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ABSTRACT

Studying program behavior is a central component in architectural
designs. In this paper, we study and exploit one aspect of program
behavior, the behavior repetition, to expedite simulation.

Detailed architectural simulation can be long and computation-
ally expensive. Various aternatives are commonly used to simulate
a much smaller instruction stream to evaluate design choices. us-
ing a reduced input set or simulating only a small window of the
instruction stream. In this paper, we propose to reduce the amount
of detailed simulation by avoiding simulating repeated code sec-
tions that demonstrate stable behavior. By characterizing program
behavior repetition and use the information to select a subset of in-
structions for detailed simulation, we can significantly speed up the
process without affecting the accuracy. In most cases, smulation
time of full-length SPEC CPU2000 benchmarks is reduced from
hundreds of hours to a few hours. The average error incurred is
only about 1% or less for arange of metrics.

Categories and Subject Descriptors

1.6.7 [Computing methodologies]: Simulation and modeling—
Simulation support system€.4 [Computer systems organiza-
tion]: Performance of systems—Measurement techniques

General Terms
Design, Experimentation, Measurement, Performance

Keywords
behavior repetition, statistical sampling, fast smulation

1. INTRODUCTION

Studying and understanding program behavior is a very impor-
tant step in computer system design. In the microprocessor or sys-
tem design process, an architectural simulator is an indispensable
tool to evaluate different design choices at a relatively high level.
Unfortunately, even such a high-level evaluation can be very time-
consuming, sometimes agonizingly so. A very popular simulator
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tool set in the architecture community is SimpleScalar [1]. A typ-
ical detailed simulation of an out-of-order microprocessor using
SimpleScalar runs about afew hundred thousand instructions a sec-
ond on a high-end workstation. Compared to the hardware that is
being simulated, this represents a slowdown of approximately four
orders of magnitude. Minutes of native execution take days to sim-
ulate. Furthermore, architectural studies generally require explor-
ing adesign space of anon-trivial size and evaluating abroad range
of applicationsto fully understand the overall effect. Combining all
these factors, detailed timing simulation of large programs to com-
pletion is usually impractical. A common practice isto use asmall
window of dynamic instructions, or smaller input sets, or a combi-
nation of both to drastically reduce simulation time. Whether the
behavior of the reduced version fully represents that of the original
program remains to be seen, especialy as new benchmarks con-
tinue to emerge.

In this paper, we address the problem by exploiting the repeti-
tion of program behavior within a single application. Computer
programs’ behavior is repetitive by nature: different iterations of a
loop or different invocations of a subroutine can bear great simi-
larities from an architecture perspective. Understanding how pro-
gram behavior repeats is important as it alows efficient and ac-
curate study of the behavior of large scale programs, which is an
important step toward hardware and software optimizations. We
propose a methodology to characterize the behavior repetition of
dynamic instances of static code sections and, based on that infor-
mation, only perform detailed simulation on selected sample in-
stances. The more “stable” the behavior, the less the amount of
sampling isrequired.

Skipping portions of the code without simulation may seem in-
herently inaccurate, but given limited computing resources, this
sampling approach can be much more accurate than simulating
only asmall window of dynamic instructions. Indeed, while behav-
ior repetition-based sampling approximate the stati stics of a skipped
unit using those from a unit known to be similar, the typical simu-
lation window approach simply ignores the issue of representative-
ness.

One unique aspect of our approach isthe use of instances of static
code sections as a natural granularity of program behavior repeti-
tion. This approach is intuitive, offering further confidence in its
viability in addition to what quantitative analyses suggest. It also
avoidsthe need of ahaphazardly selected fixed-size granularity that
isunlikely to coincide with the periodicity of different applications.
Moreover, studying program behavior repetition of static code sec-
tions is also useful in other optimizations in general. We call our

simulation strategy Expedited simulation eXploiting Program bE-

havior RepeTitionor EXPERT.
Our analyses show that dynamic instances of the same subrou-
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tine and iterations of the same loop often exhibit great similarities.
Thisisdemonstrated by the low coefficient of variation for arange
of architectural metrics such as CPI (cycles per instruction) and the
cache miss rate. Thus, despite the fact that we only select a small
subset of the program, we still obtain high accuracy on all the mea-
surements. Our experiments show that by applying the EXPERT
strategy, simulation time of full-length SPEC 2000 applications can
be reduced from weeks to hours or even minutes and yet the aver-
age error in CPI isonly about 0.9%. The maximum error of arange
of metricsis less than 3.8%, compared to full-blown detailed sim-
ulations.

The rest of this paper is organized as follows: Section 2 shows
some observations, Section 3 discusses the methodology to exploit
behavior repetition at code section level to expedite simulation,
Section 4 shows the experimental setup, Section 5 presentsthe eval-
uation and analysis of our system, Section 6 discusses related work,
and finally, Section 7 concludes.

2. BEHAVIOR REPETITION

Computer programs rely heavily on repetition to perform any
significant operations. The number of static instructions for SPEC
CPU2000 benchmark binaries compiled for our simulator is no
more than a few hundred thousands, while a typical run consists
of tens or hundreds of billions of dynamic instructions. Repeated
execution of loop iterations or subroutine invocations are common
examples of this repetition. Intuitively, code has alarge bearing on
the actual behavior!. Repeated execution of the same code could
yield very similar behavior. Figure 1 shows this repetition visualy.
We can see the repeating patternsin the IPC traces of the two sub-
routines and a few iterations of aloop. The repeating patterns sug-
gest repeated behavior. In general, this repetition can be exploited
to predict future code behavior based on observed history.

