Appears in International Conference of Computer Design, pp. 192-201, October 1999.

FlexRAM: Toward an Advanced Intelligent Memory System

1

Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen,
Zhenzhou Ge, Vinh Lam, Pratap Pattnaik? and Josep Torrellas

Department of Computer Science
University of Illinois at Urbana-Champaign, IL 61801

yi-kang,weihuang,yoo2,dmfrankl,zge,lam,torrellas@cs.uiuc.edu

pratap@us.ibm.com

http://iacoma.cs.uiuc.edu

Abstract

Major advances in Merged Logic DRAM (MLD) technology
coupled with the popularization of memory-intensive applica-
tions provide fertile ground for architectures based on Intelli-
gent Memory (IRAM) or Processors-in-Memory (PIM). The
contribution of this paper is to explore one way to use the
current state-of-the-art MLD technology for general-purpose
computers. To satisfy requirements of general purpose and
low programming cost, we place the PIM chips in the memory
system and let them default to plain DRAM if the application
is not enabled for intelligent memory. Since wide usability is
crucial, we identify and analyze a range of real applications
for PIM. Based on the requirements of these applications and
current technological constraints, we design a PIM chip and a
PIM-based memory system. We call the chip FletRAM. We
describe FlextRAM’s design and floorplan, and the resulting
memory system. Evaluation of the system through simula-
tions shows that 4 FlexRAM chips often allow a workstation
to run 25-40 times faster.

1 Introduction

Advances in VLSI technology are delivering dramatic in-
creases in the number of transistors that can be integrated
on a chip [36]. Given that current computers waste much
time transferring data between compute and storage units,
it is appealing to combine significant processing power and
a large amount of DRAM memory in the same chip. This
approach has been called Intelligent Memory (IRAM) [27] or
Processors-in-Memory (PIM) [19].

Integrating logic and DRAM in the same chip is accom-
plished with a Merged Logic DRAM (MLD) process and has
considerable technological challenges [30]. While there have
been some early PIM research prototypes [19], it is only re-
cently that MLD technology has been considered promising
enough to be strongly supported by big foundries. Indeed,
Mitsubishi, IBM, Samsung, Toshiba, and others are able to
fabricate MLD chips in 0.25 or 0.18 um technology [15, 25].
Consequently, given that we have available a large silicon area
that can integrate dramatic compute and storage capabilities,
the question arises as to how to exploit this technology best?

There has been much recent work in this area [29] (see
Section 7). One approach is to combine a good-sized proces-
sor, caches, and much DRAM on a chip and make the chip
the main compute engine in the machine [4, 19, 27]. A dif-
ficulty with this approach is that traditional processors are
not designed to exploit a huge amount of very close DRAM
any differently than a large on-chip L2 cache. As a result,

I This work was supported in part by the National Science Foun-
dation under grants NSF Young Investigator Award MIP-9457436,
ASC-9612099, and MIP-9619351, DARPA Contract DABT63-95-
C-0097, and gifts from IBM.

2Pratap Pattnaik is with IBM T.J. Watson Research Center,
Yorktown Heights, NY.

the system delivers only incremental speedups compared to
a processor with a large on-chip L2 cache [4]. This problem
can be partially addressed by adding a vector processor [21]
or extra processors [19] on chip: more bandwidth can now be
extracted from the memory. However, the system may now
be hard to program.

Another approach is to use the MLD technology to build
a specialized engine. Such an engine could, for example, run
vector applications [17], process data beside the disk [28], or
control ATM switches [5]. Finally, a third approach, which
we and other groups [9, 26] take, is for the PIM chips to take
the place of memory chips in a workstation or server. The
PIM chips can then process the most memory-intensive parts
of the application.

Interestingly, advances in MLD technology come at a time
when the application base is evolving toward domains that can
exploit the new technology well. Indeed, many of the applica-
tions in relatively new domains like multimedia or data min-
ing are quite memory intensive. This makes them amenable
to PIM computation.

In this paper, we explore one way to use the current state-
of-the-art MLD technology for general-purpose workstations
and servers. Because we are interested in general purpose and
low programming cost, we place the PIM chips in the memory
system and let them default to plain DRAM if the application
is not enabled for intelligent memory. Because we examine
present-day technology, we do not consider any reconfigura-
bility like the Active Pages system [26]. Furthermore, since
wide usability is crucial, we spend much effort identifying and
analyzing a wide range of real applications for PIM. Based on
the requirements of these applications and current technolog-
ical constraints, we design a PIM chip called FlezxRAM and
its memory system. We describe FlezRAM’s design and floor-
plan. Finally, evaluation of the system through simulations
shows that 4 FlexRAM chips often allow a workstation to run
25-40 times faster.

This paper is organized as follows: Section 2 describes our
approach to intelligent memory; Section 3 describes a range
of applications for intelligent memory and their architectural
requirements; Section 4 describes the resulting architecture;
Section 5 presents a chip floorplan and discusses implemen-
tation issues; Section 6 evaluates the architecture; and finally
Section 7 discusses related work.

2 Principles

The design of our intelligent memory is guided by the follow-
ing principles.

Extract high DRAM bandwidth. Simply including a con-
ventional wide-issue superscalar in a DRAM chip has deliv-
ered disappointing performance [4]. For higher performance,
we need to extract more DRAM bandwidth. Consequently, we
embed in the DRAM chip many simple processing elements,
all of which can access memory concurrently.

Run legacy codes. Since many existing programs cannot
be recompiled, PIM chips cannot generally replace the main
commodity microprocessor of the workstation. Instead, we
propose that these chips take the place of memory chips and
appear as plain DRAM to applications that are not enabled
for intelligent memory.

Minimize DRAM cost increase. The processing engines
embedded in the DRAM must be extremely simple to mini-
mize losses in memory density, performance, and power con-
sumption.

Be general purpose. The PIM chips should not hard-wire
a few algorithms and become special-purpose co-processors.
Instead, the in-memory processing should be usable in as wide
a range of algorithms as possible.

Overall, we envision a chip that is connected as a plain
DRAM chip and can appear as one to the applications. We
call it FlexRAM. It contains many very simple compute en-
gines called P.Arrays that are finely interleaved with DRAM
macrocells. To avoid incorporating extensive interconnection
among P.Arrays, we restrict each P.Array to see only a portion
of the on-chip memory. To increase the usability of P.Arrays,
we also include a low-issue superscalar RISC core on chip.
This processor, called P.Mem, coordinates the P.Arrays and
executes serial tasks. Without the P.Mem, these tasks would
need to be performed by the commodity microprocessor in the
workstation or server (P.Host) at a much higher cost. Many
FlezRAM chips can be connected to the commodity memory
bus of a workstation or server. A general view of the envi-
sioned architecture is shown in Figure 1.

P.Host
L1, L2 Caches
S (o 1
e = =2 %
P.Array ooo| |ooo| |[oog ooo| [PRAM
DRAM 18100 |[00O| |[oOO ood
0oo||ooo| |[oog ooo
000||000| |[oog ooo
I| [" FerAM

Inter—-Chip Network]

Figure 1: Overall organization of a FleztRAM-based
memory system.

3 Application Requirements

Because our intelligent memory should be as general-purpose
as possible, we use a wide range of application domains to
flesh out its architecture. Our goal is to determine what ar-
chitectural features are required. In this section, we outline
several memory-intensive applications. Appendix A presents
the detailed mapping of their algorithms to FlextRAM. Based
on the considerations in Appendix A, Section 3.1 summarizes
the architectural requirements on FlezRAM.

