of about 1%. Taking into account the energy
waste due to the increased execution time, the energy savings in the
whole processor are about 2.5%-4% depending on the configura-
tion. Part of the performance penalty is because we artificially keep
the combined capacity of ALQ and BNLQ to be the same as that
of a conventional LQ in the comparison. When we moderately in-
crease the BNLQ size, the performance penalty is even less and this
further improves processor-wide energy savings.
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