To characterize the behavior repetition of repeated executions of
a static code section, we measure the standard deviation of arange
of statistics: CPI, L1 data cache hit rate, basic block size, percent-
age of memory reference instructions, and branch prediction rate.
In Figure 2, we show these measurements for a couple of subrou-
tines inside one application: bzip2 (The detail of the experimental
setup is discussed later in Section 4.) We select subroutines that
have an average invocation length of more than 50,000 dynamic in-
structions and only show the results for the top 8 subroutines based
on dynamic instruction count. When nesting occurs, the callee's
statistics (e.g, execution time and number of instructions executed)
are not counted in the caller again. We also include the weighted
average of per-subroutine results. To meaningfully compare stan-
dard deviation of metrics having different units and magnitudes, we
divide the standard deviation by the mean of the metric. Thisisalso
known as the coefficient of variationoften denoted as COV. We
use hit rate and (correct) branch prediction rate rather than missrate
or misprediction rate. Thisisto avoid exaggerating the variation by
dividing avery small mean value,

Aswe can see from Figure 2, the coefficient of variation is only
about a few percentage points. An approximate interpretation is
that on averagethese statistics collected on one sample invocation
of the subroutine would be just a few percent different from the
overall average of al invocations of the same subroutine. Stated
differently, compared to simulating afew sampleinvocations, faith-
fully simulating al invocations would only increase the accuracy
marginaly.

LIn the scope of this paper, behavior is characterized by a range of statistics,
architecture-specific or -independent, such as cache missrate or percentage of memory
reference instructions.
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Figure 1. Two time-based IPC traces for SPEC FP appli-
cation art. The boundaries of two subroutines (a) and loop
iterations (b) are marked.

Indeed, in statistics theory, it is shown that given a distribution
(with mean p and variance 12) of ametric in a certain population,
the average of the metric (X)) from random samples is a random

variable. Its expectation E(X) equals p and its variance Var(X)
equals "—f where n isthe size of the sample. Asn — oo, the dis-

tribution of X becomes a normal distribution. To be exact, j‘/:/‘%
becomes a standard normal distribution. Thisis commonly known
as the Central Limit Theorem Usually, when the sample size is
sufficiently large, the distribution of X is treated as a normal dis-
tribution. Thus, in theory, if the population’s variance is known in
advance, the sample size can be mathematically determined such
that the sampling error can be bounded with a set confidence. In
practice, such bounding is only approximate in nature as the pop-
ulation’s variance can only be estimated and skipping portions of
the code in simulation creates non-sampling biases [2] that can not
be bounded analytically. Nevertheless, such theoretical foundation
substantiates our empirical methodology and provides us with con-
fidence when interpreting the low error results we report later.

3. METHODOLOGY

Based on the behavior repetition of static code sections observed
in Section 2, we propose EXPERT, a simulation strategy that sam-
ples selected dynamic code section instances.

In astraightforward implementation, the simulator alternates be-
tween aslow, detailed timing simulation mode and afast, functional
mode. Of al the dynamic instances of any particular code section,
we simulate selected instancesin detail, tallying architectural statis-
tics that are of interest. The statistics of theses instances can then
be used to accurately estimate those of al the dynamic instances
for that code section. Combining the estimations of all code sec-
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Figure 2. COV results of all 5 metrics for one application
(bzip2 showing the top 8 subroutines (by dynamic instruc-
tion count) and the overall weighted average. The input we
usein thisexperiment isthetrain input from SPEC CPU2000
distribution. CPI, BB size, Bpred, Mem Refid L1 Hit Rate
refer to cycles per instruction, basic block size (number of in-
structions), rate of correct branch predictions, percentage of
memory reference instructions, and hit rate of L1 data cache,
respectively.

tions, taking into account the relative weight of different sections,
we can obtain needed statistics for the entire application. Thisway,
speed is greatly improved by avoiding repeated simulation of the
same code section with little behavior variation. Accuracy is not
compromised since simulating those instances would provide little
extrainformation content.

To carry out the EXPERT strategy, we need to answer two ques-
tions for any application that we want to simulate. In our current
implementation, we use straightforward approaches when answer-
ing the two questions. (1) How do we break down the application
into different code sections? We break down the static code into
natural units with manageable sizes. (2) How many and which dy-
namic instances to sample? We determine the number of the in-
stances based on the variability of individual code sections. We
separate the process of measuring code sections' behavior variabil-
ity and the mechanism for the actual sampling. This leads to a
three-step systematic process:

1. Partitioning: divide an application into static code sections,

2. Characterization: characterize the behavior repetition of these
sections, and

3. Selective simulation: use the characterization to control the
degree of sampling in an architectural simulation.

We consider the issues in these steps in turn, in the following
sections.

3.1 Partitioning

Thefirst step in the procedure is to partition the program binary
into smaller units (e.g, subroutines). At runtime, the execution of
the program is then naturally partitioned and can be viewed as a
sequence of dynamic instances of these static units. There are sev-
eral reasons that lead us to using this code-based approach rather
than the more popular alternative of directly partitioning the dy-
namic instruction stream into fixed-size windows. First, analyzing
behavior repetition of instances of the same static code provides re-
assurance that the similarity in externally observed metricsis not a
mere coincidence: two unrelated dynamic execution windows can
have similarly low 1PC due to two entirely different reasons, and
thus when input or architecture changes, we have little confidence
that their execution would again show similar IPCs. However, if the
two windows are the dynamic instances of the same code section,
then their behavior similarity isless likely to be merely coinciden-

tal. Second, unlike afixed-size instruction chunk (of a haphazardly
chosen size), these structures are the natural units that match the
repetition periods as can be seen from Figure 1.

Notice that because of nesting, a dynamic instance of a static
code section may contain portions that are non-consecutive at run-
time, such as the portion before calling a subroutine and that after
thereturn. Figure 3 shows asimplified example: subroutine A calls
B and thus, one dynamic instance of A consists of A; and A,. In
this case, we aggregate the statistics collected in both segments to
represent acomplete logical instance of the static code section A.

subA () {
Id...
add ... Id...
cal B() add.. |Ai
XOr ... cal ...
XOr ... Dynamic mult ...
} execution mult ...
subB(){ — = or.. B
mult ... st..
mult ... ret ...
or .. XOr ...
... XOr ... A,
ret ...
}

Figure 3. An example of non-contiguous dynamic instance
of subroutine A. The statistics of thisinstance of A would be
the aggregation of those of A; and A,.