Data Mining: Tree Generation, Tree Deployment,
and Neural Networks. Two major groups of classification
algorithms in data mining [3] are those that process decision
trees and those that process neural networks. A decision tree
is a tree-shaped data structure that, when applied to a record,
determines whether or not the record belongs to a certain sub-
group. The tree nodes are questions about the data in the
record. The main tree problems are tree generation (assem-
bling the tree by examining a subset of the records) and tree
deployment (classifying the records by applying the tree to all

the records) [31].

Neural networks classify records according to their proxim-
ity with each other in the N-dimensional space. The BSOM
algorithm is frequently used for this problem [23].

Computational Biology: Protein Pattern Matching.
This important problem in computational biology consists
of matching an amino acid query string against a protein
database. We look for sections of the query string that
are similar to sections of proteins. Because of mutations,
the problem is more complicated than simply performing se-
quential comparisons. The BLAST algorithm is frequently
used [1].

Decision Support Systems: TPC-D. TPC-D is a stan-
dard decision support system application [37]. It includes
several queries that are broken down into memory-intensive
operations like scan, join, sort, group, and aggregate. Due
to its size, TPC-D needs several FlezRAM chips to hold the
data. In our analysis, we assume that we have enough physi-
cal memory to hold the whole database or that I/O operations
are cleverly overlapped to eliminate I/0O stall.

Multimedia: MPEG-2 Motion Estimation. Multimedia
has many memory-intensive, stream-based problems that are
suitable for PIM. Motion estimation is a popular kernel. Its
goal is to find the differences between two pixel images. The
most common algorithm used compares the two images on a
block-by-block basis.

Financial Modeling and Molecular Dynamics. Unfor-
tunately, these applications are floating-point intensive and
our target technology is currently not dense enough to include
heavy floating-point logic on the memory chip.

3.1 Architectural Requirements

Based on the analysis of the applications in Appendix A,
FlezRAM should include the following support:

P.Array Engines. The high parallelism of the applications
suggests including many P.Arrays. However, to keep the ra-
tio of logic area to DRAM area moderate, each individual
P.Array must be very simple. For this reason, we can only
support integer arithmetic. Some of the applications perform
significant computation, which suggests using 32-bit arith-
metic in P.Arrays. The neural network would benefit from
multiplication support in P.Arrays. However, given the area
cost of multipliers, it is best if several P.Arrays share a mul-
tiplier. Division is too rare and expensive to support in hard-
ware. Finally, to effectively support a wide range of applica-
tions, the P.Arrays should work in a Single Program Multiple
Data (SPMD) mode; plain Single Instruction Multiple Data
(SIMD) mode is too restrictive and inefficient [13].

P.Mem Processor. P.Mem can be a low-issue superscalar,
with floating-point support and small primary data and in-
struction caches. A secondary cache would take too much
area. For maximum programmability, P.Mems and P.Arrays
should use virtual addressing, and share some virtual ad-
dresses with the P.Host.

Memory Structure. FlexRAM is a memory device in the
first place, replacing regular DRAMs without modifying ex-
isting system specifications. However, it should fit in a mem-
ory standard that includes additional power and ground sig-
nals, so on-chip processing can be enabled. One such stan-
dard is Rambus [6, 7]. Consequently, we include a Rambus-
compatible interface on chip.

To provide high bandwidth to a set of P.Arrays, a multi-
arrayed DRAM architecture should be used. Fortunately, as
memory technology advances to Gbit generations, such archi-
tectures become common. In addition, in many applications,

each P.Array works on several different localities at the same
time. For example, it often accesses a small, reused data
structure, and a large database-like structure that is hardly
reused. It may also access several scalar variables. Conse-
quently, to intercept most data accesses, the memory array
associated with a P.Array has several row buffers. No caches
are used.

Each P.Array only needs a small instruction memory be-
cause the codes running on P.Arrays are short. In addition,
given the simplicity of P.Arrays, we can use 16-bit instruc-
tions. Finally, to save space, several neighbor P.Arrays can
share the instruction memory.

Communication between P.Host and FletRAM. The
P.Host should start the P.Mems with a simple write to a
special memory-mapped location. The P.Host should pass
the address of the routine to start executing in memory. A
master P.Mem should inform the P.Host when the job is com-
pleted. However, P.Mems cannot directly invoke the P.Host
because memories cannot be masters of the memory bus. Con-
sequently, to receive information from the P.Mems, the P.Host
or the memory controller must poll on a location that the
P.Mems can set. We must make use of the programmability
offered by Rambus to ensure that this polling is efficient.

Intra-Chip Communication. The applications exhibit
several different communication patterns. One of them is
global communication between the P.Arrays. In this case,
the P.Mem must shuffle data between memories visible to dif-
ferent P.Arrays. Consequently, the P.Mem must be able to
access all the on-chip memory and communicate with any in-
dividual P.Array in a write-read step through memory.

In applications like protein matching and tree generation,
we need an inter-P.Array ring connection, so that a P.Array
can communicate with its left and right neighbors. This com-
munication is enabled by allowing each P.Array to see its two
neighbors’ memory. The motion estimation application could
benefit from a more connected network but, if each P.Array
gets a set of full rows of pixels, a ring connection suffices.
Aside from motion estimation, we have not found applica-
tions that could benefit from more complicated networks like
a mesh. Even if we found them, however, it is unclear whether
the costly message buffering and routing support required in
meshes would be worth its area consumption.

In addition to these patterns, many applications require
efficient broadcast from the P.Mem to all P.Arrays. Further-
more, a fast notification mechanism from each P.Array to the
P.Mem is also useful. The combination of both primitives can
be the basis for a global P.Array barrier.

Inter-Chip Communication. For applications that do not
fit in a single chip, a P.Mem must be able to access data from
other FlextRAM chips. However, since a P.Mem cannot be the
master of the memory bus, we need an additional intercon-
nection between FleztRAM chips (Figure 1).

I/0 Bandwidth. Finally, the applications analyzed are not
generally I/O bound. The neural network, tree generation,
and motion estimation perform a significant amount of pro-
cessing per data element. Other applications like the tree
deployment and TPC-D do less but still execute many in-
structions per load of input data. In any case, there are ways
to overlap the I/O in some chips with computation in the same
or other chips. Furthermore, if the input data fits in memory
and is reused across queries, the I/O time is negligible.

4 Architectural Design

Based on the application-driven rationale just described, we
proceed to a detailed design of the FlexRAM architecture. We

assume 0.18 pm MLD technology with 400 MHz logic.

4.1 Memory

Each FlexRAM chip has 64 Mbytes of memory that are orga-
nized as 16Mx32 bits. We estimate that, to P.Host accesses,
the chip with a Rambus interface offers an access time of 40
ns for row misses and 20 ns for row hits at an I/O frequency
of 400 MHz.

In the inside, the DRAM is organized in 64 1-Mbyte banks.
Each bank is associated with one P.Array and has a single
port. In addition, since P.Arrays do not have caches, each
bank has several row buffers. Based on an analysis of the
applications, a good design includes 3 2-Kbyte row buffers
per bank [13]. We use random row buffer replacement. These
row buffers, although costly, are useful to capture important
program localities [35]. A P.Array access to memory should
take 10 and 20 ns in a row buffer hit and miss respectively.

With so many processing units on chip, contention for mem-
ory may occur. Specifically, a DRAM bank may be accessed
by the P.Host, the local P.Mem, or a remote P.Mem through
the global on-chip bus. It can also be accessed by the lo-
cal P.Array or by a neighbor P.Array. There is a single port
per bank and a switch that connects the port to one of these
sources. Consequently, the finite state machine in the switch
must select the correct source.