The dynamic instances of a particular static unit usually exhibit
behavior repetition that can be exploited for different purposes. The
ideal granularity of such aunit depends on the particular goal of the
exploitation. In our case, the goal isto expedite architectural simu-
lation. For this purpose we need the unit to be of a“medium” size.
On the one hand, atypical instance can not be too small: modern
architectures tend to be deeply pipelined, when the code unit istoo
small, certain simulation statistics will be determined more by the
microarchitectural state than by the code itself. Thus, we can not
properly characterize its behavior in an isolated fashion. For exam-
ple, it is amost meaningless to discuss the IPC of abasic block in
isolation. On the other hand, if an instanceistoo big, it may contain
smaller subunits that also exhibit behavior repetition which can be
easily exploited to further speed up simulation. In this paper, we
focus on using subroutines and loops as the unit to statically parti-
tion the program. We start partitioning with the subroutines of the
application. Since not all subroutines have the ideal grain size or
same importance, we treat each one differently. In particular, we
do not choose any short subroutine as a unit, we further partition
long subroutines based on loops, and we ignore unimportant sub-
routines as explained in the following sections. The statistics used
in this process are obtained from profiling.

3.1.1 Short subroutines

As mentioned earlier, taking statistics of a small code unit (such
as ashort subroutine) in isolation is highly susceptible to high non-
sampling bias during smulation. Thus we treat short subroutines
just as extended parts of their caller's execution. In Figure 3's ex-
ample, if B isconsidered as ashort subroutine (and A is not), then
the dynamic instance of A includes all the instructionsin the box.

We use alower-bound limit I;,.,., and subroutines whose aver-
age per-invocation dynamic instruction count islessthan I5.,c» are
considered short. This dynamic instruction count does not include
instructionsfrom acallee subroutine, unlessthe calleeis considered
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ashort subroutine. We profile the application to get the average ex-
clusive dynamic instruction count for every subroutine and perform
a post-processing to find out short subroutines.

During an EXPERT simulation, we may fast-forward to the be-
ginning of a subroutine and start detailed simulation of one dy-
namic instance. Fastforwarding rendersthe microarchitectural state
imprecise. The primary purpose of the threshold I;e, iSto limit
the influence of an imprecise microarchitectura state (or the non-
sampling bias[2]). We choose athreshold of 50,000 instructions to
make this warm-up period relatively insignificant.

3.1.2 Long subroutines

For subroutines that have long invocations, simulating even one
such invocation in detail can be very time-consuming. Within these
long subroutines, we further exploit behavior repetition of loop iter-
ations to speed up the simulation. We identify iteration boundaries
and loop termination by marking the backward branch and all the
side exit branches of all chosen loops. At simulation time, the sim-
ulator can switch between the detailed mode and the fast-forward
mode to perform sampling of iterations. For simplicity, we only
work with major outer loops. We found that to be enough for the
purpose of expediting simulations, for the applications we look at.

We classify a subroutine as a long subroutine if the average in-
struction count per invocation is higher than an upper limit I, pper-
In this paper, I.,ppe, iSempirically set to 1 million instructions. We
note that, for the applications we studied, the actua partitioning re-
sult is quite insensitive to the values of these two thresholds. When
sampling loop iterations, we also want to ensure that a sample in-
stance? contains enough instructions to make non-sampling bias
insignificant. Thus, we make sure each instance contains enough
iterations such that the total number of instructions simulated is at
least Ilower .

When the simulator switches mode (between detailed and fast-
forward mode), there is not only certain loss of accuracy but also
switching overhead. Naturaly, to profit from sampling aloop, the
entire loop instance should be significantly bigger than the chunk
we sample. Otherwise, simulating the entire loop is a better option.
Thus when selecting loops, we only select long loops that have an
average instance size higher than a threshold. We use the same
threshold I, that we use for identifying long subroutines. This
is because the principle is the same: if a code instance is shorter
than a certain size, we do not want to switch mode during its sim-
ulation, as that would yield limited return of speed improvement,
and increase the inaccuracy due to imprecise architectural state.

3.1.3 Unimportant subroutines

There are code sections that are executed so infrequently that
they can be completely ignored. We sort the code sections by their
total weight of dynamic instruction count and create a cutoff line
below which the combinedweight of al the sections is less than
0.5%. Before this pruning process, the average number of static
code sections is about 40 for al the applications we studied. After
the pruning, theaverageisonly 13.7 (Section 5.1). Wehave verified
that the combined weight of all the ignored sections is less than
0.5% in the production run for every application. We note that even
if the threshold is set to a much tighter 0.1% we can still ignore
about half of the static code sections.

Once all the important, properly-sized static code sections are
identified, we can mark their boundaries by instrumentation so that
at runtime we can track the control flow entering and exiting these
sections. In our implementation, this instrumentation is done dy-

2|n statistics terminology, a sampleis a collection of units selected from the popula-
tion. In this paper, theseindividual units are also referred to as (sample) instances.

namically when the binary isinitially loaded into the simulator (af-
ter reading the data file where we keep the partition information).
We also maintain a call stack: when a code section finishes execu-
tion, it returns to the section from which the control is transferred.

3.2 Characterization

After identifying al the code sections with proper sizes in the
partitioning stage, we characterize the degree of behavior variabil-
ity. This variability will be used to determine the rate of sampling:
the more stable the behavior is, the less sampling is heeded.

For every static code section, we measure a range of metrics per
dynamic instance and compute the COV of these metrics. In the
case of a subroutine, an instance is one invocation. In the case of a
loop, an instance would be a chunk of iterations containing no less
than I;,.er instructions. These metrics reflect different aspects of
the program behavior and thus it is normal to have a small COV
value on one metric, but a large value on another. Naturally, only
when all the values are small does it suggest stable behavior. Thus
we pick thelargest COV value out of all metrics as a measurement
of the degree of behavior variation. For convenience, we call this
measurement the variation factor, denoted V.

Intuitively the variability of the behavior isto alarge extent de-
termined by the code. However, input and architectural changes do
affect the variability. Ideally, we want the variability characteriza-
tion to be independent of input and architectural changes, so as to
avoid repeated characterization processes. Thus, we perform the
measurement experiment in four different settings using two inputs
and two machine configurations. For each code section, we pick
the maximum V' computed in all settings.

From Figure 2, we see that different subroutines have different
degree of variation, but in general, the variation is small. We sum-
marize the result of the characterization experiments in Figure 4.
For each metric, we compute the COV of al the instances of ev-
ery code section. These per-code section results are then weighted
averaged to get the application-wide COV of that metric. We use
the total number of dynamic instructions inside each code section
as the weight. For brevity, we only show this weighted average
value per application for al five metrics. Figure 4 shows these re-
sults obtained in one of the four settings. In general, the stability
characterizations under different settings agree quite well. This ob-
servation isin line with the intuition that the code has a very large
bearing on the behavior (and its variability). Therefore, besides
using simulation, the measurements needed in this step could also
be taken by actually running the program on a similar, but existing
(previous-generation) architecture.

We emphasize that this characterization process is a one-time
effort for each application. The results will dictate future sam-
pling rate for that application regardless of the input used or the
architecture configuration used. One possible alternative to pre-
characterization is to carry out the characterization process online,
together with an EXPERT simulation. We defer the discussion of
this alternative to Section 5.4.

3.3 Sdective Simulation

Finally, with the characterization of behavior repetition we can
perform the expedited simulation, skipping portions of the execu-
tion while performing detailed ssimulation for the rest. In this pro-
cess, we need to determine two things:

1. Selection: how many and which instances to select for de-
tailed simulation.

2. Skipping: what needs to be done for the instances not se-
lected.
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Figure 4. COV of five metrics measured for code section instances. Results for each application are the weighted average of per-
section results. Theinput is train from SPEC 2000, and the architecture is an 8-issue processor similar to IBM POWER4.

We discuss these two issues under two different scenarios: whether
or not we can perform some preprocessing.

3.3.1 With preprocessing

Selection Recall that if we select n instances, the mean of a met-
ric from these instances is a random variable with a variance of
o /n, with o being the population’s standard deviation of the met-
ric. Given a desired confidence level (1 — «) and the tolerable
margin of error E, we can compute the necessary sample sizen =
(zg = ) = (2g * %)2, where z¢ is aconstant. We use the
variation factor V' to approximate o /i (recall that V' is the highest
COV of arange of metricsin a set of testing experiments). Thus,
the sample sizeisn = (zg * ELM)Z, where E/u is the tolerable
relative error.

Given that during simulation, the instances of a code section
are presented in sequence and that they are not truly randomly
distributed due to program locality, simple systematic sampling,
which picks instances evenly distanced, can be quite effective. To
perform systematic sampling with a desired sample size, we have
to know the population size (V) in advance so that we can pick
one out of every N/n units. The population size can be obtained
using some preprocessing. Usually this could be done by executing
an instrumented version of the binary on some hardware or, in the
worst case, by using a fast functional simulation. In many cases
of using simulation, we need to simulate the same application mul-
tiple times, e.g, to perform a design space search or a sensitivity
analysis. In these cases, the preprocessing overhead is amortized.

Skipping For instances that are not sampled, the only thing we
need to do isto make sure that their effect on the architectural state
(memory and registers) and microarchitectural states is reflected
when we start to simulate the next selected instance. For microar-
chitectural states, we only keep track of caches and branch predic-
tor tables. In keeping these the microarchitectural state, we pay a
relatively small price of speed but significantly reduce the cold-start
effect, aform of non-sampling bias.

When preprocessing the simulated applications, since we can
predetermine which instances to choose, we can create checkpoint
files reflecting the snapshot of architectural and microarchitectural
states at the beginning of selected sample instances. At production
simulation time, after finishing the detailed simulation of one in-
stance, we can load the next checkpoint file, and in effect, instantly
fast-forward over an arbitrary number of instructions. Checkpoint-
ing requires a full-length simulation for each program-input pair.
However, since timing is not necessary, this simulation is basically
a modified functional-level emulation that can be quite fast. Fur-
thermore, the assumption is that the overhead of checkpoint cre-

ation can be amortized over many simulation runs. To maintain ac-
curate microarchitectural states, caches and branch predictors are
updated during the functional emulation.

An alternative to keeping the microarchitectural statesalso in the
checkpoints is to create checkpoints at a certain number of instruc-
tions prior to the start of sample instances. The extra instructions
would be executed during actual simulations to warm up the mi-
croarchitectural states. In this paper, we choose the first approach
which is easier to implement.

We notice that although the size of a single checkpoint file is
usually small, the total number of checkpoints can be quite high for
certain applications. We find that placing a cap on the sample size
of any individual code section is a very effective way of reducing
the total number of checkpoints. To select the cap, we tested afew
prime numbers ranging from 100 to 800. Thereisvery littleimpact
these caps have on the sampling error. We use 127 asthe cap in this
paper.

3.3.2 Without preprocessing

Aswe will seelater in Section 5, preprocessing can significantly
reduce the time for the production simulation. However, there is
an initial cost that has to be paid. When the application is to be
simulated only once, preprocessing can be very cumbersome: the
application may need to be scanned twice before the actual simu-
lation, once to get the population size so as to decide which ones
to sample and another time to create checkpoints’. In this case, a
different strategy can be used to avoid the unnecessary overhead.
We first discuss the easier issue of skipping.

Skipping Obviousdly, if the application is to be simulated only
once, we do not need a separate run to create checkpoints. For in-
stances that are not sampled, we simply fast-forward through them
using functional simulation to update the states.