The FlextRAM chip also contains SRAM instruction mem-
ory to hold the P.Array code. Each group of 4 P.Arrays shares
an 8-Kbyte 4-ported instruction memory. While sharing in-
struction memory increases port requirements, it saves overall
area. 8 Kbytes can store a sizable program of 16-bit wide in-
structions. We have aggressively assumed that the SRAM can
have a 2.5 ns access time to match a 400 MHz P.Array. These
instruction memories are loaded by the P.Mem.

4.2 P.Array

Each chip has 64 P.Arrays. Each P.Array is a very simple,
32-bit fixed-point RISC engine. It has a 4-stage pipeline
with 16 general-purpose registers, no caches, and a l-entry
store buffer. Each P.Array shares a multiplier with 3 other
P.Arrays. P.Arrays cycle at 400 MHz and have 28 16-bit in-
structions. Each P.Array is associated with 1 Mbyte of DRAM
and can also access the 1 Mbyte of its two neighbors, forming
a logical ring. While neighbor P.Arrays communicate through
shared-memory, non-neighbor communication requires the in-
volvement of P.Mem, which can access all memory. Figure 2
shows the P.Array datapath.

Notify Bus
Global Bus ¢
Register AL Notify Request
File U Broadcast Register
Global Loca
Right Neighbor
Left Neighbor ¢

‘ Arbiter ‘4—+ DRAM Bank‘

Figure 2: P.Array datapath.

There is a construct for a global P.Array barrier that
uses two primitives: a notification from each P.Array to the
P.Mem, and a broadcast from the P.Mem to all P.Arrays. No-
tification uses lines that go from each P.Array to one bit in
P.Mem’s Notify Register. Each P.Array can set one bit. The
P.Mem can poll the register or be interrupted when certain

bit patterns occur. The P.Mem can broadcast a 32-bit word
to all P.Arrays. In each P.Array, a register receives the word
and a broadcast flag is set. The P.Array can poll the flag to
detect when the data has arrived. Broadcasting into memory
instead of into a register is not supported because the mem-
ories of some P.Arrays could be busy, forcing the broadcast
operation to wait.

4.3 P.Mem, Network, and Interface

The P.Mem is a two-issue superscalar with floating-point sup-
port like the IBM PowerPC 603 [8] and with 16 Kbyte I- and
D-caches. We expect that it can cycle at 400 MHz. The
processor interface is modified to support the broadcast and
notification primitives via memory-mapped locations.

P.Mems communicate with each other via an inter-chip net-
work. We minimize the network logic included on chip to
make the network topology more flexible. Flexibility is im-
portant because different topologies are best with different
numbers of chips. Consequently, each chip only includes an
In and an Out SRAM queue and simple message packaging
logic. Routing is performed by an off-chip router IC. The In
and Out ports have 16 data pins each and cycle at 800 MHz.
Each of the on-chip queues is 32-bit wide and can hold two
64-byte cache lines.

In a multichip FlexRAM memory, all memory is shared and
visible to all P.Mems. Requests between chips are transferred
through the inter-chip network. When a P.Mem references
a location, it caches the memory line. However, there is no
hardware to enforce cache coherence between P.Mems or be-
tween P.Mems and P.Host. It is up to the programmer to flush
the data from the cache before it is used by another processor.
A higher-end design could provide coherence support.

Finally, communication between P.Host and P.Mems is im-
plemented by using special features and reserved code words
from the Rambus definition. We use Rambus because it al-
lows two-way control signals. We program the Rambus mem-
ory controller to support the following protocol. The P.Host
starts each P.Mem by writing on a predefined register in the
Rambus interface of each chip. The value written is the ad-
dress of the code to execute. When the P.Host needs to wait
for the P.Mems, it reads another predefined register of the
Rambus interface in the master P.Mem chip. If the master
P.Mem is not finished, a special acknowledgment is returned
to the memory controller. The latter buffers the message and
keeps retrying the read at regular intervals. This retry opera-
tion is transparent to the P.Host. When a retry finds that the
master P.Mem is finished, the controller informs the P.Host.
This message constitutes the reply to the initial P.Host re-
quest.

4.4 Address Translation

To enhance programmability, P.Mems and P.Arrays use vir-
tual memory. For a given program, they share a range of
virtual addresses with the P.Host. In the program, the pro-
grammer specifies how the data structures are distributed.
Eventually, when compiler technology is good enough, this
will be done by the compiler.

In each P.Mem, the virtual to physical translations are
stored in the TLB and are backed up in a page table in mem-
ory shared by all P.Mems. In each P.Array, to minimize area
overhead, these translations are stored in an 8-entry fully-
associative TLB. If a TLB miss occurs, the P.Array accesses
the memory area that keeps the complete mapping informa-
tion for its own DRAM bank and its two neighbors’. Un-
like in the TLB, the mapping information for P.Arrays in the

memory is not organized in a table of virtual and physical
page numbers. Instead, it is organized in a table with base
and limit page number for each data structure. Given that
each data structure within a bank is allocated in a contigu-
ous manner, such organization of the mapping information is
quite efficient. It minimizes the memory space and the time
necessary to sequentially traverse the mappings. Once the
correct data structure is found in the table, a simple compu-
tation will produce the correct entry to enter in the TLB. Note
that the P.Array TLB is accessed by data references only; in-
struction fetches proceed to the instruction memory without
translation. Consequently, the TLB uses very little area.

Finally, in our system, we try to avoid replacing pages that
contain shared data. If any of these pages were replaced, we
would need to send interrupts to invalidate TLB entries to
keep the page mappings consistent. To avoid these problems,
at the beginning of the program, we pin in memory the pages
with shared data. Pages with private data can be replaced.

5 Chip Implementation

Implementing FlexRAM requires careful circuit design and
much process technology support. There are still issues open
to research, which are beyond the scope of this paper, like re-
ducing the impact of the heat and noise induced by the logic
portion of the chip on the memory part of it. Here, we con-
centrate on floorplan and clock issues. We also estimate the
area required and the power consumption.

5.1 Floorplan

The chip layout, shown in Figure 3-(a), is composed of the
P.Mem block and 16 replicated basic blocks with P.Arrays and
memory. The P.Mem and its caches are located in the middle
of the chip to reduce the load capacitance of broadcasting sig-
nals and to minimize signal skews. Broadcast data, address,
and control signals are stretched into 8 100-bit busses. Each
bus is about 1.5 cm long, with a line capacitance of about 3
PF including gate load capacitance [2]. The Rambus interface
blocks are located on both sides of the P.Mem.

B - = =
o L .| Basic o % |8 8 3
° Basic | Block | Basic |° 3 o o g
2 4PAmay ° 3] ° °
EAEW Block 4MBDRAM Block - s = @ ? IS =
1 Multiplier . Slxz|l=|a é
: 1E 9EE8
Basic | Basic | Basic | Basic |. a 2 g7 9
° Block | Block | Block | Block |° = 5 5 =
o| Broadcast | Broadcast Broadcast | Broadcast |o -~ = = =
A raraceree IERCRCRCRCEr ICECRCRCEr o5 5o Multiplier + DLL
of Interface P.Mem + PLL Interface|o 8 KB I-Memory (4-Port SRAM)
fesesceas o oooos o oEE e
< <
o| Broadcast | Broadcast | Broadcast | Broadcast é 8 8 %
:| Basic | Basic | Basic | Basic | @ o o =
°| Block | Block | Block | Block |° g Swgs s
o <|<
: 8550 &
Basic | Basic | Basic | Basic g S S I
Block | Block | Block | Block S é é 2
(@ (b)

Figure 3: Layout of the FlezRAM chip (a), with a
basic block blown up to show the detail (b).