Selection When drawing a sample of code section instances, not
only the sample size is important, where to pick the instances is
equally important. For example, it is not surprising that selecting
instances only from part of the program (e.g, the beginning), even
in large numbers, may create a big sampling error. Indeed, if we
follow the statistic theory and compute the sample size needed to
guarantee an error of less than 3% with a 99% confidence, but in-
stead of randomly picking n instances, we pick the very first n
instances, then the sampling error can be 10-15% for many appli-
cations we looked at. Clearly, in addition to selecting sufficient
instances to provide statistical confidence, we need to spread them

31n theory one can scan only once, creating checkpoints at all potential positions and
keep the right ones when the population size is finaly known. In practice, thisincurs
impractical space requirements. Furthermore, for incremental checkpoints, which we
use, an extra passis still needed.
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across the entire execution to reflect the program’s behavior. This
latter point is asimportant, if not more so.

To ensure that the sample instances are drawn from all over the
execution, we can simply maintain a sampling rate. We will keep
on sampling until the end of the program, even after we have ac-
quired enough instances. Obvioudly, this can lead to unnecessary
over-sampling, especialy for loops with a large number of iter-
ations. However, we note that the speed of fast-forwarding sets
an upper bound on the achievable simulation speedup. Therefore,
moderate over-sampling is not a concern for speed of simulation.
We find that if we can limit the degree of over-sampling for code
sections with a large number of instances, the simulation speedup
will largely be determined by that of fast-forwarding. Hence we
use asimple empirical formulato decide the base sampling rate for
each code section: aV2. Here V is the variation factor and a is a
constant that we need to decide. In this paper weusea = 1 (see
Section 5.3). Additionally, we identify code sections with a large
number of dynamic instances (having more than 10,000 instances
in the profiling run), and set a 1% cap on the sampling rate. Over-
all, as our experiments will show later, this approach is practica
and effective.

During the selective simulation, without prior knowledge of an
upcoming code section instance, we may select a short instance
(e.g, a subroutine invocation taking a side-exit) for detailed sim-
ulation. We choose to discard the statistics of such an instance
and obtain one more (the next) instance. This is because when
the number of instructions is small, the statistics collected can be
much more susceptible to state-induced bias* (e.g, pipelinefilling
and draining). Furthermore, since we compute weighted average,
the result of an instance with very few instructionsis simply noise.
We classify selected instances with lessthan 10% * I} dynamic
instructions as short instances. Though in theory, discarding side-
exit instances create a sampling bias, making short instances under-
represented, in practice we have verified that this does not create a
problem. These side exits are rare and unimportant. Execution
weight of all short instances combined is below 0.1% of every sin-
gle application we studied.

3.3.3 Summarizing statistics

Finally, after selective simulation, for each code section, we ob-
tain arange of statisticsof interest for the selected instances and the
total number of instructions in all instances. Based on the sample
instances, we can extrapol ate the statistics for all instances and then
combine them into program-wide results. We note that in this pro-
cess, for many ratio-type statistics such as branch prediction rate,
the mathematically correct way to compute its program-wide result
is to separately predict the numerator and the denominator. Using
weighted average of per-section ratio to compute program-wide ra-
tio createsonly asmall error (e.g, about 0.3% for branch prediction
rate). However, in our system, thisis actually higher than the sam-
pling error (about 0.2%).

4. EXPERIMENTAL SETUP

To evaluate our proposal, we perform a set of experiments us-
ing the SimpleScalar [1] 3.0b tool set and 22 applications from the
SPEC CPU2000 benchmark suite. The applications are listed in
Table 1. We use Alphabinaries.

We use different settings for different purposes. In the char-
acterization phase, each application is simulated four times using

“41n this paper, we avoid using the term “cold-start bias” asit tends to suggest that the
caches and branch predictors are not updated at all during fast-forwarding. We use
“state-induced (non-sampling) bias” instead.

Suite Applications
SPEC Int | bzip2, eon, gcc, gzip, mcf, parser, twolf, vortex, vpr
SPEC FP ammp, applu, apsi, art, equake, facerec, fma3d,
galgel, lucas, mgrid, sixtrack, swim, wupwise

Table 1. Applications used in the experiment.

two different input sets and on top of two different system config-
urations. The two different input sets are the train input set from
SPEC 2000 and the MinneSPEC input set (largesize) [11]. Thetwo
chosen configurations are modeled after MIPS R10000 and I1BM
POWERA4, respectively.

In the production phase, we compare EXPERT to a faithful de-
tailed simulation of long running applications. The baseline simu-
lator is amodified out-of-order processor simulator. The EXPERT
version has extra support for mode switching and for loading par-
titioning information and variability characterization information.
Both versions simulate all 22 applications using the standard refer-
ence (ref) input running on an architecture that is similar to Alpha
21264. Table 2 lists some of the parameters for this architecture.
This production setting is different from all four settings used in
the characterization phase.

Processor core

|ssue/Decode/Commit width | 6/4/11
Issue queue size 20 INT, 20 FP
Integer ALUs 4 + 1 mul/div unit

2+ 1 mul/div unit
Bimodal and 2-level PAg

Floating-point ALUs
Branch predictor

- Levell 1024 entries, 10-hit history reg
- Level2 1024 entries

- Bimodeal predictor size 1024 entries

- Metatable size 4096 entries

-BTB 4096 sets, 2 way

Branch misprediction latency | 7+ cycles

Reorder buffer size 128

Load/Store queue size 64

Memory hierarchy

64K B, 2-way, 2 cycles
64K B, 2-way, 2 cycles
1MB, 4-way, 12 cycles
100 cycles

L1 instruction cache
L1 data cache

L2 unified cache
Memory access latency

Table 2. System configuration.

5. EVALUATION AND ANALYSIS

In this section, we eval uate various aspects of our proposed tech-
nigque and present some quantitative analyses. We report some
statistics of the code sections obtained in the partitioning step in
Section 5.1; we discuss the characterization step in Section 5.2; we
evaluate the effectiveness of our approach in terms of simulation
errors and speedup in Section 5.3; and finaly, we discuss check-
pointing and some other optimizations in Section 5.4.

5.1 Propertiesof Partitioned Code

Code section granularity In Table 3, we list some statistics of
the code sections our partitioning agorithm generates. In the in-
terest of brevity, we only show the range of these statistics. We
see that different applications have widely different characteristics.
The partitioning algorithm in general chooses medium-grain sec-
tions.