Each basic block, blown up in Figure 3-(b), contains 4
P.Arrays, 4 1-Mbyte data memory blocks, one instruction
memory, one multiplier, and one Delay-Locked Loop (DLL).
The 4 P.Arrays are located in the center and share the 4-port
SRAM instruction memory and the multiplier. Each 1-Mbyte

memory block contains memory control logic and four 256-
Kbyte blocks. Each of the latter is composed of 512 rows
and 4 K columns. Such dimensions are chosen considering
the ratio between the DRAM bit line (C3) and cell (Cs) ca-
pacitance and the effect on chip size. Finally, as a common
practice in the DRAM industry, we add 8 redundant rows and
32 redundant columns per 256-Kbyte block to replace defec-
tive memory cells.

Each 1-Mbyte memory block contains 3 2-Kbyte row buffers
under random replacement [13]. In addition, for higher mem-
ory bandwidth, a multiple DRAM data line structure is
used [16]. DRAM data lines run in parallel with DRAM bit
lines and are located at every 32 columns, which results in 128
DRAM data lines per 1 Mbyte data memory block. Conse-
quently, the maximum on-chip memory bandwidth becomes
about 102 Gbyte/s with a 10 ns row buffer hit.

5.2 Clock Issues

An important concern for a DRAM process is density, while a
major one for a processor logic process is speed. Consequently,
a MLD process has to balance both demands. As a result, the
logic in a MLD chip is likely to run slower than in a logic-only
chip. In the 0.18 ym MLD technology that we use, we have
assumed a logic frequency of 400 MHz [15].

For our chip to work, it is necessary to transmit a balanced
clock signal to all P.Arrays. However, given the large chip
size and the high clock frequency, this is challenging. We
start by placing the central clock recovery circuit, a Phase-
Locked Loop (PLL), at the center of the chip, in P.Mem. The
PLL generates clocks to control the memory interface and
the memory access operations with reference to an external
clock. The PLL is also used to lower the clock frequency
when the processors in the chip are idle and a power-save
mode is entered. We also place one dedicated Delay-Locked
Loop (DLL) in each basic block. The DLLs minimize clock
skews on the chip and control the activity of the P.Arrays.
The DLLs are in stand-by mode when the P.Arrays are not
active. When the P.Arrays are activated, the DLLs generate
local clocks for the P.Arrays and for the local memory accesses
with reference to the PLL.

5.3 Area Estimation

The chip size at 0.18 pm is estimated by extrapolating exist-
ing data. A PowerPC 603 plus the caches as used in P.Mem
has a size of about 80 mm? in 0.5 ym [34]. By considering ap-
propriate shrink factors, P.Mem takes about 12 mm? in 0.18
pm. Since, for this technology, the DRAM cell size is about
0.34 pum? [18], the total area for the 512 Mbits of DRAM in
our design, including row buffers, decoders, control logic, and
interface circuits between the P.Array and the DRAM block
in each bank is estimated to be 330 mm?. The 4-port SRAM
cell used for instruction memory is about 30 wm? [14]. Based
on this, the total instruction memory plus its control logic
is about 34 mm?2. A coarse placement of the elements of a
P.Array takes about 1.5 mm?®. Since there are 64 P.Arrays,
the total P.Array area is about 96 mm?. Finally, we estimate
the area of a 32-bit multiplier to be about 0.6 mm? [10]. Since

we have 16 multipliers, the total area is about 10 mm?.

Around the P.Mem, we have a Rambus interface, the net-
work interface circuit for communication between P.Mems,
and the DRAM refresh control circuits. One 16-bit Rambus
interface block uses about 1.7 mm? [6]. Since FlezRAM needs
a 32-bit interface, the total interface area is about 3.4 mm?.
Finally, we allocate 20 mm? for pads, network interface, and
refresh circuits.

Overall, we get a chip of about 505 mm?2, which can be
fabricated with advanced KrF technology [18]. Of this area,
logic, including pads, takes 28%, while SRAM memory takes
7% and DRAM 65%.

5.4 Power Estimation

The expected operating voltage of the chip is 1.8 V [36]. We
estimate the power consumed by one FlextRAM chip in two
scenarios: when it is used as plain memory and when it is used
as intelligent memory. In the first case, power is consumed
when the P.Host accesses memory. The power is consumed in
two main areas: the DRAM cells activated in the access, and
the logic for clock generation and memory interface. Assum-
ing that refreshing occurs 16,000 times per 128 ms [36], 32 K
cells are activated during the access. Since the capacitance of
a DRAM bit line is about 350 fF [18], the power consumed by
the DRAM cells activated in an access to our 512 Mbit DRAM
at 25 MHz is about 0.6 W. This includes driving the control
circuitry. The power consumption in the clock generator and
memory interface logic is about 0.1 W [12, 32]. Overall, 0.7
W are consumed.

When the FlexRAM chip is used as intelligent memory, the
worst case occurs when the P.Mem and all the P.Arrays are
active, and all the P.Arrays miss in the row buffers and access
a new row from memory. The P.Mem plus its caches, clock
generator, and memory interface consume about 4 W at 400
MHz [36]. Each P.Array is estimated to consume about 0.2 W.
Since there are 64 P.Arrays, the total P.Array power consump-
tion is about 12.8 W. This includes the instruction memories
too. The multiplier and the local DLL in each 4 Mbyte block
together consume about 0.1 W [16, 24]. Since there are 16
such modules, the total power consumption is 1.6 W. Finally,
we need the power consumed by all 64 P.Arrays accessing a
row in the DRAM. In this case, 2-Kbyte DRAM cells are ac-
tivated in each 1-Mbyte DRAM block. The power consumed
per block, including driving control circuitry, is about 0.27 W
at 25 MHz. Since there are 64 blocks, the total consumption
is about 17.3 W. Overall, adding all contributions, the power
consumed in these conditions is nearly 36 W. This represents
the worst possible case.

To manage this power, a pair of Vgq and V;s pads are as-
signed for each P.Array and for each 1 Mbyte DRAM block.
These power pads are located along the edge of the chip. All
control pads are placed around the memory interface logic.
The total pin count is expected to be 400-500. A Ball Grid
Array (BGA) package [15] can be used so that this design
meets pin and power requirements.

6 Evaluation

6.1 Methodology

To evaluate the proposed architecture, we compare a worksta-
tion with a FletRAM memory system to a plain workstation.
While we would like to perform a cost-performance compari-
son, the cost of hypothetical commodity PIM chips is too hard
to quantify. Hopefully, the cost difference between an intel-
ligent and a plain memory system will eventually be modest
compared to the full cost of a powerful workstation or server.
Consequently, we focus on performance only.

To evaluate performance, we use detailed software simula-
tions. We model a workstation with a 800 MHz six-issue dy-
namic superscalar (P.Host). The architectural parameters are
listed in Table 2. Since we can only simulate modest problem
sizes, we use a relatively modest size for P.Host’s L2 cache,

Applic. What It Problem Size Global Miss Rates (%) P.Array
Does Plain Workstn. FlexRAM Workstn. | Executable
P.Host | P.Host | P.Mem Row Size
L1 L2 Buffers (KB)
GTree Tree 5 MB database, 77.9 K records, 10.0 8.3 6.0 8.2 3.7
Generation 29 attributes/record.
DTree Tree 1.5 MB database, 17.4 K records, 1.4 0.3 - 22.7 3.3
Deployment 29 attributes/record.
BSOM BSOM Neural 2 K inputs, 104 dimensions, 2 iter, 1.6 0.4 - 0.6 2.0
Network 16-node network, 832 KB network.
BLAST || BLAST Protein 12.3 K sequences, 4.1 MB total, 5.7 0.5 - 36.5 1.4
Matching 1 query of 187 bytes.
MME MPEG-2 Motion | 1 1024x256-pixel frame plus a 0.0 0.0 - 2.8 1.7
Estimation reference frame. Total 512 KB.
TpcdQ3 || TPC-D 10 MB database of which 4.1 2.5 6.0 - -
Query 3 about 9.3 MB are accessed.