The effect of pruning Filtering out unimportant code sections

is a very useful optimization, as these sections would otherwise
be simulated in detail, reducing potential speedup. We estimate
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Metric Vaue range

Number of static code sections 13 (mgrid) - 90 (galgel, twolf)
After pruning 4 (sixtrack, twolf) - 33 (gcc)
Total number of dynamic instances 22K (eon) - 6.6M (twolf)
Average instance size 52K (twolf) - 6.1M (wupwise)

Table 3. Code section property statistics. The last two items
are collected in the production setting. Averageinstance size
ismeasured in number of dynamic instructions.

that pruning reduces the number of checkpoints by about 30%. Its
impact on the speedup of preprocessing-based simulation could be
similar.

5.2 Variation Characterization

An important component of the EXPERT strategy is to charac-
terize the code sections' behavior variability. In this one-time char-
acterization step, we use multiple training input sets and vary the
architecture configuration. By doing so, we hope to revea the po-
tential variability of the code under awide variety of input sets and
system configurations. To avoid underestimating the variation, for
each code section, we use the maximum COV of any metric using
any training settings to serve as the behavior variation factor V. To
seeif the code sections have (significantly) higher variability using
the production setting — which suggests that using training settings
to characterize behavior variation is invalid — the weighted average
of the underestimation factor is computed and shown in Figure 5.
For each code section, this underestimation factor is defined as the
difference between the variation factor V' and the COV of agiven
metric measured in the production setting, if the COV is greater
than V. Aswe can see, only asmall portion of the applications have
noticeable underestimation. Even for them, the degree of underes-
timationissmall. Thisexperiment and the fact that characterization
using different settings agree relatively well suggest that using pre-
characterization of behavior repetition is a viable approach.

" ‘ [ BBsSize |
Il Mem Ref
o IN ‘ ‘ ‘
gcc art vpr mcf

|H‘ | ‘ | H 1

vortex parser gzip bzip2 equake
Figure 5. The underestimation factor for 3 metricsand 9 ap-
plications. The underestimation factors of al metrics are less
than 0.5% in the other 13 applications. The underestimation
factor for branch prediction rate and L1 data cache hit rate is
below 1% for all applications.
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To put earlier results of code-based COV measurements (Fig-
ure 4) into perspectives, we compare them to the COV' computed
over fixed-size instruction chunks. The comparison is shown in
Figure 6. We only show the this comparison for CPI. The setting
used isthe same asthat in Figure 4 (train input set and 8-issue pro-
cessor). The chosen chunk sizes are 1, 10, 100 thousand, and 1
million instructions. The code section size varies. The size of an
individual instance ranges from 2 thousand to over 10 million in-
structions. Program-wide average instance size ranges between 40
thousand and 2 million instructions.

This comparison is to show that COV across code section in-
stances is low because of repeating program behavior, not because

100%

\ =+ ammp
© mcf
=¥ apsi
=% art
equake
gce
applu
vpr
eon
swim
twolf

50% -

Coefficient of Variation of CPI

0% . . . f
1k 10k 100k 1M
Sampling Interval (instructions)

code section

Figure 6. COV of CPl measured in fixed-length inter-
vals compared to COV of CPl measured in code-section in-
stances. To reduce clutter, we sort the applications by their
value in 1 thousand-instruction chunk and show every other
application in the order.

these metrics inherently have little fluctuation. As can be seen,
the CPl measured at fixed-size intervals of all sizes generally has
amuch higher COV'. Depending on the interval length, the aver-
age of interval-based COV for all applications ranges from 36%
to 56%, and individual values can be as high as 280%. In contrast,
the average of code-section based COV isonly about 5%.

5.3 Accuracy and Speed

To decide on the various sampling parameters, we faithfully sim-
ulate the whole applications in detail and collect traces of all the
statistics of interest for individual code section instances. We then
try different sampling methods and calculate the sampling error
and potential speed improvement. Since actual simulation speed
depends on many factors, we simplify this analysis by using the
reduction factor which is the ratio between the total number of
instructions in the entire execution and that in the sampled code
section instances.

We first look at the impact of sample size. In essence, our se-
lective simulation is a form of stratified sampling. In each stratum
(i.e., code section), we use systematic sampling. We either have
afixed sample sizen = (z% * EL/;L)2 (with preprocessing) or a
fixed sampling rate aV* (without preprocessing), both with a cap
(Section 3.3). We vary different parameters, including confidence
(1-v), error tolerance (E /), minimum sample size (per stratum),
and the constant factor a. In Table 4, we show the resulting sam-
pling errors and the reduction factors. For brevity of presentation,
we only show the sampling error for CPl and we summarize the
error and the reduction factor results from all 22 applications into
maximum, minimum, and average. \We use geometric mean when
averaging the reduction factor.

From the table we can see that increasing sampling rate in gen-
eral lowers the error. However, it does not guarantee reduction in
error (99-3-3 has a lower average error than 99-3-30). Also, al-
though not evident from the table, having a smaller sample size
does not guarantee a higher reduction factor because the instances
sampled can have different numbers of instructions. We notice that
the minimum sample size does not affect the error results notice-
ably, at least in our experimental settings, but can significantly af-
fect the reduction factor. We find that a small value suffices’.