Table 1: Applications used. For the FlexRAM system, applications run on a single FletRAM chip. The
exception is Tpcd@3, which we run on 16 FlexRAM chips using P.Mems only. The P.Mem cache is practically

unused in 4 applications.

namely 256 Kbytes, so that the problem size does not fit in it.
Table 2 also lists the architectural parameters for the P.Mem,
P.Arrays, and memory.

[[P.Host | P.Host L1 & L2 | Bus & Memory

Freq: 800 MHz L1 Size: 32 KB Bus: Split Trans

Issue Width: 6 L1 RT: 2.5 ns Bus With: 16 B

Dyn Issue: Yes L1 Assoc: 2 Bus Freq: 100 MHz

I-Window Size: 96 L1 Line: 64 B Mem RT: 262.5 ns

Ld/St Units: 2 L2 Size: 256 KB

Int Units: 6 L2 RT: 12.5 ns

FP Units: 4 L2 Assoc: 4

Pending Ld/St: 8/8 | L2 Line: 64 B

BR Penalty: 4 cyc

[P.Mem | P.Mem L1 [P.Array I

Freq: 400 MHz L1 Size: 16 KB Freq: 400 MHz

Issue Width: 2 L1 RT: 2.5 ns Issue Width: 1

Dyn Issue: No L1 Assoc: 2 Dyn Issue: No

Ld/St Units: 2 L1 Line: 32 B Pending St: 1

Int Units: 2 L2 Cache: No Row Buffers: 3

FP Units: 2 RB Size: 2 KB

Pending Ld/St: 8/8 RB Hit: 10 ns

BR Penalty: 2 cyc RB Miss: 20 ns
BR Penalty: 2 cyc

Table 2: Parameters of the architecture simulated.
In the table, BR stands for branch, RT for contention-
free round-trip latency from the processor, and RB for
row buffer.

The simulations are performed using a MINT-based [38]
execution-driven simulation system that models out-of-order
superscalar processors [22]. It includes a module that sched-
ules RISC instructions for superscalar processors at run time.
Different application threads in a multi-threaded application
can have different issue width and issue policy (in-order or
out-of-order). In our architecture, one thread is scheduled to
run on a 6-issue dynamic superscalar (P.Host), one or more
threads to run on 2-issue static superscalars (P.Mems), and
64 threads to run on single-issue static processors (P.Arrays).
The instructions of the P.Array threads go through a transla-
tion step where they are translated from the MIPS ISA pro-
cessed by MINT to the simpler P.Array ISA.

The applications that we run on the simulator were de-
scribed in Section 3. To make a fair comparison, for each
application, we prepare two versions, each one modestly op-
timized to run on different hardware: FlexRAM chips, or a
plain workstation with a deep cache hierarchy. The FlexRAM
version of each application is partitioned by hand, identify-
ing and separating the work to be done by the P.Mem and
the P.Arrays. In the future, we hope that compiler and pro-
gramming language extensions can help in the partitioning.

The FlexRAM version of each application runs on a single
FlexRAM chip. The exception is TPC-D, which we run on 16
FlexRAM chips using P.Mems only. Table 1 lists, for each ap-
plication, the name, what it does, the problem size, the miss
rates, and the size of the P.Array executable.

We now explore how the FlexRAM memory system is used
and the speedups that it delivers.

6.2 How the Intelligent Memory is Used

We break down the normalized execution time of the P.Arrays
and P.Mems in Figures 4-(a) and 4-(b) respectively. As shown
in Figure 4-(a), a P.Array can be executing useful instruc-
tions (Busy), waiting for memory (Memory), waiting for other
P.Arrays (PA/PA Wait), waiting for the P.Mem (PA/PM
Wait), or stalled in pipeline hazards (Hazards). In turn,
as Figure 4-(b) shows, a P.Mem can be executing useful in-
structions (Busy), waiting for memory (Memory), waiting for
P.Arrays, other P.Mems, or the P.Host (Wait), or stalled in
pipeline hazards (Hazards).

According to Figure 4-(a), it is common for P.Arrays to
be Busy around 40-60% of the time. The rest of the time
is often spent waiting for memory. The fraction of Memory
time, however, is not correlated with the miss rate of the
row buffers (last to one column of Table 1). The reasons
are that different applications access memory with different
frequencies and that the difference in latency between a row
buffer hit and a miss is small.

In some applications, P.Arrays waste time waiting for the
P.Mem or for other P.Arrays. In GTree, P.Arrays are wait-
ing on the P.Mem for about 45% of the time. The reason is
that GTree has a large serial section, where only the P.Mem
is busy (Figure 4-(b)). This results in unutilized P.Arrays.
Fortunately, in the other applications, there is no major serial
section and the P.Mem activity is largely limited to a few re-
ductions and broadcasts. As a result, Figure 4-(b) shows that
the P.Mem is largely idle. Tpcd@3 is a special case in that
P.Arrays are unused. Tpcd@3 runs on 16 FlexRAM chips and
only uses P.Mems. It achieves a good 40% Busy time. Mem-
ory time is significant in Tpcd@3 because the small P.Mem
caches suffer frequent misses (Table 1) when running the par-
allelized Tpcd@3.

6.3 Speedup Over Plain Memory

To understand any speedup delivered by FlexRAM over plain
memory, we first examine the performance of the applica-
tions on the plain workstation, and then analyze the FlexRAM

100 100 i |
90 90 Hazards
Wait
80 80 Memory _
T T ®
% 0 Hazards % Busy ?
= PA/PM Wait | £ S
. PA/PA Wait | 8 4
& Memory & [
2 50 Busy e g
F F =
S 40 s S
2 E H
20
10
i GTree DTree BSOM BLAST MME TpcdQ3
GTree DTree BSOM BLAST MME TpcdQ3 GTree DTree BSOM BLAST MME TpcdQ3 CPI= 33 0.4 05 0.5 0.6 17
(a) (b) (o)
8! T T T 80 T
200 q
1 FlexRAM 1X Size 1 FlexRAM 200MHz
or 2 FlexRAM |1 180f 2X Size 2 FlexRAM | 4 or 400MHz |
4 FlexRAM 4X Size 4 FlexRAM 800MHz
60 16 FlexRAM | | 1601 1X Size 16 FlexRAM

0
GTree DTree BSOM BLAST MME TpcdQ3 GTree DTree BSOM BLAST MME TpcdQ3 GTree DTree BSOM BLAST MME TpcdQ3
(e)

Figure 4: Evaluating FlexRAM. Charts (a), (b), and (c) break down the execution time of P.Arrays, P.Mems,
and (in the plain workstation architecture) P.Host respectively. Charts (d), (e), and (f) show the speedups
of the FlexRAM-based system over the plain system for different conditions: different numbers of FletRAM
chips for a constant problem size, different numbers of FlextRAM chips for a proportionally-scaled problem

size, and different MLD logic frequencies respectively. Tpcd@3 does not use P.Arrays.

speedups.

6.3.1 Plain Workstation Performance

To be fair in estimating speedups, we have tried to run the
applications efficiently on the plain workstation. For exam-
ple, the P.Host’s L1 and L2 miss rates are small for most
of the applications (Table 1). However, it is hard to keep
a six-issue processor highly utilized while running memory-
intensive applications, given the large memory latencies of
modern systems. Figure 4-(c) breaks down the execution time
of the applications into instruction execution (Busy), waiting
for memory (Memory), structural and data pipeline hazards
(Str+Data), and control hazards (Control).

From the often modest fraction of Busy time, we can com-
pute the CPIs, which are shown at the base of the bars. The
CPIs range from 3.3 to 0.4. The large Memory time in GTree,
BLAST, and Tpcd®38 shows that these three applications are
largely memory bound. They are also the ones with the high-
est miss rates in Table 1. GTree follows long lists of records
with poor locality such that, when a record is accessed for
a second time, it has already been displaced from the cache.
Tpcd@3 has a large memory time because data is not reused.
While the application has spatial locality, cache lines have a
modest size (64 bytes). In addition, because the database is
relatively small, there are start up misses. BLAST accesses a
very large hash table with poor locality.

6.3.2 Speedups

The FlexRAM speedups are shown in Figure 4-(d) as the left-
most bars of each application (1 FlezRAM for all applications
except for Tpcd@3; 16 FlexRAM for Tped@3). We can see
that, with one FlexRAM chip, we get speedups of around 7-
11. The exception is GTree which, due to its poor performance
in the plain workstation, has a speedup of about 50. Tpcd@3,

which runs with 16 FlexRAM chips, has a speedup of about
10. Overall, these are good speedups.

It is interesting to see the speedups as we add more
FlexRAM chips. We consider two scenarios: keeping the prob-
lem size constant (Figure 4-(d)) and increasing it proportion-
ally with the number of chips (Figure 4-(e)). The legend in
Figure 4-(d) refers to the number of FlezRAM chips used; the
legend in Figure 4-(e) refers to the total size of the problem
running, and the number of chips used.

Increasing the number of chips for constant problem size
(Figure 4-(d)) delivers good speedups. In most cases, 4 chips
run about 3 times faster than 1 chip, delivering speedups of
20-30 over the plain system. The reason is that these applica-
tions are fairly parallel and need little communication between
chips. The exception is G Tree, which has a serial section that
can only run on a single P.Mem. As a result, the speedup for
GTree increases only slowly.

If we increase the problem size as we increase the number
of chips (Figure 4-(e)), we see even better speedups. Many of
these applications are mostly data parallel, so speedups scale
well. Furthermore, GTree now delivers good speedups. The
reason is that the P.Mem section takes the same amount of
time irrespective of the number of records; it depends on the
attributes per record. The plain workstation, however, runs
twice slower with twice more records. Overall, we can see
that 4 FlexRAM chips often allow the workstation to run 25-
40 times faster than without intelligent memory. For GTree,
the speedup is 180.

Finally, we examine the effect of the logic speed in the
MLD process. We assume that the speed of the logic in the
FleztRAM chip can be changed from 400 MHz to 200 or 800
MHz. The DRAM size and speed are unchanged. Further-
more, we unrealistically assume that the speed of the SRAM
in the FlezRAM (instruction memory for the P.Arrays and
cache for P.Mem) also changes with the logic frequency, so
that the access time is always 1 cycle. Under these condi-

tions, Figure 4-(f) shows the speedups of the intelligent work-
station over the plain one for FlezRAM logic speed of 200,
400, and 800 MHz. One FlexRAM chip is used for all applica-
tions except for Tpcd@3, where 16 FlextRAM chips are used.
The figure shows that higher speedups are delivered as we go
from 400 to 800 MHz. However, the increases are smaller than
the ones delivered as we went from 200 to 400 MHz. This is
because logic speed is only one of several factors that con-
tribute to FletRAM speedups. Overall, it appears that 400
MHz logic in MLD is a good design point for systems with
800 MHz commodity processors.

6.4 Cost-Effectiveness of FlexRAM

It is hard to justify a chip like FlexRAM given today’s low
DRAM prices. However, we believe that, with the fast growth
of chip density, integrating more logic with memory is the only
way to alleviate the memory bottleneck, and possibly the best
way to exploit the huge number of transistors available. MLD
technology will continue to show breakthroughs, which will
make fabricating a FlexRAM-like chip only moderately more
expensive than an advanced DRAM part. If we consider the
low fraction of a system’s cost that memory represents, and
the good speedups that we get for key applications in the
server domain, the near-future cost-effectiveness of something
like FlexRAM looks promising.

7 Related Work

PIM or IRAM architectures are an active research field.
Among the most prominent work, we have Notre Dame’s
Execube [19] and Petaflop [20] systems, UC-Davis’ Ac-
tive Pages [26], ISI-USC DIVA system [9], UC-Berkeley’s
IRAM [27] and ISTORE [28], MIT’s Imagine [33] and Raw [39]
work, and the vast body of work presented at the First Work-
shop on Mixing Logic and DRAM [29]. Some of these projects,
including Imagine and Raw, use SRAM as the large on-chip
storage. Roughly speaking, the work can be classified based
on the role of the PIM chip: main processor (or processors),
special purpose (or co-processor), and memory system. Our
work falls in the latter, together with the Active Pages and
the DIVA project. The Active Pages work is different in that
one of its major aspects is including reconfigurable logic in
the PIM chip. Such a technology is a few years off in the fu-
ture. Our purpose is to examine how to best use today’s MLD
technology. Furthermore, a crucial part of our work is to find
and understand real applications for PIM. We have used them
to perform a detailed design and layout of the chip. To our
knowledge, there is no published work on DIVA, but some of
the work appears similar. Finally, a survey of the issues in
embedded DRAMs can be found in [30].

8 Conclusions and Future Work

This paper has addressed how to best use the current state-of-
the-art MLD technology for general-purpose computers. We
wanted a general-purpose system that supported a wide range
of applications. The paper has described and justified its ar-
chitecture and proposed a chip layout. A simulation-based
evaluation showed that 4 intelligent memory chips often allow
a workstation to run 25-40 times faster.

Many issues are open for research. Perhaps the most chal-
lenging one is to provide easy-to-use and efficient program-
ming support for the architecture presented. Another issue
is to make the system more usable by enhancing and giving
flexibility to the memory management and virtual memory

systems. Finally, another issue is to examine in detail the
I/0O subsystem support required for this architecture. Since
data is consumed efficiently, it must be loaded into memory
efficiently too.

Acknowledgments

Some of the ideas in this paper owe to discussions with A. Chien,
M. Horowitz, D. Padua, and D. Reed. We also thank our colleagues
at IBM, especially K. Ekanadham, R. Isaac, B. Lim, and R. Miller.
Finally, we thank the referees and the graduate students in the I-
ACOMA group. J. Torrellas is supported in part by a NSF Young
Investigator Award.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic Local Alignment Search Tool. In Journal of Molecular
Biology, pages 403—410, 1990.

[2] J. Alvarez et al. A 450MHz PowerPC Microprocessor with
Enhanced Instruction Set and Copper Interconnect. In ISSCC
Digest of Technical Papers, pages 96-97, February 1999.

[3] M. Berry and G. Linoff. Data Mining Techniques. John Wiley
& Sons, Inc., New York, NY, 1997.

[4] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and
H. Wang. Evaluation of Existing Architectures in IRAM Sys-
tems. In First Workshop on Mizing Logic and DRAM: Chips
that Compute and Remember, June 1997.

[5] A. Brown, D. Chian, N. Mehta, Y. Papaefstathiou, J. Simer,
T. Blackwell, M. Smith, and W. Yang. Using MML to Simulate
Dual-Ported SRAMs: Parallel Routing Lookups in an ATM
Switch Controller. In First Workshop on Mizing Logic and
DRAM: Chips that Compute and Remember, June 1997.

[6] R. Crisp. Direct Rambus Technology: the New Main Memory
Standard. In IEEE Micro, pages 18—28, November 1997.

[7] J. A. Gasbarro. The Rambus Memory System. In Interna-
tional Workshop on Memory Technology, Design and Testing,
pages 94-96, 1995.