From the data, we believe that the differences among various

51f bounding the confidence interval is of paramount importance, we note that choos-
ing the typical minimum size of 30 for each code section (stratum) can be suboptimal
in terms of simulation speedup. The formulato find globally optimal sample sizesfor
all code sections should be used instead.
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Eavg Emaz Emin Ravg Rmax Rinin
99-3-30 0.65% | 3.81% | 0.03% 181 68252 28
99-3-3 0.57% | 3.81% | 0.02% 427 | 242598 238
95-3-30 0.66% | 3.87% | 0.04% 194 68252 29
95-3-3 0.67% | 3.87% | 0.02% 511 | 415276 31
90-3-30 0.95% | 4.59% | 0.04% 204 68252 31
90-3-3 0.99% | 4.59% | 0.03% 583 | 502179 32

a=4 0.52% | 2.58% | 0.01% 84 529 55
a=2 0.76% | 4.24% | 0.03% 124 1014 13.8
a=1 0.84% | 4.99% | 0.04% 173 1669 17.0
a=1/2 | 089% | 531% | 0.04% 262 4672 53.2
a=1/4 | 1.00% | 7.24% | 0.01% 384 4918 88.1

Table 4. Sampling error and reduction factor for different
sampling methods. E,.» and R... refer to sampling er-
rors and reduction factors respectively. The upper part shows
fixed-size sampling. X-Y-Z indicates a fixed-size sampling
with a confidence (1 — «) of X%, an error tolerance (E /)
of Y%, and a minimum sample size of Z. The minimum re-
duction factor comes from application gcc Excluding gcg,
the minimum reduction factor is around 40. The lower part
shows fixed-rate sampling with different constant factor a.

fixed-size sampling methods arerelatively small, and all these meth-
ods are reasonable choices. We use 99-3-3 in the following experi-
ments. For fixed-rate sampling, we choose a = 1, which is agood
design paint.

In systematic sampling, every k" unit is selected. It isvery con-
venient in simulation since al code section instances are naturally
sequenced. Given adesired sample size and the population size, or
given the sampling rate, k& can be easily computed. The only issue
left is to choose the starting point from the first £ units. There are
afew obvious options: choosing the firgt, the [k/2]t" (center), the
kt" (last), and a randomly selected one. Knowing that some code
has monotonically changing behavior, we believe that the instance
in the center of a group tends to best reflect the average condition
of the group. We try out these options and show the maximum and
average sampling error in Table 5. We only show the results for
fixed-size sampling of 99-3-3, and fixed-rate sampling of V> (i.e.,
a = 1). We see from the table that picking the center unit as the
starting point is a good option, while picking the first or a random
starting point are less desirable. Data shown in Table 4 isusing this
method. Finaly, less intuitively, picking the last sample in every
group is also very effective.

first center | random last

Eavg 1.32% | 0.84% | 1.03% | 0.87%
Emaz | 6.91% | 499% | 4.34% | 4.39%
Eavg 1.01% | 0.57% | 1.05% | 0.44%
Eraz | 824% | 3.81% | 6.03% | 1.87%

‘/2

99-3-3

Table 5. Sampling error and reduction factor for different
starting positions.

We now analyze the actual speedup and error obtained from ex-
pedited simulation.

With preprocessing Figure 7 showsthe reduction factor and sim-
ulation speedup when preprocessing is used. Speedup is calculated
using wall-clock time and is thus subject to noise due to hard-
ware and load differences. We can see that significant speedups
are achieved and the actual speedup tracks reduction factor rather
well as expected. Out of the 22 applications, except gcc which
takes about 10 hours, al finishes under 5 hours on mid-range PCs

(e.g, 2GHz Pentium 4-based PCs). More than half of them finish
within an hour. Fully detailed simulation, on the other hand, takes
from 40 to more than 500 hours.
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Figure 7. Simulation speedup and reduction factor shownin
log scale. The average is shown in geometric mean.

Figure 8 shows the errors of all metrics for every application.
From the figure, we see that all the errors are relatively small (less
than 3.8%). The average error ranges from 0.2% for branch predic-
tion rate to 1.1% for basic block size. The average error in CPI is
about 0.89%. On average, floating-point applications tend to have
dlightly smaller errors than integer applications. For some applica
tions, such as apsiand galgel amost all the errors are negligible.
We also see that CPI is hot necessarily the most error-prone metric.
Thus, when evaluating an expedited simulation infrastructure, we
should look at broader metrics.

Without preprocessing  Without the benefit of preprocessing the
applications, we need to fast-forward over the dynamic instances
not selected for detailed simulation. This slows downs the simu-
lation process. Figure 9 shows the simulation speedup. We note
that the simulations are performed over many different machines
with different configurations and loads. Therefore the speedup cal-
culated has limited precision. We also show the speedup of a fast-
forwarding simulation (with cache and branch predictor state up-
date). This essentially serves as an upper bound of speedup. Since
the average speedup comes very close to this upper bound, under
the current implementation, further improving the sampling mech-
anism has alimited impact on the final simulation speed. However,
improving the speed of the fast-forwarding mechanisms is part of
our future work.
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Figure 9. Speedup for selective simulation without prepro-
cessing. The average is shown in geometric mean. FF stands
for fast-forwarding.

The errors in fixed-rate sampling are quite similar to those re-
ported in Figure 8. The average errors ranges from 0.12% for L1
hit rate to 0.83% for CPI. Except a5.3% error of CPI in application
gcg al the other errors are below 3.8%.
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Figure 8. Simulation error.

5.4 Discussions
5.4.1 Checkpointing

In our selective simulation process, since we only simulate a
small percentage of al dynamic instructions, fast-forwarding the
rest of theinstructions becomes a bottleneck. As mentioned before,
creating and loading checkpoints can significantly speed up fast-
forwarding. Thisis quite obvious if we compare the resultsin Fig-
ures 7 and 9. However, checkpointing does incur a non-negligible
space overhead. The number of checkpoints (in 99-3-3) ranges
from 20 to over 4000. The total storage size for the checkpoint
files stored in compressed format ranges from a few megabytes to
over 5 gigabytes.

5.4.2 Other optimizations

One possible optimization of EXPERT is to eliminate or greatly
simplify the process of offline characterization. We have experi-
mented with two different approaches: online characterization, and
characterization without timing simulations. We summarize our
current findings below.

Online characterization It isconceivable to create a simulation
infrastructure that automatically performs the variation characteri-
zation at simulation time. For the first k instances of every code
section, the simulator performs detailed simulation and figures out
the code’s variability. Then it starts to sample at a certain rate. As
more sample instances are drawn, the variability characterization is
also updated, and the sampling rate is adjusted accordingly. Our
experience shows that making this approach both accurate and ef-
ficient at the same timeis challenging. Using small values of k, we
have seen maximum sampling error as high as 20%. Without the
benefit of pre-characterization, we really need a large sample size
so that the standard deviation of the sample (S) can be a reason-
able estimator of that of the population (¢). This requirement can
significantly lower the potential speedup.