[8] G. Gerosa et al. A 2.2 W, 80 MHz Superscalar RISC Micro-
processor. In IEEE Journal of Solid-State Circuits, December
1994.

[9] J. Granacki et al. Data Intensive Architecture: DIVA.
http://www.isi.edu/asd/diva/, 1998.

[10] Y. Hagihara et al. A 2.7ns 0.25um CMOS 54x54b Multiplier.
In ISSCC Digest of Technical Papers, pages 296—297, Febru-
ary 1998.

[11] W. Hong and M. Stonebraker. Optimization of Parallel Query
Execution Plans in XPRS. Distributed and Parallel Databases,
1(1):9-32, January 1993.

[12] M. Horowitz et al. PLL Design for a 500MB/s Interface. In
ISSCC Digest of Technical Papers, pages 160-161, February
1993.

[13] W. Huang. Exploiting Application Parallelism Using Ad-
vanced Intelligent Memory - The FlexRAM Approach. MS
Thesis, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, 1999.

[14] IBM Microelectronics. Databook for 55 Technology. 1998.

[15] IBM Microelectronics. Blue Logic SA-27E ASIC. In News and
Ideas of IBM Microelectronics, http://www.chips.ibm.com/
news/1999/sa27e/, February 1999.

[16] K. Itoh et al. Limitations and Challenges of Multigigabit
DRAM Chip Design. In IEEE Journal of Solid-State Circuits,
pages 623-634, May 1997.

[17] S. Kaxiras, R. Sugumar, and J. Schwarzmeier. Distributed
Vector Architecture: Beyond a Single Vector IRAM. In First
Workshop on Mizing Logic and DRAM: Chips that Compute
and Remember, June 1997.

[18] K. Kim et al. Highly Manufacturable 1 Gb SDRAM. In Sym-
posium on VLSI Technology Digest of Technical Papers, pages
9-10, June 1997.

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

35]

(36]

(37]

38]

(39]

P. Kogge. The EXECUBE Approach to Massively Parallel
Processing. In Proceedings of the 1994 International Confer-
ence on Parallel Processing, August 1994.

P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha. Pur-
suing a Petaflop: Point Designs for 100 TF Computers Us-
ing PIM Technologies. In Proceedings of the 1996 Frontiers
of Massively Parallel Computation Symposium, pages 8897,
October 1996.

C.E. Kozyrakis et al.
Transistor Era: IRAM.
September 1997.

V. Krishnan and J. Torrellas. An Execution-Driven Frame-
work for Fast and Accurate Simulation of Superscalar Proces-
sors. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), October 1998.

R. Lawrence, G. Almasi, and H. Rushmeier. A Scalable Par-
allel Algorithm for Self-Organizing Maps with Applications to
Sparse Data Mining Problems. Technical report, International
Business Machines, January 1998.

T. Lee et al. A 2.5V DLL for an 18Mb, 500MB/s DRAM. In
ISSCC Digest of Technical Papers, pages 300-301, February
1994.

Mitsubishi Corporation.
http://www.mitsubishichips.com/eram/eram.htm. 1998.

M. Oskin, F. Chong, and T. Sherwood. Active Pages: A Com-
putation Model for Intelligent Memory. In Proceedings of the
25th Annual International Symposium on Computer Architec-
ture, pages 192-203, June 1998.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Tomas, and K. Yelick. A Case for In-
telligent DRAM. In IEEE Micro, pages 33-44, March/April
1997.

D. Patterson et al. ISTORE: Intel-
ligent Store. http://iram.cs.berkeley.edu/ istore/index.html,
1998.

D. Patterson and M. Smith. First Workshop on Mixing Logic
and DRAM: Chips that Compute and Remember. June 1997.

S. Przybylski. Embedded DRAMs: Today and Toward
System-Level Integration. Tutorial with the Annual Interna-
tional Symposium on Computer Architecture, May 1997.

J. R. Quinlan. C4.5 - Programs for Machine Learning.
Morgan-Kaufmann Publishers, Inc., San Francisco, CA, 1993.

Rambus Inc. 16/18Mbit (2Mx8/9) and 64/72Mbit (8Mx8/9)
Concurrent RDRAM Data Sheet, DL0029-05. In Rambus Inc.,
January 1997.

S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-
Lagunas, P. Mattson, and J. Owens. A Bandwidth-Efficient
Architecture for Media Processing. In 81st International Sym-
posium on Microarchitecture, November 1998.

H. Sanchez et al. A 200MHz 2.5V 4W Superscalar RISC Mi-
croprocessor. In IEEFE International Solid-State Circuits Con-
ference Digest of Technical Papers, pages 218-219, February
1996.

A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the Mem-
ory Wall: The Case for Processor/Memory Integration. In
Proceedings of the 23rd Annual International Symposium on
Computer Architecture, pages 90-101, May 1996.

Scalable Processors in the Billion-
IEEE Computer, pages 75-78,

Semiconductor Industry Association.
The National Technology Roadmap for Semiconductors, 1998.
http://notes.sematech.org/ ntrs/PubINTRS.nsf.

Transaction Processing Performance Council. TPC Bench-
mark D (Decision Support) Standard Specification Revision
1.1, December 1995.

J. Veenstra and R. Fowler. MINT: A Front End for Effi-
cient Simulation of Shared-Memory Multiprocessors. In MAS-
COTS’94, pages 201-207, January 1994.

E. Waingold et al. Baring It All to Software: Raw Machines.
In IEEE Computer, pages 86-93, September 1997.

Appendix A: Applications

Data Mining

The nodes of a decision tree are predicates on one or more at-
tributes of the record in a database. The outcome of the predicate
on a record determines the subsequent branch of the tree to take
while traversing from the root. The record finally reaches a leaf of
the tree which classifies the record. For example, given records on
individuals, a decision tree can be used to find target individuals
for life insurance promotion. The nodes of the tree are questions
about the family and income situation of the individual.

Tree Generation

To generate the tree, the algorithm has to determine which
record attributes to query in the nodes, in what order and, for
a given attribute, what values to use to split the records. The
goal is to produce the most compact tree with the most confident
answers [31].

We start from a preclassified set of the records. To generate
the root node of the tree, we inspect each attribute and count, for
each attribute value, the number of records that have each possible
outcome. Based on this, we choose the attribute and attribute value
that produces the best split, that is, resulting in largest information
gain [31]. For each branch, we now repeat the process with only
the records that contain the corresponding attribute value. This
will give us the next pair of attribute and attribute value. This
process continues until all the records in the branch have the same
outcome or there are too few records to give a meaningful split.

This algorithm can be mapped to one FleztRAM chip as follows.
The database of records is divided among the P.Arrays. The P.Mem
controls the tree generation and makes all decisions. Initially, each
P.Array counts, for the records it owns, the outcomes for each at-
tribute and attribute value. Then, all P.Arrays synchronize. The
P.Mem tabulates the results and makes the decision about the at-
tribute and value on which to split. It then transmits this informa-
tion to the P.Arrays, together with an indication of what branch to
examine next. This cycle is repeated again and again except that
each P.Array only works on the subset of its records that are being
considered in this subtree.

In this application, P.Arrays have large communication-free sec-
tions. However, at regular intervals, they synchronize in barriers
and communicate. For the communication, they can use nearest
neighbor as they accumulate results for the P.Mem. Computation
is all integer addition. As long as many records fit in each P.Array’s
memory, the communication time is small. So is the record load
time, especially if the database is used to generate several trees.
Finally, if the database does not fit in one chip, several chips can
work in parallel. In each step, a master P.Mem can accumulate the
partial data accumulated by each of the other P.Mems. This intro-
duces more communication but, overall, communication is likely to
remain modest.