Inexpensive characterization In the pre-characterization phase,
among other metrics, timing information (CPI) is used. It issignif-
icantly slower to obtain than other metrics. To find out if the timing
information is dispensable, we perform two experiments to con-
duct the characterization in a different, inexpensive way. First, we
replace the CPI information in the out-of-order processor model by
that obtained from an in-order processor model. Second, we elim-
inate CPI from the calculation of the variation factor V' altogether.
Wefind that, not surprisingly, using these characterization methods
to dictate sample sizes leads to increased sampling error. Although
the average error is till tolerable (2-3%), the maximum error can
be as high as 11% using in-order processor model and 25% when
discarding CPI altogether.

6. RELATED WORK

Architecture-level simulation, is one of the most important tools
in architectural studies and design, especidly in the early stages.

As the complexity of computer systems increases, even this rela-
tively high-level approach will become increasingly time-consuming.
Many techniques have been proposed to reduce the amount of de-
tailed simulation, and still maintain the accuracy of measurements
to a certain extent. Conte et al. are among the first to look at sam-
pling based simulations [2]. They also addressed issues such as
reduction in sampling and non-sampling biases.

Sherwood et al. propose SimPoint [20], an automatic system
to reduce the dynamic instruction stream into one or a handful of
representative chunks, each consisting 100 million instructions. To
find this subset, every chunk of 100 million instructions of the en-
tire instruction stream is represented as a basic block vector. This
transforms the whol e dynamic instruction stream into a set of points
in a high-dimensional space. These points are then manipulated
and eventualy clustered based on their mutual distances. Inside
each cluster, one point close to the center of weight is chosen to
represent the whole cluster. This point corresponds to a chunk of
instructions that should be simulated in detail. A particularly im-
portant advantage of SimPoint is that the large sampling unit size
makes the warm-up error negligible. However, the down side of
this approach isthat it constraints the number of sample points and
resultsin relatively high sampling error.

Wunderlich et al. propose SMARTS, which uses a different way
to select instruction chunks [21]. Instead of using clustering al-
gorithm to identify mutually similar chunks, systematic sampling
isused. The chunk size used, around 1000 instructions, is much
smaller compared to SimPoint. SMARTS uses rigorous theoretical
guidelines to determine sampling rate which results in low sam-
pling error.

While SimPoint and SMARTS are very powerful, EXPERT isan
important alternative. The uniqueness of EXPERT isthat instead of
operating on fixed-size instruction chunks, it operates on high-level
program constructs that naturally coincide with program behavior
changes. This allows us to reduce the simulation requirement by
exploiting program behavior repetition in a straightforward man-
ner. Moreover, it allows a much easier analyze-and-optimize cycle
for joint architecture and code optimizations. Since these afore-
mentioned approaches essentially treat the instruction stream as a
black box, even a simple software transformation of a subset of the
code necessitates a complete rerun or even a re-characterization.
EXPERT, however, can be used to quickly evaluate the effect of
localized software transformations on select code sections. Over-
all, future simulation infrastructures may well include mechanisms
from both paradigms.

Marculescu et al. aso use sampling of instruction chunks to
speed up simulation [12]. Instead of simple systematic sampling,
they use a hot-spot detector [13] to identify frequently executed re-
gions of code. Inside a hot-spot, sampling of fixed-size instruction
chunks is used to obtain various statistics.

Schnarr and Larus use memoization to replay actions stored in
aprocessor-action cachehen the current microarchitectural state
matches a previously seen state [19]. There is no approximation
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or loss in accuracy by doing memoization. The tradeoff is that
the current state has to match exactly what was seen previously.
As microarchitectural structures become larger and more complex,
memoization could become less applicable.

Duesterwald et al. also exploit program behavior repetition in
[4]. They have found that the repeating pattern of different met-
rics have similar rate of repeatability. This property of correlation
is used to design an asymmetric predictor, where the history infor-
mation of othermetricsis used to predict the target metric. Philo-
sophically, thisis similar to correlating branch predictors. The un-
derlying reason for the observed correlation is that as code sections
repeat in a certain pattern, externally visible metrics repeat in the
same pattern. In contrast, we exploit behavior repetition in an ex-
plicit fashion by tying the repetition with the code that generates
it. Our earlier work also showed that behavior repetition can be
exploited to control adaptive hardware [8, 7].

Haskins and Skadron introduced minimal subset evaluation (M SE),
a probabilistic approach to minimize the amount of instructions
needed to warm up buffers like caches [9]. In [10], they look at
using memory reference reuse latency information to reduce the
number of instructions needed to warm-up processor states. Incor-
porating their scheme could potentialy improve speed of fastfor-
warding. We leave this as future work.

Finally, there are other approaches to expedite program simula-
tion or analysis that are rather orthogonal to EXPERT’s method.
These include input set design [11], statistical synthetic workload
generation or simulation [17, 5, 16, 15], parallel simulations [14,
6], and machine-independent analyses [18, 3].

7. CONCLUSIONS

In this paper, we have shown that thereis alarge degree of behav-
ior repetition in common applications when the same code sections
are repeatedly executed. This behavior repetition is exemplified
by the low variation of metrics collected over invocations of sub-
routines and iterations of loops. By exploiting this fact, we can
greatly reduce the amount of detailed simulation needed to evalu-
ate designs. Many statistics can be collected from sample instances
of a static code section, rather than from faithfully simulating ev-
ery instance. We have shown that, program behavior repetition can
be pre-characterized, and we can spend less time smulating code
sections that are quite stable. Based on this principle, we have pro-
posed an expedited simulation strategy called EXPERT. For a set
of 22 SPEC 2000 applications, our experiments show that simula-
tion time can be reduced to a few hours or even several minutes
if preprocessing is used. The speed improvement is achieved with
little loss in accuracy. The average error of a range of metrics is
about 1% or less.
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