Tree Deployment

This algorithm applies a tree to every single record of a large
database to classify them [31]. In our architecture, we assign a
portion of the database records to each P.Array and replicate the
tree in all P.Arrays. Each P.Array sequentially processes its records.
For each record, the tree is traversed, checking the conditions in
the nodes, and reaching the outcome in the correct leaf. Finally,
all P.Arrays synchronize in a barrier and the P.Mem (or P.Mems in
case we are using several chips) accumulates the result.

This application is well-suited for FlezRA M. P.Arrays have prac-
tically no communication beyond two barriers. Their operations are
mainly comparisons with scattered integer arithmetic. One concern
is that the ratio of computation to I/O may be low. While the
amount of computation per record depends on the input tree, the
examples that we tried have about 40 P.Array instructions between
two consecutive P.Array loads to the database data. If we add to
this time any P.Array load imbalance, synchronization time, and
non-overlapped P.Mem time, we see that the data processing time
is larger than the data loading time with fast page-mode DMA.
If, in addition, the database fits in memory, then the application
reuses the data across queries and the initial I/O time is negligible.

Neural Networks

Neural networks also classify data. The Self-Organizing Map
(SOM) algorithm takes as input a set of data points belonging to the
N-dimensional space. It clusters them into groups of similar-looking
points laid out in a 2D map [23]. To identify an arbitrary number

TableA TableB TableC
Rec# Foreign K Foreign K
Table A TableB Key Rec# K& Key Rec# K&
Foreign 1] a O‘a‘A ‘O‘A‘
Rec# Key Rec# Key 5 a7‘1‘b‘A
TableA TableB 7 a
Foreign 2 b
Rec# Key Rec# Key Z b
0 [¢ 0] a ©
1 a 1 b
2 b 2 c
3 c 3 d
4 b
5 a
6 d
7 a

@

(b)

(d)

Figure 5: Laying out tables to minimize inter FlezRAM chip communication in joins.

of K groups, it proceeds as follows. Each of the first K inputs goes
to a different group. Their coordinates become the initial weight
vector of each group. Then, for each of the other inputs, we do
as follows. We compute the euclidian distance between the input
vector and each weight vector. The smallest distance indicates
the group where the input belongs to. At this point, the weight
of such a group is updated to be a weighted average of its initial
weight and the new input. Intuitively, we have moved the center of
gravity of the group to reflect the influence of this input. The other
groups’ weights are also updated to a smaller degree controlled by
a correlation matrix. To force convergence, the whole process is
repeated several times.

In practice, in the BSOM (Batch SOM) algorithm, no center of
gravity is changed until all inputs have been processed. At that
point, all the changes are performed. At the end, a clear pattern
of K centers of gravity emerges.

In a FlezRAM chip, each P.Array starts with a copy of the initial
K weights. Each P.Array processes a portion of the inputs, updates
its local weights and synchronizes. Then, P.Mem reads all the local
weights, combines them and broadcasts the result to all P.Arrays.

This is a compute-intensive algorithm with little P.Array com-
munication. Theoretically, the algorithm uses floating point. How-
ever, given that floating point is so area-expensive, we can use
integer units to do the integer arithmetic without losing too much
precision. Multiplication is used to compute distances and, there-
fore, must be supported efficiently.

Computational Biology: Protein Matching

‘We look for sections of a query string that are similar to sections
of a protein database. Since there may be mutations, similarity is
measured with a function that takes into account the amino acids
found in the two neighborhoods. The original algorithm, called
BLAST [1], sequentially takes each amino acid in the proteins of
the database and compares it to all the amino acids in the query
string. The comparison is done in groups of 4 consecutive amino
acids at a time. Each group is decomposed into 50 possible per-
mutations to allow for mutations. If two 4-amino acid sequences in
the mutated query and database are the same, a match is detected
and it now needs to be extended. Extension implies comparing
the next amino acids in sequence in both query and database. De-
pending on how similar they are, a similarity metric is increased
or decreased. Such extension proceeds to the left and right of the
original match until the similarity metric reaches a certain positive
or negative threshold.

In our architecture, we load the protein database in the
FlezRAM chips. Each P.Array is given a piece of the database.
The query string is replicated in all P.Arrays. Each P.Array tries
to match it against its portion of the database. For each match it
finds, it extends it. Due to the small size of a protein, the extension
will not cross FleztRAM chips but may cross P.Array memories. If
the extension reaches a P.Array boundary, the P.Array can store the
information gathered so far in the memory of the neighbor P.Array.
After processing their protein chunks, all P.Arrays synchronize in
a barrier. Then, each P.Array proceeds to extend the matches ini-
tiated by its two neighbors. These processing and synchronization
steps interleave until all extensions conclude.

This application is highly parallel, fairly compute intensive, has
a significant grain size and, at most, needs nearest-neighbor com-
munication between P.Arrays. Computation is all integer. The I/O
time to load the database is much smaller than the compute time

and, if the database fits in memory and is reused across queries,
totally negligible.

Decision Support Systems: TPC-D

We code TPC-D to use only P.Mems and intra-operation par-
allelism [11], whereby each processor operates on a section of the
tables. We want to minimize communication between chips. We
show how to do it for joins. For joins, communication is reduced
dramatically if we optimize data layout. Each database table has
its key, which takes a different value in each record. In all TPC-D
joins, the key in a table is joined to a foreign key in another table.
A foreign key usually takes the same value in several records. Fig-
ure 5-(a) shows a join. Thanks to the uniqueness of the keys, given
two tables to be joined, we can always partition them between sev-
eral PIM chips for no communication (Figure 5-(b)). If we want a
load-balanced system, we may have to replicate some entries (for
example, move record #4 of Table A from PIM1 to PIM2 and repli-
cate record #1 of Table B in both PIMs). Finally, since a query has
several joins, we repeat the partitioning across joins. For example,
Figure 5-(c) shows the data in PIM1 after laying out a query with
(A join B) join C.

We can lay out the TPC-D tables in a FlexRAM ensemble like
this as long as different queries do not put conflicting layout de-
mands on the same table. To see the problem, consider the TPC-D
join graph (Figure 5-(d)). The graph shows all the TPC-D tables,
how they are joined (an arrow between two tables indicates a join,
with the source of the arrow indicating the table with the key),
and what queries execute them. If we remove table Part and edges
5, 8, and 9 from the graph, we get a tree. For a tree, we can lay
out all tables so that we need no inter-chip communication in any
TPC-D join. To see why, start from the root and, in a depth-
first manner lay out records from different tables in the FlezRAM
chip. For example, lay out the first Region record, then find all its
matches in Nation. For each of those, lay it out and find all its
matches in Supplier. The process proceeds until the first chip is
full; then move on to the next chip. Although some record repli-
cation may be necessary, none of the joins will require inter-chip
communication with this layout. Finally, we distribute the Part
records in chunked round-robin across chips. Joins 5, 8, and 9 will
require inter-P.Mem communication. This communication can be
supported well if P.Mems share all memory.

The initial and only loading of the data in the FlexRAM chips
can be efficiently done with the help of hash tables. Finally, if an
update query tries to add an entry, we need to store it in the right
chip. However, updates are rare.

Multimedia: MPEG-2 Motion Estimation

Given an image, we take each 8x8-pixel block and compare it
against many 8x8-pixel blocks in a reference image. The latter
blocks include the one with the same coordinates as the original
one, and its surrounding blocks. Block comparison involves integer
arithmetic. In FleztRAM, we partition each of two images in the
same way between P.Arrays. If the P.Arrays are connected in a 1D
manner, each P.Array gets a set of contiguous rows. Each P.Array
operates on its own section of the image. Communication is highly
local: P.Arrays access their own memory and read the ones in their
nearest neighbors.

